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Abstract

An acoustic levitator is able to levitate small particles, such as pieces of Styrofoam or
water, by creating standing sound waves. The levitator produces a sound wave, which is
then reflected back on itself by a reflector, creating the standing waves. These standing
sound waves can be observed using schlieren optics. Light from an LED point source is
sent through the air between the levitator and the reflector and reflected off a mirror
towards a camera. In front of the camera is a small dot on glass that blocks incoming
light. If there is no disturbed air between the levitator and the reflector (no standing sound
waves), the camera captures nothing, but if there is disturbed air (standing sound waves),
the light is refracted by the disturbed air, misses the dot, and enters the camera, allowing
the standing waves to be captured by the camera. In this experiment, the heat produced
by the acoustic levitator would interfere with the capture of the standing waves as the
heat waves would refract the light by a greater factor than the sound waves did. | had two
objectives in this experiment; to reduce the heat in the acoustic levitator system and to
observe how particles behaved when levitated by the acoustic levitator and reflected by
different shapes of reflectors. | was able to significantly reduce the heat in the system by
using Peltier cooling disks, while also being able to observe the behavior of pieces of
Styrofoam as they were levitated by the levitator.

Introduction

Acoustic levitation is the process by which a particle is suspended in air against gravity
with no physical contact due to the acoustic radiation force. The standing sound waves
produced by the levitator can be captured with a camera by sending light through the
disturbed air and reflected back towards the camera. Acoustic levitation was first
proposed in 1933 by Biicks and Miiller, and the theoretical background was derived by
King in 1934%. Acoustic levitation has many uses. In addition to observing how small
particles behave when acoustically levitated, acoustic levitators are also useful for
container-less material processing, biochemical analysis, and experiments in outer space.
Furthermore, acoustic levitation is used in noncontact handling ImethodsF, which is
especially useful when dealing with the possibility of contamination or other effects that
a regular container interacting with a potential sample can bring. When combined with
Raman spectroscopy, acoustic levitation is also an extremely useful technique in
analytical chemistry and process engineering®.

The purpose of my experiment was to observe how Styrofoam particles behave when
acoustically levitated by both flat and concave reflectors. To accomplish this, I first had



to develop a system to remove heat created by the acoustic levitator. Heat waves
generated by the operation of the acoustic levitator are stronger than the standing sound
waves, so when the camera captured the waves between the levitator and the reflector, the
heat waves would be more visible and would obscure the sound waves. The second part
of my experiment was to use the implemented cooling system and the acoustic levitation
system to observe and capture the behavior of the Styrofoam particles being acoustically
levitated. With both a flat and a concave reflector, | observed in what areas of the
standing waves the particles levitated in.

Theory

A.

Acoustic Levitator

The acoustic levitator for my experiment consisted of an ultrasonic transducer and a
reflector (flat and concave). The two are ideally separated by a distance equal to a
multiple of half the wavelength of the acoustic waves. When the surface of the transducer
vibrates (the radiator), standing acoustic waves are created between the transducer and
the reflector. Due to the acoustic radiation force, small particles can be levitated by these
standing waves. A flat reflector will create different levels of standing waves, while the
concave reflector focuses the standing waves, creating a greater acoustic radiation force.
The acoustic radiation force® acting on the particles is given by

F=-VU, 1)

where U is the acoustic radiation potential. The acoustic radiation potential® produced by
a standing wave is given by

p?2  pu?
U = 2nR (3,062 > >, (2)

where p? and u? are the mean square amplitudes of the pressure field and velocity field
of the air, respectively, R is the radius of the levitated particle, ¢ is the medium sound
velocity, and p is the air density.

The ultrasonic transducer consists of a Langevin actuator and a mechanical amplifier.
The Langevin actuator consists of two piezoelectric rings, which are compressed between
two cylindrical parts and are held together by a central bolt. When an electric field is
applied to the piezoelectric rings, it produces a strain, causing the piezoelectric rings to
oscillate. The displacement of the rings transfer energy through the amplifier and into the
air above the levitator surface in the form of sound waves. The resonance frequency of



the Langevin actuator depends on the length of the cylindrical parts, since it operates as a
half wavelength resonator.

