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SIR Model and COVID-19 

In March 2020, severe acute respiratory syndrome coronavirus, or COVID-19, emerged 

and drastically changed our world.  This new disease called for a different outlook on how to 

best minimize the number of individuals infected and even worse, those that were dying.  It was 

found that any contact over fifteen minutes with an infected individual made you susceptible to 

becoming infected yourself.  Thus, it was becoming clear that the world needed some way to 

model the spread of COVID-19.  This can be done using an area of mathematics called 

mathematical modeling. 

Infectious diseases have been around for hundreds of years, and a way to track these 

diseases has been through mathematical modeling.  Daniel Bernoulli was one of the first 

mathematicians to record a formula or method for modeling smallpox: 

−𝑑𝑑𝐼𝐼𝑥𝑥𝑠𝑠 = 𝑃𝑃𝐼𝐼𝑥𝑥𝑠𝑠 𝑑𝑑𝑥𝑥 + ��−𝐼𝐼𝑥𝑥𝑠𝑠
𝑑𝑑𝐼𝐼𝑥𝑥
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𝐼𝐼𝑥𝑥
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Where the left-hand side demonstrates a decrease in the group of the population that has never 

had smallpox, the first term on the right-hand side is the group who has contracted smallpox and 

the second term is the group that has died from both natural or other causes and smallpox1.   



Bernoulli’s model was utilized and expanded on by Ronald Ross and William Hamer in 

the early 1900s2.  Their model focused on a population that can easily move from one state to 

another in terms of being susceptible, infected, or recovered from a disease, or more easily seen 

in Figure 1. Ross and Hamer’s findings gave rise to what is known as the Susceptible-Infected-

Recovered or SIR model.  This model has been used to model everything from malaria to 

influenza, and most recently COVID-19. The SIR model is a set of ordinary differential 

equations that can be used to show the changes seen in a population that encounters an infectious 

disease.  The model's simplest version includes solely the differential equations for the 

susceptible, infected, and recovered populations, such that3 

𝑑𝑑𝑆𝑆(𝑡𝑡)
𝑑𝑑𝑡𝑡

=
−𝛽𝛽𝑆𝑆(𝑡𝑡)𝐼𝐼(𝑡𝑡) 

𝑁𝑁
                                                                (2) 

𝑑𝑑𝐼𝐼(𝑡𝑡)
𝑑𝑑𝑡𝑡

=
𝛽𝛽𝑆𝑆(𝑡𝑡)𝐼𝐼(𝑡𝑡) − 𝛾𝛾𝐼𝐼(𝑡𝑡)

𝑁𝑁
                                                          (3) 

𝑑𝑑𝑅𝑅(𝑡𝑡)
𝑑𝑑𝑡𝑡

=
𝛾𝛾𝐼𝐼(𝑡𝑡)
𝑁𝑁

                                                                         (4) 

In equation two (2), the number of individuals that are susceptible decreases at a constant 

rate, given by β, proportional to the number of susceptible individuals times the number of 

infected individuals. From the interactions between the susceptible individuals and the infected 

individuals, all the susceptible individuals that became infected move into the infected category. 

In equation three (3), the first term shows that the number of individuals that are infected 

increases at the same rate as the number of individuals that are susceptible decreases. The second 

term in this equation shows a decrease in the number of infected individuals, proportional to the 

number of infected individuals, due to people recovering and moving into the recovered, or 



removed, category. Finally, in equation four (4), the number of individuals that have recovered is 

proportional to the number of infected individuals with a given constant rate of recovery, γ.4 

 

 

Figure 1. displays the pathway an individual can take from susceptible to infected to recovered in 

terms of contracting an illness.  This pathway assumes once an individual has reached the 

Recovered state, they cannot go back into the Susceptible state. 

