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Abstract 
 
 Endometrial cancer is the most common gynecological malignancy and 
accounts for 6% of all cancers in women. 1 In 2018, there were an estimated 
63,280 new cases of endometrial cancer resulting in 11,350 deaths.2 In 
advanced stages, aggressive forms of endometrial cancer are able to invade 
the peritoneum and metastasize to the omentum and bowel.1,3,4,5 Shridhar et 
al. have identified leucine rich repeat containing 15 (LRRC15), a protein 
involved in cell adhesion and interactions with the extracellular matrix (ECM), 
as a potential therapeutic target due to its significantly higher expression in 
ovarian cancer tumors that have metastasized to the omentum and bowel 
when compared to their matched primary tumor counterparts. Additionally, 
Shridhar et al. have shown that LRRC15 is capable of associating directly with 
β1-integrin and promotes invasion and metastasis through the activation of 
focal adhesion kinase (FAK) in ovarian cancer. In this study, knockdown of 
LRRC15 in endometrial cancer cell lines lowered the expression of proteins 
within the FAK signaling pathway, decreased cancer cell adhesion, and 
decreased cell migration in vitro. Conversely, induced overexpression of 
LRRC15 led to an increase in expression of proteins in the FAK pathway and 
an increase in cell adhesion. Treatment of endometrial cancer cell lines with 
the therapeutic agent ABBV-085, a drug antibody conjugate which targets cells 
expressing LRRC15, was tested in vitro and demonstrated high specificity 
compared to the control with an IC50 between 0.1-1.0 nM. Overall, our results 
from LRRC15 knockdown and ABBV-085 treatment demonstrate that 
targeting LRRC15 may be therapeutically beneficial in endometrial cancer. 
 
 

Introduction 
 
 In a recent unpublished study of patients with metastatic ovarian cancer, 
Shridhar et al. compared protein expression signatures of primary tumors with their 
metastatic counterparts taken from either the bowel or omentum. Shridhar et al. 
chose to analyze leucine rich repeat containing 15 (LRRC15) due to its increased 
expression in ovarian metastatic lesions compared to primary lesions (unpublished 
data). Furthermore, Shridhar et al. discovered that LRRC15 associates with β1-
integrin and may play a role in ovarian cancer metastasis by facilitating integrin 
signaling and the activation of focal adhesion kinase, or FAK (unpublished data).  

In advanced stages, endometrial cancer can metastasize to the omentum and 
bowel.1,3,4,5 Approximately 3-11% of endometrial cancer tumors result in malignant 
bowel obstruction (MBO) and 5.9% metastasize to the omentum.3,4 Given that 
endometrial cancer also expresses LRRC15, we decided to elucidate the role of 
LRRC15 in endometrial carcinoma. In addition, we decided to test the specificity of 
the drug antibody conjugate, ABBV-085, given that it targets cells expressing 
LRRC15.6 
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Background 
 
Endometrial Cancer Diagnosis and Treatment 

 
Approximately 2.9% of women will be diagnosed with endometrial cancer 

during their lifetime and it is most commonly diagnosed in women ages 45-75.2 
There is no general screening test for endometrial cancer because it will mainly 
detect low-risk tumors, and so it is unlikely to decrease mortality .7 Instead, 
endometrial cancer is most commonly diagnosed by an endometrial biopsy in 
symptomatic patients.8 A noninvasive procedure like transvaginal ultrasonography 
(TVU) is not recommended for diagnosing asymptomatic patients given its limited 
accuracy.8,9 The most common symptom of endometrial cancer is abnormal vaginal 
bleeding such as when patients report post-menopausal vaginal bleeding.7,8 Gregory 
Robertson, a gynecological oncologist, recommends educating women on the 
importance of investigating vaginal bleeding especially if they have a history of 
taking tamoxifen or a family history of hereditary non-polyposis colon cancer 
(HNPCC).10 Tamoxifen is a nonsteroidal hormone that has antiestrogen effects in 
breast tissue and estrogen-like effects in endometrial tissue that is used to 
effectively treat breast cancer.11 Patients taking tamoxifen for more than 5 years 
experienced a 4.06 fold increase in the odds of developing endometrial cancer 
compared to nonusers.11 HNPCC is a mendelian dominant syndrome characterized 
by germline mutations in various mismatch repair genes.7 This syndrome leads to 
an individual having a significantly greater risk of developing a variety of cancers 
throughout their lifetime.12 Patients diagnosed with HNCPCC have a high chance of 
developing colon cancer (40-60%), endometrial cancer (40-60%), and ovarian 
cancer (12%).12 

