Document Type
Article
Publication Date
5-2009
Disciplines
Biology | Systems and Integrative Physiology | Zoology
Abstract
1. Arrest temperatures and Q10 values for extensor digitorum longus (EDL), soleus, trabecula, and jejunum muscle twitch strength, contraction time, and 0.5 relaxation time were calculated for a deep torpor hibernator, white-tailed prairie dog (WTPD) (Cynomys leucurus), a shallow torpor hibernator, black-tailed prairie dog (BTPD) (Cynomys ludovicianus), and a non-hibernator, lab rat (Rattus norvegicus) to test the hypothesis that tissue temperature tolerances limit the depth of expressed torpor.
2. There were no temperature tolerance differences between the tissues of the two species of hibernators. Both hibernating species had arrest temperatures and Q10 values more indicative of cold temperature tolerance than the lab rat in all tissues, with the exception of the soleus muscle.
3. These data imply that a limited cold tolerance of contractile tissue does not preclude a shallow torpor hibernator such as the black-tailed prairie dog from expressing deep torpor patterns. Other mechanisms, such as central neural control, are more likely to be important in determining the torpor strategy utilized by hibernating species.
Copyright Statement
Copyright © 2009 Elsevier Ltd. All rights reserved.
NOTICE: This is the author’s version of a work that was accepted for publication in Journal of Thermal Biology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Thermal Biology 34(4), (2009) DOI: 10.1016/j.jtherbio.2009.02.003
Recommended Citation
Cotton C, Harlow HJ. 2009. Do hypothermic tissue tolerances limit torpor expression? Journal of Thermal Biology 34(4): 206-211.