To use the simple SIR model, gamma and beta must be given, or the infection and 

recovery rate respectively.  The number of individuals, or percentage of individuals of the total 

population, in each group at a given time, t, must also be given.  Once all those values are 

known, one inputs each value in the correct place and solves the system.  The outcome will 

indicate how the size of each group is changing either by the percentage of the total population at 

a given time t.  More simply, if one were to look at a graph of the data and connect all points for 

each group together to form a line for each state, the calculated number would be the slope of 

each line at that specific point in time, t.  For example, consider a population that encounters a 

disease that has an infection rate of .55 and a recovery rate of .15.  The total population is 100, 

and 75 individuals are in the susceptible group, 20 are infected, and 5 are recovered.  Then, 

plugging the information in its correct spot in equations 2 through 4 and simplifying: 

𝑑𝑑𝑆𝑆(𝑡𝑡)
𝑑𝑑𝑡𝑡

=
−𝛽𝛽𝑆𝑆(𝑡𝑡)𝐼𝐼(𝑡𝑡)

𝑁𝑁
=
−(. 55)(75)(2)

100
=
−82.5

100
= −.825 

𝑑𝑑𝐼𝐼(𝑡𝑡)
𝑑𝑑𝑡𝑡

=
𝛽𝛽𝑆𝑆(𝑡𝑡)𝐼𝐼(𝑡𝑡) − 𝛾𝛾𝐼𝐼(𝑡𝑡)

𝑁𝑁
=

82.5 − (. 15)(20)
100

=
79.5
100

= .795 

Susceptible Infected Recovered 



𝑑𝑑𝑅𝑅(𝑡𝑡)
𝑑𝑑𝑡𝑡

=
𝛾𝛾𝐼𝐼(𝑡𝑡)
𝑁𝑁

=
(. 15)(20)

100
=

3
100

= .03 

Therefore, the susceptible group is decreasing in size by 82.5%, the infected group is increasing 

in size by 79.5%, and the recovered group is increasing in size by 3% at time t. 

This model assumes that once an individual has moved into the recovered, they are 

unable to move back into the susceptible model.  It also assumes there is no movement in and out 

of the population, the outbreak is short lived, and that the disease has no latent period3.  

Obviously, few of these assumptions are generalizable to the COVID-19 virus.  These equations 

can be utilized to look at the spread of a disease through continuous time assumptions.  A 

continuous dynamical system, such as the one described previously, assumes that the state 

evolves continuously throughout time according to a fixed set of rules.  A dynamical system is a 

system or process in which motion is occurring and can be explained using one or more 

equations, whereas a static system is a system or process in which no motion or change is 

occurring.   

 However, COVID-19 is considered a discrete dynamical system because its set of rules 

changes from time t to time t+1.  The discrete system calls for time to be measured in discrete 

units, such as hours, days, or weeks, as opposed to continuously.  Therefore, it is important to 

use a discrete dynamical system to model a disease such as COVID-19.  The equations from the 

continuous dynamical system can be modified to satisfy the discrete dynamical system 

requirements as seen in equations five through seven.  The discrete system of differential 

equations which can be used to model COVID-19 are as follows3: 

𝑆𝑆(𝑡𝑡 + 1) = 𝑆𝑆(𝑡𝑡) −
𝛽𝛽𝑆𝑆(𝑡𝑡)𝐼𝐼(𝑡𝑡)

𝑁𝑁
                                                        (5) 



𝐼𝐼(𝑡𝑡 + 1) = 𝐼𝐼(𝑡𝑡) +
𝛽𝛽𝑆𝑆(𝑡𝑡)𝐼𝐼(𝑡𝑡)

𝑁𝑁
− 𝛾𝛾𝐼𝐼(𝑡𝑡)                                                   (6) 

𝑅𝑅(𝑡𝑡 + 1) = 𝑅𝑅(𝑡𝑡) + 𝛾𝛾𝐼𝐼(𝑡𝑡)                                                              (7) 

Where N is the total population, and S(t), I(t), and R(t) are the previous populations of the three 

respective groups and S(t+1), I(t+1), and R(t+1) are the new populations in each group.  From 

here on, the discrete dynamical system will be used to model the spread of COVID-19. 