 Endometrial cancer is initially staged and treated using surgery.8 Surgery 
involves a total hysterectomy and bilateral salpingo-oophorectomy.7 In selective 
cases, a pelvic or para-aortic lymphadenectomy may be performed.8 Patients that 
are not surgical candidates may receive supplemental radiation therapy.8 Also, 
patients with high-intermediate risk disease are treated with adjuvant radiotherapy 
(external beam or vaginal brachytherapy) as an effort to reduce local tumor 
recurrence.8 Adjuvant therapy using whole pelvic radiotherapy decreased the risk of 
recurrence in patients with intermediate disease but did not significantly improve 
survival.13 Patients with low grade stage IA and IB disease are optimally treated 
with hysterectomy alone.14 In addition to radiotherapy, adjuvant chemotherapy and 
hormone therapy are also available. Chemotherapy is primarily used in patients 
with metastatic disease.7 Platinum-based compounds, anthracyclines, and taxanes 
all have response rates greater than 20% when used as single agents.8 When used in 
combination, drugs such as doxorubicin, cisplatin and paclitaxel have produced 
response rates of up to 57% although this kind of multiple agent therapy is prone to 
cause negative side effects such as peripheral neuropathy.15  

Given the adverse side effects of chemotherapy and the hormonal sensitivity 
of endometrial tissue, hormone therapy has been suggested as a possible treatment 
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for endometrial cancer.16 Hormone therapy has mild side effects such as edema and 
weight gain although there is an increased risk of venous thromboembolism.16 
Megestrol acetate is a progestin that was approved for the palliative treatment of 
recurrent, metastatic endometrial cancers decades ago but has had limited 
efficacy.17 Treatment with 50 mg of Megestrol acetate three times a day produced an 
overall response rate of 14% in patients with recurrent endometrial cancer.18 A 
Gynecologic Oncology Group (GOG) study evaluated the combined hormonal 
strategy of alternating tamoxifen and megestrol acetate based on the hypothesis 
that tamoxifen increases the expression of progesterone receptors and thereby 
increases the efficacy of megestrol acetate.17 Megestrol acetate at 80 mg twice daily 
every 3 weeks, alternating with tamoxifen 20 mg twice daily every 3 weeks, was 
associated with an overall response rate of 27% which decreased as the grade of 
disease increased.19  
 
Type I vs. Type II Endometrial Cancer 
 
 Endometrial cancer can be divided into two subtypes: type I and II.  Type I 
endometrial carcinoma typically occurs in premenopausal and younger post-
menopausal women whereas type II typically occurs in older postmenopausal 
women.20 Type I endometrial carcinoma has an endometrioid morphology and is 
moderately to well differentiated.7 Type I makes up around 80% of endometrial 
cancer and is characteristically preceded by endometrial hyperplasia.7,8 Type I 
endometrial carcinoma is associated with unopposed estrogenic stimulation and is 
relatively low grade with a good prognosis.7,8 Around 10% of women with 
endometrial cancer have type II endometrial carcinoma, which is poorly 
differentiated and heterogeneous.8 The morphology of type II endometrial cancer 
consists of the high-grade endometrioid morphology along with non-endometrioid 
morphologies such as serous papillary and clear cell.7,8 Type II endometrial 
carcinoma is not driven by estrogen and is associated with endometrial atrophy.7 
Type II endometrial carcinoma carries a poor prognosis with a high risk of 
recurrence and metastatic disease.7 Type II endometrial carcinoma has a much 
lower mean survival time than type I (24.72 months vs. 113.68 months).21  

