The Application of Biofortification as an Effective Method of Reducing Global Malnutrition

Bailey illg
College of Saint Benedict/Saint John's University, billg001@csbsju.edu

Jacob Scherber
College of Saint Benedict/Saint John's University, JSCHERBER001@csbsju.edu

Follow this and additional works at: https://digitalcommons.csbsju.edu/ur_cscday

Recommended Citation

https://digitalcommons.csbsju.edu/ur_cscday/143

This Poster is brought to you for free and open access by DigitalCommons@CSB/SJU. It has been accepted for inclusion in Celebrating Scholarship and Creativity Day by an authorized administrator of DigitalCommons@CSB/SJU. For more information, please contact digitalcommons@csbsju.edu.
The application of biofortification to staple crops as an effective method of reducing global malnutrition

By Bailey Illg & Jacob Scherber

Introduction

• Biofortification is the practice of improving nutritional quality of crops before or during the growing process.

• Intended to reduce malnutrition by providing additional necessary nutrients.

• Biofortification has the potential to reach rural parts of the world.

• It is considered one of the most cost-effective methods of improving nutrition.

• Can be done through selective breeding, genetic engineering, or agronomic application of nutrients.

Historical Development

• The green revolution increased the amount of food produced but lacked advances in nutritional content.

• In the 1990’s, research shifted to producing foods with improved nutrient densities and high yield.

• Most of the early biofortification efforts focused on modifying crops through selective breeding.

• Improvements in genetic modification technology has made it more efficient.

• Biofortification has been mainly centered on improving nutritional accessibility in rural and developing countries

Current Status of Research

• Scientists can manipulate genes selecting for plant mechanisms to combat plant homeostasis and to understand desirable traits of crops for breeding.

• Selective breeding allows crops to be breed for desirable mechanisms and promotes beneficial plant varieties.

• Emphasis has been placed on improving crop bioavailability to use all nutrients.

• Direct application of nutrients is utilized to increase nutrient concentration.

• Application methods include fertilizer sprays on soil, foliage, plant seeds, or a combination of these methods.

Current Issues

• Low bioavailability for some biofortified crops lead to unused nutrients.

• Consumers and producers are hesitant to adopt biofortified crops due to differences in appearance and taste.

• Biofortification decreases genetic variation in crops and could lead to more susceptibility to diseases.

• Some biofortified nutrients have interacted with nontarget nutrients

Conclusion & Recommendations

• Based on our research, we recommend that research continues in biofortification.

• We feel that biofortification is a viable solution to combating malnutrition and addressing a growing global population.

• More research is needed to determine how biofortified nutrients interact with other nutrients already present.

• Bioavailability should be emphasized in biofortification to maximize benefits.

• Regulations and laws should be passed to make biofortified crops more accessible.

Figure 1. Golden rice (shown on the right), an example of a successful biofortification technique to increase beta-carotene in rice. Beta-carotene helps reduce vitamin A deficiencies (image credit: Castro, 2019).