Mathematics Faculty Publications

Document Type

Article

Publication Date

2-4-2016

Disciplines

Algebra | Discrete Mathematics and Combinatorics | Mathematics

Abstract

We study an impartial avoidance game introduced by Anderson and Harary. The game is played by two players who alternately select previously unselected elements of a finite group. The first player who cannot select an element without making the set of jointly-selected elements into a generating set for the group loses the game. We develop criteria on the maximal subgroups that determine the nim-numbers of these games and use our criteria to study our game for several families of groups, including nilpotent, sporadic, and symmetric groups.

Share

COinS