 Following the outbreak of COVID-19, studies revolving around how the SIR model 

could be utilized to model the disease became prevalent.  These studies provide an expanded SIR 

model to include exposed (E), quarantined (Q), asymptomatic infected (IA), and symptomatic 

infected individuals (IS)5.  A particular study created differential equations which included these 

new groups, as well as the original susceptible and recovered groups.  The study pictured the 

spread of COVID-19 in a Markov chain way of thought, which brought about the introduction of 

new parameters for new movements of individuals between the various groups.  The parameters 

were assigned as follows5: 

Parameter Definition Value 

τ Transfer rate from susceptible to 

quarantine 

0.002 

β Contact rate between susceptible 

and exposed 

0.0805 

δ Mortality rate due to COVID-19 

symptomatic individuals 

1.6728 × 10−5 

γ Transfer rate from exposed to 

quarantine 

2.0138 × 10−4 



η Transfer rate from exposed to 

symptomatic 

0.4478 

θ Transfer rate from quarantine to 

asymptomatic 

0.0101 

μ Natural death rate 0.0106 

ν Transfer rate from quarantine to 

symptomatic 

3.2084 × 10−4 

σ Transfer rate from exposed to 

asymptomatic 

0.0668 

Α Natural death rate 0.02537 

R1 Recovery rate of asymptomatic 5.7341 × 10−5 

R2 Recovery rate of symptomatic 1.6728 × 10−5 

These parameters were then utilized in the following differential equations, where it is assumed 

that populations of each group add up to the total population5: 

𝑑𝑑𝑆𝑆(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝛢𝛢 − (𝜏𝜏 + 𝜇𝜇)𝑆𝑆(𝑡𝑡) − 𝛽𝛽𝑆𝑆(𝑡𝑡)𝐸𝐸(𝑡𝑡)                                               (8) 

𝑑𝑑𝐸𝐸(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝛽𝛽𝑆𝑆(𝑡𝑡)𝐸𝐸(𝑡𝑡) − (𝛾𝛾 + µ + 𝜂𝜂 + 𝜎𝜎)𝐸𝐸(𝑡𝑡)                                           (9) 

𝑑𝑑𝑄𝑄(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝜏𝜏𝑆𝑆(𝑡𝑡) +  𝛾𝛾𝐸𝐸(𝑡𝑡) − (𝜇𝜇 + 𝜈𝜈 + 𝜃𝜃)𝑄𝑄(𝑡𝑡)                                           (10) 

𝑑𝑑𝐼𝐼𝐴𝐴(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝜎𝜎𝐸𝐸(𝑡𝑡) +  𝜃𝜃𝑄𝑄(𝑡𝑡) − (𝜇𝜇 +  𝑅𝑅1)𝐼𝐼𝐴𝐴(𝑡𝑡)                                            (11) 

𝑑𝑑𝐼𝐼𝑠𝑠(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝜂𝜂𝐸𝐸(𝑡𝑡) +  𝜈𝜈𝑄𝑄(𝑡𝑡) − (𝛿𝛿 +  𝜇𝜇 +  𝑅𝑅2)𝐼𝐼𝑆𝑆(𝑡𝑡)                                       (12) 

𝑑𝑑𝑅𝑅(𝑡𝑡)
𝑑𝑑𝑡𝑡

=  𝑅𝑅1𝐼𝐼𝐴𝐴(𝑡𝑡) +  𝑅𝑅2𝐼𝐼𝑆𝑆(𝑡𝑡) −  µ𝑅𝑅(𝑡𝑡)                                              (13) 



These equations can then be put into Microsoft Excel along with the parameter values to 

get a distinctive understanding of how the numbers of individuals in each group are changing 

from time t to time t+1.  Because the system of equations eight through thirteen changes in 

increments of time, this would be considered a discrete dynamical system.  The values of the 

equations can be found at time t and will be slightly different than those found at time t+1. 