In addition, type I and II endometrial cancer have characteristic molecular 
profiles. Type I endometrial carcinoma is associated with mutated or unexpressed 
phosphate and tensin homolog protein (PTEN) resulting in constitutive activation of 
the Akt and mTOR pathways.8,17 Type I endometrial carcinoma is also associated 
with mutations in the KRAS oncogene.7,20 In contrast, type II endometrial carcinoma 
is associated with alterations in the TP53 and p16 gene and overexpression of the 
ErbB2 (Her-2/neu) gene.8,22,23 Approximately 90% of serous endometrial 
carcinomas, a subtype of type II endometrial carcinoma,  harbor a mutation in TP53 
and 18% exhibit positive immunohistochemical (IHC) expression of Her-2/neu.24,25 
In reality, the characterization of endometrial cancer tumors can be complex 
because a given lesion can display characteristics of both type I and type II 
endometrial carcinoma.8 This can make distinguishing between type I and II 
endometrial carcinoma a challenge in clinical practice.22 Wei et al. suggest the using 
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a panel of immunohistochemical markers to help assist with the classification of 
ambiguous tumors.22  
 
 
Endometrial Cancer Metastasis and Recurrence 
 
 Most women are diagnosed with endometrial cancer in an early stage, which 
is associated with a good prognosis.17 Approximately 67% of all endometrial cases 
are localized disease, which has a 5-year progression-free survival of 94.9%.2 
However, advanced metastatic disease occurs in around 9% of endometrial cancer 
cases and has a 5-year progression free survival of 16.3%.2 In particular, uterine 
papillary serous carcinoma (UPSC), an aggressive subtype of  type II endometrial 
carcinoma, accounts for over 50% of recurrences and deaths caused by endometrial 
cancer even though less than 10% of endometrial cancers are UPSC.25,26 The 5-year 
overall survival rate for women with UPSC is 46%.27 Endometrial carcinoma usually 
spreads through lymphatic vessels to the pelvic and para-aortic lymph nodes and by 
local invasion to the ovaries and the tissue surrounding the uterus.28 Endometrial 
carcinoma can also spread via the bloodstream to various organs but this is less 
common.28  

In general, as the level of differentiation decreases and depth of myometrial 
invasion increases, the grade of the tumor increases.29 In a GOG study performed by 
Creasman et al., 78% of Grade 1 tumors had only endometrial or superficial muscle 
involvement whereas 58% of Grade 3 tumors had mild or deep muscle invasion.29 
However, the author did find some cases (7-10%) where Grade 3 lesions had only 
endometrial invasion and Grade 1 lesions had deep muscle invasion.29 Importantly, 
there is a large positive correlation between depth of invasion and nodal metastasis 
with only 1 % of lesions that penetrated the endometrium alone having nodal 
metastasis (pelvic or para-aortic).29 Conversely, lesions with deep muscle invasion 
metastasized to the pelvic lymph nodes with a frequency of 25% and the para-aortic 
lymph nodes with a frequency of 17%.29  
 Even though endometrial cancer has an overall 5-year survival rate of 81.1%, 
endometrial cancer recurs in approximately 13% of cases after initial treatment.2,30 
Aalders et al. define recurrence as regrowth of the endometrial cancer after an 
apparently complete remission that last for 3 months following primary 
treatment.31 In a study conducted by Aalders et al. on patients with recurrent 
endometrial carcinoma, 50% of patients had local recurrence (tumors maintained 
within pelvic structures including lymph nodes below pelvic brim), 28% had distant 
metastasis, while 21% had both.31 In addition, 34% of all recurrences were detected 
within one year whereas 76% were detected within three years of initial 
treatment.31 Typical sites of recurrent endometrial carcinoma include the pelvic and 
para-aortic lymph nodes, vagina, peritoneum, and lungs whereas atypical sites such 
as intra-abdominal organs, bones, brain, abdominal wall, and muscle have also been 
observed.1 A study conducted by Sohaib et al. on patients with recurrent 
endometrial carcinoma found the highest incidence of relapse in lymph nodes 
(46%), vagina (42%), peritoneum (28%), and lung (24%).32  
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Role of Integrins, FAK, and SRC in Metastasis 
 
 

 
Figure 1. Integrin-mediated activation of FAK/SRC signaling pathway. Integrins 
binding to ligands of the ECM promote focal adhesion formation and FAK activation. FAK 
forms a complex with SRC and phosphorylates downstream effectors eventually leading to 
Rac1 activation and lamellipodia formation. Figure adapted from Huveneers and Dannen 
(2009) to reflect the presence of LRRC15. 

