Physics Faculty Publications
Document Type
Article
Publication Date
6-2011
Disciplines
Physics | Plasma and Beam Physics
Abstract
Argon ion beams up to Eb=165 eV at Prf=500 W are observed in the Madison Helicon eXperiment (MadHeX) helicon source with a magnetic nozzle. A two-grid retarding potential analyzer (RPA) is used to measure the ion energy distribution, and emissive and rf-filtered Langmuir probes measure the plasma potential, electron density, and temperature. The supersonic ion beam (M=vi/cs up to 5) forms over tens of Debye lengths and extends spatially for a few ion-neutral charge-exchange mean free paths. The parametric variation of the ion beam energy is explored, including flow rate, rf power, and magnetic field dependence. The beam energy is equal to the difference in plasma potentials in the Pyrex chamber and the grounded expansion chamber. The plasma potential in the expansion chamber remains near the predicted eVp~5kTe for argon, but the upstream potential is much higher, likely due to wall charging, resulting in accelerated ion beam energies Eb=e[Vbeam-Vplasma]>10kTe.
Recommended Citation
Wiebold M, Sung YT, Scharer JE. 2011. Experimental observation of ion beams in the Madison Helicon eXperiment. Physics of Plasmas 18(6): 063501.
Comments
© 2011 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.
The following article appeared in Physics of Plasmas 18(6): 063501 and may be found at (http://dx.doi.org/10.1063/1.3596537).