 Microsoft Excel was utilized to track the changes from time t to time t+1.  It is important 

to note that the equations were written to measure what percentage of the population is 

susceptible, infected, quarantined, exposed, and recovered.  Percentages were used because it 

remains the ambiguity of having a portion of an individual being in a group.  For example, the 

Excel equations will not say that 2.4 individuals are susceptible, it will just say that .2% of the 

population is susceptible.  Using the percentage of a population versus the actual population size 

allows for the elimination of having to divide each term by the total population, as is needed for 

the discrete dynamical system.  For the Excel equations, Minnesota data was utilized, along with 

the parameter values obtained from previous research.  The only Minnesota data used in the 

Excel file was the total population, which is 5.64 million as of 2019.  It was assumed that at the 

beginning there was only one exposed individual, and all others were in the susceptible 

population.  Utilizing that one assumption, the results from the Excel data are seen in Figure 2. 



time 
(days) Susceptible Exposed Quarantined

Infected 
(asymptomatic)

Infected 
(symptomatic) Recovered

0 1 1.773E-07 0 0 0 0
1 0.974429986 9.842E-08 0.0002 1.1844E-08 7.93972E-08 0
2 0.948865092 5.443E-08 0.00039068 2.03829E-06 1.86794E-07 2.007E-12
3 0.923305315 2.999E-08 0.00057224 5.96609E-06 3.34529E-07 1.22E-10
4 0.897750652 1.646E-08 0.00074487 1.16842E-05 5.27999E-07 4.684E-10
5 0.8722011 9.003E-09 0.00090877 1.9084E-05 7.68742E-07 1.142E-09
6 0.846656659 4.905E-09 0.0010641 2.80597E-05 1.05617E-06 2.237E-09
7 0.821117328 2.662E-09 0.00121107 3.85085E-05 1.38854E-06 3.84E-09
8 0.795583104 1.439E-09 0.00134983 5.033E-05 1.76353E-06 6.031E-09  

Figure 2. displays results from Excel with an assumed one exposed individual and utilizing the 

equations and parameters from previous research. 

Compiling the data into an Excel spreadsheet provides the ability to look at how individuals 

are moving to the various groups from one time to another.  In this case, how individuals are 

moving from one group to another from day to day.  This is beneficial in seeing how COVID-19 

can spread relatively quickly without the right precautions being put into place.  However, this 

model does not allow an individual to move from the recovered population back into the 

susceptible population, which can occur after contracting COVID-19.  This causes the population 

to start accumulating in the recovered state, eventually causing the disease to die off and lose its 

ability to spread.  Again, this is not seen with COVID-19 because an individual can get 

reinfected.  One downside with this study, however, was the lack of consideration regarding 

vaccination status. Further, one other downside was that the excel spreadsheet did not allow us to 

easily add in new conditions.  Adding anything new would cause the spreadsheet to become 

increasingly messy and hard to follow.  Despite Excel allowing for a day-to-day picture of what 

was occurring, there were many downsides which need to be accounted for.  A new way of 



modeling the spread of COVID-19 had to be created to model the spread most effectively and 

cleanly.   

Python allows for new conditions to be easily added in and does not generate a large list of 

numbers. It also gives an easy to read and clear graph of how COVID-19 is spreading.  A simple 

version of the SIR model was coded first, which just included the Susceptible, Infected, and 

Recovered states.  The beginning states as shown in Lines 3-8 include the total population (N), 

the initial number of susceptible individuals (S), the initial number of infected individuals (I), the 

initial number of recovered individuals (R), infection rate (β), and recovery rate (γ). These were 

all assumed values.  The Python code runs through the equations from time 0 to time 100 days.  

To accomplish this, a “for” loop was incorporated into the code to repeat any set of coded 

instructions over and over, until a given condition is met.  We wanted to allow our “for” loop to 

continue circulating within a time range, specifically from time 0 to 100 days, as shown in Line 

15 in Figure 3. Within the “for” loop, the code includes the Susceptible, Infected, and Recovered 

equations from equations 5, 6, and 7, as seen in Figure 3. Within the “for” loop, the code 

appends the S, I, and R values into their respective lists in order to keep track of the total number 

of people in each state at a given time. The Python code generated a graph depicting how the 

population sizes changed from time 1 to time 100 as seen in Figure 4. 