 
 

Integrins play a role in tumor cell adhesion and have been implicated in 
tumor cell metastasis.33 Integrins are a family of transmembrane glycoproteins that 
form non-covalent heterodimers made up of an α and β subunit.33,34 There are 18 α- 
and 8 β-integrins that combine to form 24 canonical α/β receptors.35 Integrins 
mediate cell adhesion and directly bind components of the extracellular matrix 
(ECM), including fibronectin, vitronectin, laminin, and collagen, thereby providing  
anchorage for cell motility and invasion.33 Integrins binding to extracellular ligands 
initiate a clustering of cytoskeletal proteins, which form into what is known as a 
focal adhesion.36 Importantly, focal adhesion kinase (FAK) localizes with integrins in 
focal adhesions and interactions between FAK and integrins play an important role 
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in cell adhesion.36 Integrin-mediated adhesion induces the autophosphorylation of 
FAK at tyrosine 397, creating a binding site for the SH2 domain of  the kinase SRC, 
which in turn phosphorylates FAK at the following tyrosine residues: Y576, Y577, 
Y861 and Y925 (Figure 1). 37,38 SRC is activated by phosphorylation at Y416 and 
promotes maximal FAK kinase activity and allows FAK to bind other proteins.37,38 
The FAK-SRC complex then phosphorylates the adaptor proteins paxillin and 
p130CAS (hereafter, CAS).37 Phosphorylation of paxillin creates SH2 binding sites 
for and promotes activity of the adaptor protein Crk.39 The activated FAK-SRC 
complex recruits and phosphorylates CAS, which also interacts with Crk.36  

CAS and Crk further assemble into a complex, which results in the activation 
of Rac downstream and leads to cell migration.40 CAS/Crk activates Rac through the 
cooperation between DOCK180 and ELMO1, which promotes the formation of 
membrane protrusions.38,41 Rac works with the protein Cdc42 at the leading edge of 
cells in the formation of lamellipodia and filopodia, respectively.38,42,43,44 
Lamellipodia and filopodia are protrusions that come out from the cell.45 
Lamellipodia are thin extensions of the cell’s periphery made up of unipolar actin 
filaments whereas filopodia are spikey bundles of actin filaments that are within or 
extend from lamellipodia.45 Lamellipodia are important because they are what 
allows the cells to “crawl” forward.45 Lamellipodia protrude outward from the 
leading edge of the migrating cell and form new contact sites.45 Then with the help 
of other Rho GTPase family members, new contact sites are initiated and turned 
over and focal adhesion sites are developed.45 Rac and Cdc42 activation leads to the 
activation of the WAVE and WASP family of proteins, which leads to the activation of 
the Arp2/3 complex. Activation of the Arp2/3 complex serves to initiate new actin 
filament formation, which pushes the leading edge forward and increases cell 
motility.36,46,47 Overall, the activation of Rac and other Rho GTPase family members 
leads to cell adhesion and protrusion which are required events in cell migration for 
they promote cell spreading that can later lead to metastasis.36  
 