Transducer

Piezoelectric rings ZJ]|

Figure 1: Diagram of the acoustic levitator used in my experiment. The function generator is
connected to the piezoelectric rings, causing them to be displaced. This displacement causes the
transducer to vibrate, sending acoustic waves from the transducer to the reflector.

Schlieren Optics

To observe the standing acoustic waves, | took advantage of the schlieren effect. The
schlieren effect makes refraction of light due to changes in the index of refraction in air
visible. For air, the relationship between the index of refraction, n, and the air density, p,
is given by

n—1=kp, 3)

where k is the refractivity constant, which is nearly constant over most of the visible
spectrum, with its value for air being 2.3 x 10" m%Kkg. The expression for the angular
deflection of the point light by a density gradient, dp/dx, is given by

dp

= —_— 4
8= kL, (4)

where L is the span of the disturbance in the direction of the optical axis.

To create the schlieren effect for my experiment, | used an LED point light source and
sent the light towards a mirror. The light traveled roughly 232 centimeters, going through
the disturbed area between the ultrasonic transducer and the reflector before hitting the
mirror. After hitting the mirror, the light reflected back through the disturbed area before



traveling back and entering the lens of the FlyCap camera. In front of the camera,
however, is a small dot partition. The partition is positioned in such a way that if there are
no standing waves between the transducer and the reflector, then the light will not be
refracted and will hit the partition, allowing no light to enter the camera. If there are
indeed standing waves between the transducer and the reflector, the light will be
refracted, avoiding the partition and entering the lens of the camera. The experimental
setup of the acoustic levitator and the schlieren optics can be seen in Figure 1.

Pinhole

7 Mirror
Dot

Camera Radiator
PZT

Function Generator PZT
with Amplifier Back

Figure 2: Experimental setup of the acoustic levitator and the schlieren optics system. The function
generator supplies a voltage to the piezoelectric rings (PZT), producing a strain. The strain causes
the rings to be displaced, transferring energy from the radiator to the air above it.

1"t

The brightness of the schlieren effect is proportional to the magnitude of refraction. In
relation to the acoustic standing waves, the brighter the refraction appears to the camera,
the stronger the acoustic radiation force is for that standing wave. Changes in air density
can come from sources other than acoustic waves, however, including temperature, flow
dynamics, and pressure changes. For my experiment, the presence of heat waves created
by the operation of the transducer made it vital to be able to differentiate sound waves
from heat waves when observing images taken by the camera.

Peltier Cooling Disks

As | mentioned above, the operation of the acoustic levitator produced a significant
amount of heat. In order to effectively observe the sound waves produced by the levitator,
it was necessary to remove excess heat from the system. In my experiment, | used a
Peltier cooling disk. Peltier cooling disks are a type of thermoelectric module (TEM) that
exploit the Peltier effect. By passing a current through both junctions of different metals,



a temperature difference arises between the junctions. The expressions for temperature in
a thermoelectric module are given by

T, =T—EI+L(1+2—q)12, ()
s T q Zqz o
I“r
T=To+—, (6)

where Ty is the heat flow into the stage, T;. is the heat flow into the radiator, T, is the
ambient temperature, k represents the Peltier heat flow through the TEM, g represents the
ordinary heat conduction through the TEM, ¢ represents the thermal conductance of the
heat sink (radiator), I is the current passing through the TEM, and r is the resistance of
the TEM.

For the Peltier cooling disk used in my experiment, the current passing through the disk
caused the bottom side to heat up and the top side to cool down. To reduce heat in the
levitator, | placed the levitator on a copper base (the stage for my experiment) and rested
that on top of the Peltier cooling disk. | had the Peltier cooling disk resting on top of a
copper container (the heat sink, or radiator, for my experiment), which was cycling water
through it to help carry heat away from the system. The water was pumped through tubes
from the copper container, through the pump, and into the tank. The water was then
pumped out of the tank, through a chiller, and back into the copper container. A diagram
of the Peltier cooling disk setup can be seen in Figure 2.

Water tank AC power

supply

Levitator

Pump

‘I

Copper stage

Peltier disk

1
Chiller \_’/

Figure 3: Experimental setup of Peltier cooling disk system in relation to the acoustic levitator. Current
runs through the wires from the AC power supply, into the Peltier disk, and is grounded back at the
power supply.

Copper container (heat sink)




Experiment

A.