As before with our Excel model, this Python code does not factor in the ability for 

individuals to move back into the susceptible population after their immunity period is over.  In 

this code, once an individual has reached the Recovered state, they do not move from that state.  

It also does not account for the possibility of an individual being less susceptible to COVID-19 

due to their vaccination status.   



 

 

 

 

 

 

 

Figure 3. presents basic SIR Python code with an assumed population of one million and an 

infection rate of 0.5 and a recovery rate of 0.1.  

 

 

 

 

 

 

 

 

Figure 4. depicts the result from Python code given in Figure 3.  Time is measured in days and 

the population is measured as the percentage of the total population of one million. 



Following the creation of a simple SIR model using Python, a more complex version was 

created, and included vaccination status.  In this revised version, each population from the 

original model was split up into a vaccinated and unvaccinated population.  New parameters 

were also created to explain the spread from one group to another group, because there are new 

transfer rates between the groups following the addition of these new parameters.  This new 

Python model also accounts for when an individual loses their immunity from COVID-19 

following the end of their immunity period.  It has been seen that about 90% of individuals can 

maintain immunity up to eight months following their infection with COVID-196.  However, this 

study decided to make an immunity of 90 days, because it is known that almost 100% of 

individuals will have immunity through that period.  Following those 90 days of immunity, the 

code puts an individual who has reached the end of their immunity period back into the 

susceptible category.  If the individual was originally unvaccinated, they will be placed into the 

susceptible unvaccinated group, and vaccinated individuals will go back into the susceptible 

vaccinated group.  A core goal of this study was to find a way to model COVID-19 to the best 

extent and finding a way to bring individuals back into the susceptible groups was incredibly 

important.  Python code for this new method of modeling COVID-19 is seen in Figure 5.  The 

parameters for the transfer rates between groups are as follows, and the original transfer rates 

between groups were assumed: 

 

 

 

 



Parameter Definition Value 

βV Transfer rate from susceptible 

vaccinated to infected vaccinated 

0.6 

βN Transfer rate from susceptible 

unvaccinated to infected 

unvaccinated 

0.9 

γV Transfer rate from infected 

vaccinated to recovered vaccinated 

0.25 

γN Transfer rate from infected 

unvaccinated to recovered 

unvaccinated 

0.15 

δV Death rate from COVID-19 of 

vaccinated individuals 

0.05 

δN Death rate from COVID-19 of 

unvaccinated individuals 

0.1 

 

This study began by creating two separate codes, one for vaccinated and one for 

unvaccinated.  This allowed for the ability to check the codes success separately, before 

combining the vaccinated and unvaccinated groups to get the full picture of the spread of 

COVID-19 with the new parameters.  The vaccinated code can be found in Figure 5.  In this 

code, a few assumptions are made about the starting population, and from there, the code runs 

according to the equations provided.  The Minnesota population7 and the Minnesota vaccination 

rates at the beginning of April 20228 were used for starting assumptions.  From there, it was 

assumed that the population started with one infected individual, and the immunity period was 

set at 90 days due to previously stated information.  Finally, the βV, γV, and δV were set to 0.6, 

0.25, and 0.05 respectively.  These values were also assumed, but considerations about each 



value were taken into account.  For the infection rate, in order for a disease to be infections, it 

must be able to spread relatively easily from individual to individual.  Therefore, a value above 

0.5 is normally used to describe a disease that is easily spreadable.  The death rate from COVID-

19 in vaccinated individuals is relatively small, simply because they have been vaccinated and 

are better protected against the disease.  Even though a vaccinated individual can contract 

COVID-19, the individual is less likely to get as sick or for as long as their unvaccinated 

counterpart.  Finally, the removal rate was generalized based on removal rates found in other 

studies, and a removal rate that seemed plausible based off current data.   

 

 

 

 

 

 

 

 

 

 

Figure 5. displays the expanded code to describe how the vaccinated population is affected by 

COVID-19.   



