Cushion Sea Stars (Oreaster reticulatus) have the Ability to Respond to Disturbance

Peyton Kopel
College of Saint Benedict/Saint John's University, pkopel002@csbsju.edu

Thomas Ellis
College of Saint Benedict/Saint John's University, tellis001@csbsju.edu

Follow this and additional works at: https://digitalcommons.csbsju.edu/ur_cscday

Recommended Citation

Kopel, Peyton and Ellis, Thomas, "Cushion Sea Stars (Oreaster reticulatus) have the Ability to Respond to Disturbance" (2022). *Celebrating Scholarship and Creativity Day*. 183.
https://digitalcommons.csbsju.edu/ur_cscday/183

This Poster is brought to you for free and open access by DigitalCommons@CSB/SJU. It has been accepted for inclusion in Celebrating Scholarship and Creativity Day by an authorized administrator of DigitalCommons@CSB/SJU. For more information, please contact digitalcommons@csbsju.edu.
Introduction

- 45% of cushion sea stars (*Oreaster reticulatus*, CSS) can be found in seagrass (*Thalassia testudinum*), while 51% occur in coral reef patches mixed with seagrass, and 4.0% are found exclusively in coral reefs (Guzmán & Guevara, 2002) (Figure 1).
- Preferred habitat includes calm, shallow, subtropical waters, with a calcareous sandy bottom (Miranda & Patel, 2011).
- They are omnivores, with a diet consisting of algae, diatoms, crab larvae, and other small organisms (Miranda & Patel, 2011).
- Typical movement patterns consist of an average distance of six meters (19.7 feet) per day (Smith, 1940).
- We hypothesized that there would be a difference in the distance moved among *Oreaster reticulatus* in disturbed and undisturbed environments.
- We predicted that when in disturbed environments, *Oreaster reticulatus* would move a greater distance as compared to undisturbed environments.

Methods

- CSS were observed March 9 - 11, 2022, in Graham’s Harbor, San Salvador, Bahamas at 1100 and 1500 hours. All animals were tracked for one hour.
- Disturbed environment: CSS were moved to a central location (Figure 2).
- Undisturbed environment: CSS were marked in their original location (Figure 3).
- Data analysis was conducted using a t-test.

Results

- Data analysis results show a statistical difference between the distance moved among cushion sea stars in disturbed and undisturbed environments.
- This supports our hypothesis that there is a difference between the two external sensory inputs.
- A factor that could have disrupted data results was human interference at the testing sight, as Graham’s Harbor is a frequented snorkeling location.
- Another factor to consider is human error when measuring underwater distances.

Conclusions

- Our hypothesis was supported; the difference between disturbed and undisturbed environments was statistically significant (*P*(T<=t) two-tail = 0.005).
- In future experiments, a more controlled environment and a more efficient underwater measuring device may be beneficial.
- It would be interesting to investigate directionality and distances moved relative to various ages of the cushion sea stars.

Acknowledgements

We would like to thank the Gerace Research Center and CSBSJU for giving us the opportunity to conduct this research project. An additional thank you to Professor Kristina Timmerman and Dr. Trevor Keyler for organizing the travelling logistics.

References