Developing the Cooling System

Much of this experiment revolved around overcoming the problem of capturing sound
waves with the camera while minimizing the presence of heat waves. At the beginning of
the experiment, the apparatus consisted of the ultrasonic acoustic levitator, the lens to
reflect the acoustic waves on themselves, the LED, the mirror to reflect the light from the
LED, and the camera to capture the light, as seen in Figure 1. There was also a
piezoelectric driver powering the levitator. The driver was controlled by a function
generator, with an oscilloscope hooked up to monitor the voltages from the generator and
the driver.

Initially, the levitator rested in a plastic box, where the base of the levitator was
completely enclosed by plastic. While running the levitator, its temperature would
routinely climb to between 35 and 40 degrees Celsius, causing a significant amount of
heat wave interference where the heat from the acoustic levitator caused measurable
changes in the index of refraction of the air, interfering with the measurement and capture
of the sound waves. My first thought was that with the base being completely enclosed in
plastic, the only place the heat waves radiating from the base of the levitator could
dissipate was up out of the enclosed holder and towards the top of the levitator, where the
sound waves were radiating from and causing interference. To counteract this, | thought
that a holder with holes in the bottom and sides would allow the heat to dissipate away
from the levitator instead of towards the top of it. To construct this holder, I used
LEGO’s. The different shapes and sizes allowed me to come up with a holder with a
more breathable bottom while still holding the levitator firmly in place. After testing this
arrangement, | found that while it decreased the temperature of the levitator, it was not
enough to make a significant difference. In the LEGO holder, the temperature of the
levitator would routinely be around 30 degrees Celsius, enough to cause significant heat
wave interference.

Clearly the heat waves were not dissipating naturally, so | would need to implement some
sort of cooling device to significantly reduce heat wave interference. The first method of
cooling I tried were two 12-volt fans. | hypothesized that aiming the fans at the base of
the levitator would enhance the dissipation of the heat waves. While keeping the levitator
in the LEGO holder, | placed the fans 90 degrees apart and about five centimeters away
from the base of the levitator. After testing this arrangement, | found that while the fans
did reduce the heat of the levitator to about 25.5 to 26.5 degrees Celsius, the levitator was
still not at a low enough temperature to significantly reduce heat wave interference. In
addition, the added wind from the fans affected a particle’s ability to be levitated.



After consulting with my advisor, we realized that water and other liquids are great
conductors of heat, and that submerging the levitator completely in a liquid could take
away a significant amount of heat. | researched liquids used in immersion cooling and
found that mineral oil was a common one. It was not electrically conductive while still
being a good conductor of heat. After creating a box for the levitator to securely rest in,
my advisor and | decided that more heat could be dissipated if we pumped cool oil into
the box while pumping warm oil out of it. We developed a system of plastic tubes to
pump the water through the box, through a cooler, and back into the box. On the first test,
however, the joints we created for the tubes were not secure enough, causing the oil to
leak out of the tubes.

Deciding not to completely abandon the idea of circulating water or another liquid
through the experimental setup, my advisor and | developed the current system that was
used for the experimental setup. We did some research on thermoelectric Peltier cooling
plates and found that combined with pumping water through a copper container, the
system reduced the temperature of the levitator significantly enough to reduce heat wave
interference, routinely getting the temperature of the levitator below room temperature.
This allowed me to put together the cooling system seen in Figure 2.

Experimental Setup

In its final state, the experimental setup consisted of three distinct sections. The first was
the ultrasonic acoustic levitator portion. This consisted of the levitator, a concave lens
resting above it at a separation distance that could be adjusted to an optimal distance, and
a mirror positioned just behind the levitator to reflect the LED light back towards the
camera. The levitator was supplied with a current from a piezoelectric driver. The driver
was hooked up to a function generator to control what kind of function the driver
operated at. An oscilloscope was hooked up to both the function generator and the
piezoelectric driver to monitor the voltages from both. This setup can be seen in Figure 1.

The second component was the cooling system that was developed to reduce the heat
wave interference captured by the camera. This consisted of a copper stand for the
levitator to rest on, which sat on top of a thermoelectric Peltier ceramic cooling plate. The
plate rested on top of a hollow, copper container. Inside the container was distilled water,
which was pumped from the tank, through a cooling device, into and out of the copper
container, through the pump itself, and back into the tank. The cycling of cool water into
the copper container combined with the cooling effect of the thermoelectric plate kept the
levitator near room temperature while it was being operated. This setup can be seen in
Figure 2.

