Physics Faculty Publications

Document Type

Article

Publication Date

5-2002

Disciplines

Health and Medical Physics | Physics

Abstract

The most direct way to derive risk estimates for residential radon progeny exposure is through epidemiologic studies that examine the association between residential radon exposure and lung cancer. However, the National Research Council concluded that the inconsistency among prior residential radon case-control studies was largely a consequence of errors in radon dosimetry. This paper examines the impact of applying various epidemiologic dosimetry models for radon exposure assessment using a common data set from the Iowa Radon Lung Cancer Study (IRLCS). The IRLCS uniquely combined enhanced dosimetric techniques, individual mobility assessment, and expert histologic review to examine the relationship between cumulative radon exposure, smoking, and lung cancer. The a priori defined IRLCS radon-exposure model produced higher odds ratios than those methodologies that did not link the subject's retrospective mobility with multiple, spatially diverse radon concentrations. In addition, the smallest measurement errors were noted for the IRLCS exposure model. Risk estimates based solely on basement radon measurements generally exhibited the lowest risk estimates and the greatest measurement error. The findings indicate that the power of an epidemiologic study to detect an excess risk from residential radon exposure is enhanced by linking spatially disparate radon concentrations with the subject's retrospective mobility.

Comments

DOI: 10.1038/sj/jea/7500215

Share

COinS