Role of LRRC15 in Cancer 
 
 Leucine rich repeat 15 (LRRC15) (also known as hLib) is a 581 amino acid 
type I transmembrane protein with an extracellular domain that contains fifteen 
leucine rich repeats (LRRs).6,48 LRRC15 belongs to the leucine rich repeat 
superfamily, which is involved in cell-cell and cell-extracellular matrix 
interactions.49 LRRC15 has no obvious intracellular signaling domains and was first 
identified as a protein induced by B-amyloid in rat astrocytes.6,48,49 LRRC15 has 
been found to have low expression in most normal tissues but Northern blot 
analysis shows high LRRC15 mRNA expression in the placenta.48 Using RNA in situ 
hybridization, Reynolds et al. found that LRRC15 expression was specifically in the 
cytotrophoblast cell layer, which is the invasive layer of the placenta.6,50 
Immunohistochemical (IHC) analysis has further demonstrated normal LRRC15 
expression restricted to particular areas such as hair follicles, tonsil, stomach 
(cardia and pylorus regions only), spleen (peritrabecular region), osteoblasts, and 
sites of wound healing.6  
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LRRC15 overexpression has been associated with aggressive disease in 
multiple tumor types including breast, ovarian, and prostate cancer and IHC analysis 
demonstrates that LRRC15 is highly prevalent in breast cancer, head and neck 
cancer, non-small cell lung cancer, and pancreatic cancer with a majority of LRRC15 
being expressed in the stroma.6,51,52,53,54 Interestingly, IHC analysis performed by 
Purcell et al. did not detect LRRC15 expression in any prostate samples even though 
high LRRC15 mRNA expression was associated with aggressive prostate cancer .6,54 
LRRC15 was found to be highly expressed on cancer associated fibroblasts located 
in the tumor stroma of multiple tumor types and cancers associated with 
mesenchymal origin (sarcoma, glioblastoma, and melanoma).6 LRRC15 expression 
was also shown to be regulated by transforming growth factor beta (TGFB) in 
normal human lung fibroblasts.6 A different study using Desmoplastic small round 
cell tumor, a highly aggressive tumor arising from the peritoneum, shows LRRC15 
can be induced by the chimeric EWS–WT1(+KTS) transcription factor and that 
LRRC15 colocalizes with F-actin at the leading edge of migrating cells.50  

On a molecular level, little is known about the function of LRRC15 in normal 
and cancerous tissue. Research using bone marrow-derived mesenchymal stem cells 
demonstrates that LRRC15 functions as a repressor of NFκB signaling by promoting 
the nuclear exclusion of p65.55 As previously mentioned, LRRC15 has also recently 
been shown to associate with β1-integrin in ovarian cancer. To date, little is known 
about the role of LRRC15 in endometrial cancer.  

 
Results 
 
LRRC15 Expression in Endometrial Cancer 
 
 Using tissue microarray (TMA) analysis, we found that LRRC15 expression 
was pronounced in many samples of uterine papillary serous carcinoma (UPSC) 
although some tumors displayed little LRRC15 expression (data not shown). 
Interestingly, we discovered that LRRC15 expression could be found in the tumor 
stroma, cells, and both in UPSC tumors (Figure 2A). Next, we used Western blot 
analysis to determine LRRC15 expression in several endometrial cancer cell lines. 
We found that LRRC15 was expressed in both type I and type II endometrial cancer 
cell lines (Figure 2B). LRRC15 was expressed in the type I cell lines Ishikawa and 
RL-95, and in the type II cell lines SPAC-1L and HEC155 (Figure 2B and Figure 3B). 
In contrast, the type II cell line HEC-1A did not show any LRRC15 expression 
(Figure 2B).  
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 Figure 2. Expression of LRRC15 in endometrial cancer. (A) Tissue microarray was used 
to analyze LRRC15 expression (brown stain) in uterine papillary serous carcinoma . (B) 
LRRC15 expression was also analyzed using western blotting in several endometrial cancer 
lines. 
 