The third component to the experimental setup was the LED light and the camera. The
LED sent light waves towards the levitator. These light waves would go through the area
between the levitator and the lens above it, reflect off the mirror, and then be detected by
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the camera. In front of the camera was the partition, blocking any light that was not
diffracted. The partition could be adjusted to allow the optimal amount of light into the
camera.

Calibration and Operation of Instruments

When experimenting with the ultrasonic acoustic levitator, it is necessary to keep the
frequency supplied by the function generator around 25.0 + 0.5 kHz due to the length of
the parts used in the Langevin actuator. This value matches the resonance frequency of
the levitator, which allows for the greatest displacement in the piezoelectric rings and
therefore the greatest acoustic radiation force. Also, the function generator was supplying
the same 25.0 kHz frequency to the LED sending light through the observation area. By
having the acoustic waves and the light waves at the same frequency, it makes the
acoustic waves more easily detectable since the pulsing LED creates a strobing effect for
the acoustic waves. In addition, the peak-to-peak voltage of the function generator should
be no more than two volts. This allows the piezoelectric driver to run at its maximum
efficiency without overloading it.

In addition to monitoring the voltages from the function generator and the piezoelectric
driver, the oscilloscope has another function. By altering the frequency on the function
generator by a few Hz, the oscilloscope shows the user if the phase of the frequency
coming from the function generator matches the phase of the voltage being supplied to
the driver. Matching the phases between the current and the voltage ensures that the
acoustic levitator is operating at its resonance frequency, creating more easily detectable
acoustic waves while supplying the most levitating force to the particle between the
levitator and the lens.

For the camera and LED system, it is imperative that the light reflected off the mirror
from the LED is centered on the dot partition in front of the camera so that any
diffraction due to acoustic waves in the observation area is captured by the camera. The
pinhole attached to the LED has multiple different sizes, and it can be changed if the
amount of light hitting the camera needs to be adjusted. In order to see the smallest of
changes in the index of refraction of the air due to the acoustic waves, it is necessary to
have the light from the LED centered on the dot partition so there is a stark contrast
between no waves diffracting the light and sound waves diffracting the light.

Experimenting with the Cooling System

After implementing the cooling system and experimenting with the levitator, | was able
to get many captures of acoustic waves with the Point Grey FlyCap FL3-U3-8852C-C
camera. The difference in heat wave interference from the original setup to the current
setup was significant. Standing acoustic waves were detectable with the cooling system
in place, whereas the original system had too much heat interference to detect the
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acoustic waves. The images that follow are comparisons of the original setup to the
current system.

Figures 4 and 5: The levitator after 5 minutes of operation; the first image is before the cooling system
was implemented and the second image is after the cooling system was implemented. The heat waves
are denoted by the boxes.
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Figures 6 and 7: The levitator after 10 minutes of operation; the first image is before the cooling
system was implemented and the second image is after the cooling system was implemented. The
heat waves are denoted by the boxes.
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Figures 8 and 9: The levitator after 15 minutes of operation; the first image is before the cooling
system was implemented and the second image is after the cooling system was implemented. The
heat waves are denoted by the boxes.

Observing Sound Waves with the Concave Reflector

With the concave lens as the reflector, | was able to observe acoustic waves at two
separation distances: 11.77 and 19.46 millimeters, with uncertainties of 1.0 millimeters.
The acoustic waves appeared to be stronger at the 11.77 mm separation distance
compared to the 19.46 mm distance. At the 11.77 mm separation distance, the high-
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pressure zones of the standing wave appeared to shift to the middle of the levitator when
the lens was adjusted to a distance a few millimeters further from the levitator. The
captures of the standing waves are seen in Figures 9, 10, and 11.

Figure 10: A picture of standing acoustic waves at a separation distance of 19.46 mm. The waves are
denoted by the light blue areas between the levitator and the lens, as opposed to the black
background where no waves are present.
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Figure 11: A picture of standing acoustic waves at a separation distance of 11.77 mm. The high-
pressure zones are a brighter blue, indicating a stronger force.