The Python code runs through the equations from time 0 to the time given in the original 

parameters.  To accomplish this, a “for” loop was again incorporated into the code, like the 

simple SIR code in Figure 3.  We wanted to allow our “for” loop to continue circulating within a 

time range, specifically from time 0 to a predetermined time “Days” as shown in Line 26 in 

Figure 5. The code circulated through a “for” loop from time 0 to 1000 days, allowing us to 

visualize the projection of the virus based on the initial parameters.  Within the “for” loop, the 

code includes the Susceptible, Infected, and Recovered equations expanded from the equations in 

Figure 3 to account for the vaccinated population.  In addition to these three equations, an 

equation to account for the Death state was included.  All four equations can be seen in Lines 35-

38 in Figure 5. In contrast to the simple SIR code, this code includes “if-else” statements.  In an 

“if-else” statement, if a given condition stated in the “if” statement if true, then the program will 

execute that condition.  On the other hand, if the given condition in the “if” statement is not true, 

then the program will execute the condition in the “else” statement.  In this Python code, “if-

else” statements starting at Line 29 were included to ensure the values for SV, IV, RV, and DV 

were not negative values at the end of each “for” loop iteration.  This was necessary to include 

because it is not realistic to have a negative number of people in a given state.  If the people 

entering a given state were going to be a negative value, then we wanted the code to essentially 

say that zero people entered that given state at time t. 

Within the “for” loop, the code appends the SV, IV, RV, and DV values into their respective 

lists, similar to the simple SIR code in Figure 3.  However, in this expanded model, we wanted to 

allow for those that have entered the Recovered state the ability to re-enter the Susceptible state 

after a given immunity period, and thus be able to become infected again.  To accomplish this, 

we needed another list that kept track of the number of people that entered RV at each time t, 



represented by recvdays.  A list was necessary because we needed to be able to know when a 

specific group of people entered the Recovered state at time t to ensure they stayed within that 

state for the entire duration of the immunity period.  For this purpose, it would not have been 

appropriate to maintain a single sum of people within that state and have a set proportion of 

people leaving that state at any given time.  In this case, there would have been no way to keep 

track of the time certain individuals stayed in the Recovered state, allowing for the possibility of 

some individuals to stay within this longer for a shorter or longer time than the given immunity 

period.  With this, an “if” statement was included to essentially say, if a group of people that 

entered the entered the Recovered state at time t have finished their recovery period, then that 

group will re-enter the Susceptible state.  One consequence of allowing people to become 

susceptible to a disease after recovering from it is the possibility of future outbreaks occurring, 

generating waves, as shown in Figure 6. 

The figure produced from the expanded SIR code is only showing how the populations of 

each group are changing throughout time for vaccinated individuals.  As seen in the graph, the 

susceptible individuals decrease greatly over a small amount of time, which is paired with an 

increase in the infected and recovered lines.  Then, the trends for those three groups will switch.  

The susceptible individuals increase, while the populations in the infected and recovered states 

decrease.  These swings demonstrate when the population is hit by a wave of COVID-19, which 

greatly impacts the populations in each group.  Then, after a certain period a switch is seen and 

the trends reverse.  This demonstrates how the infectiousness of that wave is decreasing because 

enough of the population has been infected.  The increase in individuals in the susceptible 

population also indicates when individuals who have reached the end of their immunity period 

leave the recovered group and re-enter the Susceptible state.  The higher the infection rate, the 



more spikes will be seen on the graph generated by the Python code.  It is important to note that 

the death line does not undergo spikes like the other three lines.  This occurs because once an 

individual enters the Death state, they cannot leave.  Therefore, this line is additive over time. 

 

 

 

 

 

 

 

  

 

Figure 6. depicts the graph generated by the Python code displayed in Figure 5.  Time is given in 

units of days, and the population is given in terms of number of individuals in each group. 