 
LRRC15 Knockdown Decreases FAK and SRC Signaling 
 
 Using Western blot analysis, we examined the expression of protein 
members in the FAK/SRC signaling pathway after transient LRRC15 knockdown 
with two short-hairpin RNA constructs (sh1 and sh2) in two endometrial cancer cell 
lines. In the Ishikawa and RL-95 cell lines, LRRC15 expression was reduced by both 
sh1 and sh2 with sh2 demonstrating more knockdown (Figure 3). Moderate 
LRRC15 knockdown by sh1 in Ishikawa and RL-95 cells resulted in reduced 
phosphorylation of FAK at the Y397 residue and SRC at the Y416 residue while 
having a varied effect on the expression of total FAK and total SRC protein levels 
(Figure 3). Moderate LRRC15 knockdown by sh1 also led to a slight decrease in 
Rac1 expression in Ishikawa and RL-95 cells (Figure 3). The more pronounced 
LRRC15 knockdown by sh2 in Ishikawa and RL-95 cells resulted in a greater 
reduction in expression of phosphorylated FAK (Y397), phosphorylated SRC (Y416), 
and Rac1 (Figure 3). In the Ishikawa cell line, LRRC15 knockdown by sh2 also 
reduced the expression of total protein levels (Figure 3). 
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Figure 3. Effect of LRRC15 KD on FAK/SRC signaling in endometrial cancer. Expression 
of proteins in the FAK/SRC pathway was assessed by Western blot after transient 
knockdown of LRRC15 in Ishikawa and RL-95 using two short-hairpin RNA constructs (sh1 
and sh2). 

 
 
 
 
 
Induced Expression of LRRC15 Increases FAK and SRC Signaling 
 
 Given that HEC-1A cells do not express LRRC15 we also wanted to analyze 
the effect inducing LRRC15 overexpression has on protein expression within the 
FAK/SRC signaling pathway. HEC-1A cells underwent transient induction of LRRC15 
for 6 hours using a plasmid vector. Western blot analysis shows that the empty 
vector cells do not express LRRC15 and show minimal expression of phosphorylated 
FAK (Y397) and SRC (Y416) while expressing reduced levels of total proteins 
(Figure 4). Empty vector cells also had reduced Rac1 expression compared to 
LRRC15 expressing cells (Figure 4). Hec-1A cells with induced LRRC15 
overexpression demonstrated a slight increase in expression of phosphorylated FAK 
(Y397) and SRC (Y416) while displaying a prominent increase in the expression of 
Rac1 and total FAK and total SRC (Figure 4).   
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Figure 4. Effect of induced overexpression of LRRC15 on FAK/SRC signaling in 
endometrial cancer. Expression of proteins in the FAK/SRC pathway was assessed by 
Western blot after transient induction of LRRC15 into HEC-1A cells using a plasmid vector. 
 
LRRC15 Expression Influences Cell Adhesion 
 
 Cell adhesion of LRRC15 knockdown and LRRC15 overexpressing 
endometrial cancer cells was assessed by cell adhesion assay using Cell TrackerTM 
Working Solution. Induced overexpression of LRRC15 in HEC-1A cells led to a 
greater amount of cell adhesion compared to the empty vector, as indicated by a 
greater amount of fluorescence (Figure 5A). LRRC15 knockdown in HEC155 cells 
using sh1 (sh3382) and sh2 (sh5675) resulted in a slight decrease in cell adhesion 
when compared to control (Figure 5B). LRRC15 knockdown in Ishikawa cells using 
sh1 and sh2 had an even more pronounced decrease in cell adhesion indicated by 
the decrease in fluorescence compared to control (Figure 5C). Importantly, LRRC15 
knockdown and upregulation was confirmed using Western blot analysis. 
 
 
 



 13 

 
 
Figure 5. Analyzing the role of LRRC15 in endometrial cancer cell adhesion. Cell 
adhesion assays using Cell TrackerTM Working Solution (10 uM) were performed. 
Representative pictures of GFP florescence were taken at the 15 minute and 1 hour time 
points using an EVOS FL microscope and LRRC15 knockdown and upregulation was 
confirmed by western blot. Cell adhesion was measured with readings taken using the 
SYNERGY multi-mode reader at different time points. (A) Cell adhesion after upregulation 
of LRRC15 in HEC-1A cells. (B) and (C) show cell adhesion after knockdown of LRRC15 in 
HEC-155 and Ishikawa cell lines, respectively.  
  