Figure 12: Adjusting the separation distance at 11.77 mm a few millimeters further from the levitator
shifts the high-pressure zone to the middle of the levitator.
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Observing the captures of the standing acoustic waves, the shape of the waves appears to
be controlled by the concavity of the lens. A flat reflector would create standing waves
that have a wide extent, while a reflector with a significant amount of concavity would
create standing waves that are focused closer to a point.

When adding a particle to be levitated, | observed that the particle rests in both the high
and low-pressure zones created by the standing waves. Figures 12-21 show where the
particles levitate in comparison with where the standing waves are created at different
separation distances.

Lo

Figure 13: The standing waves created at a separation distance of 11.77 mm. The high-pressure
zones are bright blue while the low-pressure zones are dark blue to black.
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Figures 14 and 15: The Styrofoam particle (denoted by the arrows) is shown levitating in both the
high- and low-pressure zones created by the standing waves at 11.77 mm.
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Figure 16: Shifting the standing waves towards the middle of the levitator at 11.77 mm by decreasing
the separation distance by fractions of a millimeter. The high-pressure zones are bright blue while
the low-pressure zones are dark blue to black.
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Figures 17 and 18: When the high-pressure zones of the standing wave shift to the middle, the
particle (denoted by the arrows) still levitates in both the high and low-pressure zones at 11.77 mm.
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Figure 19: The standing waves created at a separation distance of 19.46 mm. The high-pressure
zones are bright blue while the low-pressure zones are dark blue to black.
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Figures 20-22: The Styrofoam particle (denoted by the arrows) is shown levitating in both the high and
low-pressure zones at a separation distance of 19.46 mm.

I was able to levitate particles at separation distances of 26.15 mm and 31.66 mm (with
an uncertainty of 1.00 mm) as well, but the standing acoustic waves were not strong
enough to be picked up by the camera. Due to this, | was not able to determine if the
Styrofoam particle in the following figures was being acoustically levitated in high- or
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low-pressure zones. At the 26.15 mm separation distance, two particles could be stably
levitated.

Figure 23: Two Styrofoam particles are seen levitating at the 26.15 mm separation distance. The
reflector is denoted by the box and the particles are denoted by the arrows.
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Figure 24: The Styrofoam particle is show levitating at the 31.66 mm separation distance. The particle is
denoted by the arrow and the reflector is denoted by the box.

Observing Sound Waves with the Flat Reflector

With the flat reflector, | was able to observe acoustic waves at separation distances of
6.89, 14.11, 21.09, 28.09, and 35.00 mm, all with an uncertainty of 1.0 mm. The acoustic
waves appeared to have a stronger acoustic radiation force at the 6.89 mm separation
distance, with the force decreasing as the separation distance got farther apart, which can
be seen from the following figures as the sound waves become dimmer at greater
separation distances. The high-pressure zones appeared to stack on top of each other as
the separation distances increased. At 6.89 mm there was one high-pressure zone, at
14.11 mm there was two, at 21.09 mm there was three, at 28.09 mm there was four, and
at 35.00 mm there was five high-pressure zones.

Observing the shape and position of the standing acoustic waves, the shape of the waves
is more defined than the ones for the concave reflector. Also, they do not extend all the
way from the levitator to the reflector like the waves for the concave reflector did, but
form layers on top of each other. They do not extend to the full width of the reflector and
levitator either, which contradicts my prediction that a flat reflector would create wide
standing waves.

When adding Styrofoam particles to be levitated, | observed that the particles only
levitated in high-pressure zones. At the closer separation distances of 6.89 mm, 14.11
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mm, and 21.0 mm, the particles levitated stably in the high-pressure zones. At the farther
separation distances of 28.09 mm and 35.00 mm, however, the particles wavered in and
out of the high-pressure zones and were not completely stable.

Figure 25: The acoustic standing waves created by the flat reflector at 6.89 mm. The bright blue shows
that the standing wave has a strong acoustic radiation force.