A similar approach was taken with the unvaccinated individuals, however, issues with the 

code presented challenges.  The same fluctuation should be seen with the unvaccinated 

individuals, just on a stronger scale, due to these individuals being more susceptible to COVID-

19 and their likelihood to get sicker when they contract COVID-19.  However, only one peak is 

seen, and after individuals re-enter the Susceptible state after their 90-day immunity period that 

population levels out.  This means that those re-entered individuals are not getting sick or 

contracting COVID-19 again.  However, this is simply not possible.  Changes to the code must 



be made to correct this issue.  Yet, due to time constraints, this study was not able to make those 

changes. 

Python allows for the addition of variables and conditions to be much easier than it would be 

in Excel.  Python provides the ability to tell the program when certain conditions will begin or 

end, such as with the immunity period of an individual ending 90 days after the individual 

contracted COVID-19.  It is possible to generate a chart of the population sizes of each state for 

every time from time 0 to time 1000, but Python does not automatically make that for the user.  

This is beneficial, because it allows the user to overlook all the messy data and just look at the 

graph generated by the code.  Despite Python and Excel doing similar things, Python does these 

calculations in a much cleaner way than Excel does.  This is important, because the data sizes 

used when modeling COVID-19 get to be rather large, and the cleaner this can be done the 

better. 

There are a few downsides to using Python.  A primary issue is the limited ranges of β, γ, and 

δ values.  If any respective value was too large or too small, then it resulted in skewed results.  

However, this would ultimately hold true in a real-world example, like COVID-19. For example, 

if an infection rate of a given strain of COVID-19 is very low, the virus is already limited in its 

capacity to rapidly spread, ultimately leading to minimal numbers of people becoming infected 

with that strain. That strain of the virus is not viable enough to produce the greatest impact on the 

human population and will in turn die off. 

Another downside to using Python is that one needs to be well-versed in the language in 

order to add higher complexities to any given code.  Even though this is more of an issue to the 

user, this does limit the programmer in various aspects, such as needing to generalize certain 

assumptions.  For example, Minnesota’s state population is most likely changing every day, with 



people moving into or out of the state.  However, we needed to assume our population stayed the 

same throughout the duration of our code, aside from the people that have died from the virus.  

Looking at COVID-19 in particular, researchers have learned that the virus is capable of 

changing in various ways, such as introducing new mutations or even the immunity period.  

Again, we had to keep our beginning assumptions the same throughout the duration of the code, 

mainly because we were unable to write these different factors into the code. 

In addition, the lack of being well-versed in the code led to complications in writing out 

different aspects of the code.  The part of the code that was the hardest for us to write was having 

people re-enter the Susceptible state after spending a certain amount of time in the Recovered 

state.  We knew how we wanted this to happen, but it was difficult for us to write it out in the 

Python language. Being said, it is suggested that a user understands this language well if they 

were to take on this sort of project, or a project of similar complexity. 

Areas of further research are vast, especially due to the fluidity of COVID-19, and its spread.  

One major area, if an individual were to pick up this research, would be to solve the issues with 

the unvaccinated code.  It is likely that the issue(s) are relatively small, but for an individual not 

well versed in the Python language, the issue(s) would be hard to spot.  Once the codes are fixed 

to be the most efficient they can be, it would be effective to combine the two codes.  This allows 

for an understanding of how COVID-19 is spreading and how the conditions of the states are 

changing throughout time for vaccinated and unvaccinated individuals.  By bringing light to 

these trends, it might bring about a new wave of individuals getting vaccinated, once they realize 

how much they can be benefitted by being vaccinated against COVID-19.  Once the code has 

been fixed, it would also be possible to incorporate different mutations of COVID-19 into the 

code.  All the mutations and strains of COVID-19 have slightly different infection, recovery, and 



death rates.  These can be used in the code to show how those specific strains of COVID-19 can 

affect the vaccinated and unvaccinated individuals.  Of course, it is important to start small with 

changes and new conditions, but once a simple code has been created it is easy to add onto that 

code.  Then, one could look at mixing different mutations together and how that would affect the 

states of COVID-19 throughout time.  A final area of further investigation would be to include 

actual data in the assumptions area of the Python code.  If the code had been working, this study 

would have also incorporated the infection, recovery, and death rates of COVID-19 in 

Minnesota.   
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