 
LRRC15 Knockdown Decreases Cell Migration 
 
 Cell migration of LRRC15 knockdown endometrial cancer cells was assessed 
using scratch assays. Ishikawa cells underwent transient LRRC15 knockdown using 
sh1 and sh2 with sh2 resulting in less LRRC15 expression (Figure 6C). After 
knockdown, the cells were allowed to grow until fully confluent. Then, a scratch 
assay was performed. Given that our scratch assay results are hard to evaluate with 
the naked eye (Figure 6A), we used computational analysis to help assist with 
calculating percent migration. LRRC15 knockdown using both sh1 and sh2 resulted 
in a slight decrease in cell migration in the Ishikawa cell line when compared with 
control although the error bars overlap (Figure 6B). Cell migration assays were not 
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performed in LRRC15 overexpressing HEC-1A due to its slow proliferation rate 
when grown in culture. 
 
 

 
Figure 6. Effect of LRRC15 KD on Ishikawa cell migration. In (A) and (B) cell migration 
of Ishikawa cells after LRRC15 knockdown was analyzed using a scratch assay. Migration 
was measured after 24 hours. (C) LRRC15 knockdown in Ishikawa cells was confirmed by 
Western blot. 

 
 
 
ABBV-085 Exhibits High Specificity Towards LRRC15 Expressing Endometrial 
Cancer Cells 
 

ABBV-085 is a cell permeable drug antibody conjugate that targets cells 
expressing LRRC15 and is conjugated to the potent anti-mitotic monomethyl 
auristatin E (MMAE) molecule via a cleavable valine-citrulline linker.6,56 The linker 
allows the drug to be stable in the extracellular fluid but become activated by 
cathepsin B when it enters a tumor cell.56,57 MMAE cannot be used as a single agent 
due to its high toxicity and thus must be attached to a monoclonal antibody that will 
direct it specifically to tumor cells. Specifically, ABBV-085 contains a ratio of two 
MMAE molecules per antibody known as an E2 conjugation.6 ABBV-085 uses an 
LRRC15-specific monoclonal antibody to localize the MMAE payload to the LRRC15-
rich stroma and tumor cells where the MMAE payload can diffuse into nearby cancer 
cells and induce toxic antimitotic effects leading to tumor death.6 In this study, we 
decided to test the specificity of ABBV-085 towards LRRC15-expressing SPAC-1L 
cells. SPAC-1L cells were used for this experiment due to their fast proliferation rate 
and ability to grow well in culture. In order to test the specificity of ABBV-085, 
SPAC-1L cells were additionally treated with a set of three controls: Isotype MMAE, 
Isotype AB, and M25. Isotype MMAE is a drug antibody conjugate between a 
nonspecific antibody and MMAE. Isotype AB is the monoclonal LRRC15 antibody 
portion of ABBV-085 and is without MMAE. M25 is simply a nonspecific antibody. 
SPAC-1L cells were treated with a range of doses (0-100 nM) of ABBV-085, Isotype 
MMAE, Isotype AB, and M25 for 48 hours. The media was then changed and cell 
viability was determined at the 72 hour time point using an MTT assay. Our results 
show that ABBV-085 demonstrates high specificity towards SPAC-1L tumor cells 
compared to control. ABBV-085 had an IC50 between 0.1 nM and 1.0 nM compared 
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to the IC50 of Isotype MMAE which was 1000 nM (data not shown) (Figure 7). 
Isotype AB and M25 did not decrease cell viability by 50% at doses up to 1000 nM 
(data not shown). 

 

 
Figure 7. Specificity of ABBV-085 in SPAC-1L cells. SPAC-1L cells were treated with a 
range of doses of ABBV-085, Isotype MMAE, Isotype AB, and M25 every 48 hours. After 72 
hours, cell viability was determined using an MTT assay. 