Figure 26: The Styrofoam particle levitating stably in the high-pressure zone at a separation distance of
6.89 mm. The particle is denoted by the arrow.
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Figure 27: The acoustic standing waves created by the flat reflector at 14.11 mm. The blue is not as
bright as the waves at the 6.89 mm separation distance, indicating that the waves are weaker as the
separation distance increases. The waves are stacked on top of each other, creating two layers of
waves.
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Figure 28: The Styrofoam particles levitating stably in the high-pressure zones at a separation distance

of 14.11 mm. There is one particle for each layer of standing waves. The particles are denoted by the
arrows.

Figure 29: The acoustic standing waves created by the flat reflector at 21.09 mm. The blue is not as
bright as the waves at the 14.11 mm separation distance, indicating that the waves are weaker as the

separation distance increases. The waves are stacked on top of each other, creating three layers of
waves.
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Figure 30: The Styrofoam particles levitating stably in the high-pressure zones at a separation distance
of 21.09 mm. There is one particle for each layer of standing waves. The particles are denoted by the
arrows.
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Figure 31: The acoustic standing waves created by the flat reflector at 28.09 mm. The blue is not as
bright as the waves at the 21.09 mm separation distance, indicating that the waves are weaker as the
separation distance increases. The waves are stacked on top of each other, creating four layers of
waves.

Figure 32: The Styrofoam particles levitating unstably in the high-pressure zones at a separation
distance of 28.09 mm. There is one particle for each layer of standing waves. The particles are denoted
by the arrows.
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Figure 33: The acoustic standing waves created by the flat reflector at 35.00 mm. The blue is not as
bright as the waves at the 28.09 mm separation distance and are barely visible, indicating that the
waves are weaker as the separation distance increases. The waves are stacked on top of each other,
creating five layers of waves.

Figure 34: The Styrofoam particles levitating unstably in the high-pressure zones at a separation
distance of 34.81 mm. There is one particle for each layer of standing waves. The particles are denoted
by the arrows.
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G. Performance of the Peltier Cooling Disk

For maximum efficiency when cooling, it is necessary for the thermoelectric Peltier
cooling disk to follow the quadratic equation outlined in Van Baak’s article “Temperature
servomechanisms using thermoelectric modules™. | observed temperatures for the
levitator and the copper container that acts as the heat sink for the Peltier cooling plate in
three scenarios: where the levitator was not running and the water was not being pumped
through the system, where the levitator was running but water was not being pumped
through the system, and where the levitator was running and the water was being pumped
through the system. The results of these scenarios are outlined in the following tables.

CURRENT SUPPLIEDTO  TEMPERATURE OF TEMPERATURE OF
PELTIER PLATE (A) LEVITATOR (°C) HEAT SINK (°C)
0 19.6 19.2
1 165 19.9
2 14.6 216
3 13.9 238
4 138 255
5 142 274

Table 1: A situation where the levitator is off, and no water is being pumped through the cooling system.



CURRENT SUPPLIED TO
PELTIER PLATE (A)
0
1

2

TEMPERATURE OF
LEVITATOR (°C)
19.4
18.8
178
16.9
16.6

16.9

31

TEMPERATURE OF
HEAT SINK (°C)
22.1
22.9
238
253
26.3

28.6

Table 2: A situation where the levitator is on, but no water is being pumped through the cooling system.

CURRENT SUPPLIEDTO ~ TEMPERATURE OF TEMPERATURE OF
PELTIER PLATE (A) LEVITATOR (°C) HEAT SINK (°C)
0 213 22.7
1 19.9 23.1
2 18.2 235
3 16.5 236
4 15.2 24.2
5 145 25.0
6 14.4 25.7
7 14.7 26.7
8 15.7 276
9 17.7 29.2

Table 3: A situation where the levitator is on, and water is being pumped through the cooling system.
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Analysis

A.

Performance of the Peltier Cooling Disk

As | mentioned in the previous section, the cooling device | implemented proved to
reduce the diffraction of air by heat waves significantly enough to allow the refraction of
the sound waves to show most prominently on the images captured by the FlyCap camera
rather than the heat waves. This was in large part due to the thermoelectric Peltier cooling
disk that I used. While the other cooling methods | originally implemented somewhat
reduced the temperature of the levitator, none of them were as effective as my final
method, which utilized Peltier cooling disk and water. To analyze the performance of the
Peltier disk in my experiment, | fit my experimental data to a model outlined in the paper
“Temperature servomechanisms using thermoelectric modules” by D. A. Van Baak®. In
his experiment, Van Baak explored the properties of thermoelectric modules that exploit
the Peltier effect and how they can be used to regulate temperature in different
experiments and systems. Thermoelectric modules like the one | used for my experiment
are in contact with two reservoirs while operating; the stage and the sink. For my
experiment, the stage was the acoustic levitator while the sink was the copper box with
water being cycled in and out of it. Without going into too much detail, Van Baak
showed that when data about the temperature and current is taken with the thermoelectric
modules, the temperature data fits a quadratic equation as current increases for both the
stage and the sink. For the stage, while the temperature initially decreases, the
temperature reaches a minimum before increasing as current continues to increase. For
the sink, the temperature slowly increases as the current increases, with temperature
increasing at a greater rate at higher currents. Van Baak provides a graph (Fig. 20) of this
behavior in his paper.
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Figure 35: A graph of the current of the thermoelectric module versus the temperature of both the
stage and the sink from Van Baak’s paper “Temperature servomechanisms using thermoelectric
modules”.

Outlined in the tables in the previous section, | fit my experimental data to a quadratic
equation. When fitting my data, | chose to ignore error in the current, since it was
negligible. The current to the thermoelectric Peltier disk was supplied by an DC power
supply, and the values were displayed digitally by the device. The error in the readout on
the device is negligible. The uncertainty in the temperature was 0.1 degrees Celsius. The
temperature of the stage and the sink in my experiment was determined by a
thermocouple. This device gave readings accurate to a tenth of a degree, and when a
stable temperature was reached by the stage or the sink, the device would sometimes vary
higher or lower by one tenth of a degree. | used the web-based WAPP+ fitting program to
fit my experimental data for both the stage and sink to a quadratic equation. | recorded
data for three different situations. The first is when the levitator was off and there was no
water being cycled through the copper box. The second was when the levitator was
running and there was no water running through the copper box. The third situation was
when the levitator was running and there was water running through the copper box. For
the first situation, 1 obtained a reduced chi-squared (x?) value of 11 for the sink and y? =
5.4 for the stage. While these x2 values are relatively large, the graphs show that the data
fits the quadratic equations fairly well.
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Figures 36 and 37: Graphs of a situation where the levitator is off and water is not being
cycled through the copper box. The stage (levitator) is on the left and the sink (copper box) is
on the right.
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For the second situation, | determined y? to be 6.0 for the sink and y? to be 8.2 for the
stage. While the data for the sink fits the quadratic equation, y? for the stage is large. The
graphs indicate, however, that the date fits the quadratic equation fairly well.
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Figures 38 and 39: Graphs of a situation where the levitator is on and water is not being cycled in and
out of the copper box. The stage (levitator) is on the left and the sink (copper box) is on the right.
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For the third situation, | determined y? to be 2.4 for the sink and y? to be 20 for the
stage. While the data for the sink fits the quadratic equation, x? for the stage is large. The
graphs indicate, however, that the date fits the quadratic equation fairly well.
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Figures 40 and 41: Graphs of a situation where the levitator is on and water is being cycled in and out of
the copper box. The stage (levitator) is on the left and the sink (copper box) is on the right.
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B. Particle Levitation

During my experiment, | was not able to implement a way of measuring the properties of
the levitation of particles besides observing them by sight. Using Styrofoam particles and
the position of the sound waves given by the FlyCap camera, | was able to determine
whether particles were levitating in high- or low-pressure zones. There are many papers
that | compared my results to regarding the position of particles during levitation,
including “Experimental and numerical characterization of the sound pressure in standing
wave acoustic levitators™2. In that paper, the scientists found that the particles levitated in
the high-pressure zones created by the minimum acoustic potential. In my experiment
with the curved reflector, | found that particles could levitate in both high-and low-
pressure zones. With the flat reflector, | found that particles could only levitate in high-
pressure zones.

For the flat reflector, | observed acoustic standing waves at 6.89 mm, 14.11 mm, 21.09
mm, 28.09 mm, and 35.00 mm. With the acoustic levitator operating at a frequency of 25
kHz, that means that the wavelength of the standing waves is around 13.72 mm according
to

Z 7
7 ™

where v is the speed of sound, which is 343 meters per second. According to the theory
for acoustic levitation, the levitator should produce standing waves at distances one half
of the wavelength above the levitator. The separation distances produced with the flat
reflector are all fairly close to multiples of half the wavelength.

Conclusion

When analyzing the performance of the Peltier cooling disks, | achieved some values of
x? that were large. One reason that may have caused the large y? values could have been
the fact that the constants in Equations 5 and 6 can vary when exposed to a greater
amount of heat. These constants include the ordinary heat conduction of the TEM, the
Peltier heat flow of the TEM, the resistance of the TEM, and the thermal conductance of
the radiator. As the temperature of the stage and the sink varied during my experiment,
these constants may have fluctuated, resulting in a different value for the temperature of
the TEM than was expected given the equations.

Another reason the y? values were large may have been from oversimplifying Equations
5 and 6 when fitting the experimental data into WAPP+. The equations have many
constants and variables in them. Fitting these two equations to a simple quadratic
equation with one variable and three constants may not be a good enough approximation
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for the data. Fitting two complex equations to a simple model may have caused the large
2
x* values.

After overcoming the problem of trying to cool the transducer enough to have the
acoustic standing waves be clearly visible to the FlyCap camera, it is now possible to
conduct more experimentation with the acoustic levitator. With the heat waves at a fairly
stable and insignificant level, now more experiments can be undertaken regarding the
types of particles that can be levitated and the types of reflectors used during levitation. It
would be interesting to see how different shaped reflectors produce different shaped
pressure zones. It would also be interesting to see if the material of the reflector affects
the amount of force produced by the standing waves.

| determined that for the concave reflector, the particles could levitate in both the high-
and low- pressure zones, and for the separation distance at 19.46 millimeters, I could get
two particles to levitate. Comparing these results to the findings in “Analysis of the
particle stability in a new designed ultrasonic levitation device”?, the authors found that
the particles they experimented on only levitated in areas with minimal acoustic potential.
According to Equation 1, areas with low acoustic potential have a high acoustic radiation
force. This means that areas of high pressure (or the bright spots captured by the FlyCap
camera) should be the only places where particles levitate with a concave reflector. For
future experimentation, it would be interesting to capture images of the standing acoustic
waves from two angles rather than just one. This would help determine if the particles
really are levitating in both high- and low- pressure zones, or if they are only levitating in
high-pressure zones that are obscured by the high-pressure zone closest to the camera.

For the flat reflector, | determined that particles only levitate in high-pressure zones.
With the flat reflector, | was able to get up to five particles to levitate in each multiple of
half the wavelength depending on the separation distance. Comparing these results to
“An ultrasonic levitator™, the scientists who authored that paper found that the particles
levitated below the node of the standing waves, or the antinode. This means that they
found that particles also levitate in only the high-pressure zones, which in turn means my
results are similar to theirs.

For future experimentation, one thing that would be interesting to investigate is trying to
levitate different types of particles and which pressure zones they levitate in. |
experimented a little with levitating water droplets, but I did not obtain enough data to go
into detail on it. Another thing that would be interesting to investigate could be trying to
measure how strong the acoustic radiation force is. | experimented a little with a program
called ImageJ, and that program allowed the user to measure the brightness of the pixels
in the image and produce a graph of the brightness through a certain segment of the
image. It would be interesting if future experimenters could use this program and relate
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the data from that program to the acoustic radiation potential and force via Equations 1
and 2.
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The following data is of the power output of the acoustic levitator, the power transmitted
through the copper and into the water, and the power carried away by the water.

Levitator Power In P =V*|

Copper Thermal conductivity
Thickness
Area
Temperature difference
Heat transfer rate

Thermoelectric module

TEC1-12712 Peltier module
Max cooling power

Water Specific Heat
Volume
Density
Mass

Pump Volume Flow Rate

Mass Flow Rate

Power Out P =Q/t=(m/t)*c*AT

Voltage
Current
Power

r o x

AT
P =k*A*AT/d

Pmax

T <0

V/t
m/t

25 Vv
0.5 A
12.5 w
390 wW/m/K
0.0125 m
0.0025 mh2
0.2 K
15.6 w
0.0025 m~2
109 W
4186  J/kg/K
0.001 m”3
1000 kg/m3
1 kg
1.2 L/min 20
0.020  kgfs 20
17 w

cm3/s
g/s
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