 

 
Discussion 
 

LRRC15 expression has been shown to be highly expressed in aggressive 
tumors and has been found at the leading edge of migrating cells.6,50,51,52,53,54 We 
demonstrate that LRRC15 is expressed in both the stroma and cells within uterine 
serous papillary carcinoma tumors and is expressed in several type I and II 
endometrial cancer cell lines. This data suggests that LRRC15 may play a role in 
both types of endometrial cancer. Furthermore, our results indicate that LRRC15 
promotes endometrial cancer cell adhesion and migration in vitro. We demonstrate 
that knockdown of LRRC15 in endometrial cancer cell lines results in decreased 
protein expression of members in the FAK/SRC signaling pathway. We also 
demonstrate that LRRC15 knockdown decreases cell adhesion and migration in 
endometrial carcinoma in vitro. We suggest further cell migration experiments using 
a type II endometrial cancer cell line such as HEC155 given we only studied 
Ishikawa cell migration in vitro. In addition, we show that inducing LRRC15 
overexpression in HEC-1A cells resulted in an increase in cell adhesion and 
FAK/SRC signaling. This agrees with previous unpublished work by Shridhar et al. 
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showing that LRRC15 promotes FAK/SRC signaling in ovarian cancer and suggests 
that LRRC15 may play a role in integrin-mediated adhesion in multiple cancer types.  

Shridhar et al. also demonstrated that LRRC15 associates with β1-integrin in 
ovarian cancer, which is something we have yet to investigate in endometrial 
cancer. Interestingly, endometrial cancer metastasis is associated with a general 
decline in integrins where the loss of α2β1 integrin was highly associated with 
lymph node metastasis and the loss of α6β4 integrin was highly associated with 
increased tumor grade.58 Conversely, a different study found the presence of αVβ6 
to be abundant in 42% of endometrial carcinomas and upregulation of αVβ6 was 
associated with increased grade and metastasis.59 A study using HEC-1A, Ishikawa, 
and AN3CA endometrial cancer cell lines found that the α4β1, α5β1, and α6β1 
integrin heterodimers mediate adhesion as well as migration into the artificial 
matrix matrigel.60 Therefore, our results demonstrate the therapeutic potential of 
LRRC15 knockdown in reducing cell adhesion and migration in endometrial cancer 
cell lines but more work is needed to elucidate protein associations with LRRC15.  

Furthermore, work by Purcell et al. has shown promising results in using 
ABBV-085 to treat multiple types of solid tumors.6 Similarly, our initial experiments 
using ABBV-085 in the treatment of endometrial cancer in vitro have demonstrated 
that ABBV-085 exhibits high specificity towards the SPAC-1L cell line. We suggest 
further work should be done using ABBV-085 to treat other endometrial cancer cell 
lines in vitro and in vivo. Given that LRRC15 was expressed in both the stroma and 
the cells of uterine serous papillary carcinoma tumors, ABBV-085 offers exciting 
promise for delivering its MMAE payload to endometrial cancer tumors.  

 
Conclusion  
 
 Overall, our results demonstrate that LRRC15 plays an important role in 
endometrial cancer cell adhesion and migration. Knockdown of LRRC15 led to a 
decrease in FAK/SRC signaling, cell adhesion, and migration suggesting that LRRC15 
could be a potential therapeutic target for molecular inhibitors that could be utilized 
to treat endometrial cancer. Furthermore, initial experiments using the drug 
antibody conjugate ABBV-085 demonstrated high specificity towards an 
endometrial cancer cell line. Therefore, our results present two possible methods 
for using LRRC15 as a therapeutic target in endometrial carcinoma. 
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Materials and Methods 
 
Cell lines 
 
Ishikawa, RL-95, SPAC-1L, HEC155, and HEC-1A endometrial cancer cell lines were 
provided by Viji Shridhar from the Mayo Clinic in Rochester, MN. 

 
Transfection 
 
Cells were plated in a 6-well plate (300,000 per well) and incubated 24 hours. 
Transient transfection of LRRC15 knockdown shRNAs (sh1/sh3382 and 
sh2/sh5675) and upregulation of LRRC15 were then performed. Preparation was 
carried out in 1.5 ml centrifuge tubes pipetting 2 μg of DNA per well into 300 μl of 
Opti-mem medium in each tube. Lipofectamine 2000 was added in a 1:2 μl/ μg ratio 
compared to the concentration of DNA. The tube was vortexed and incubated at 
room temperature for 20-30 minutes. The media on the cells was changed from 
normal to Opti-mem and 1 ml of the contents of the tubes was pipetted into a 
specified well on the 6-well plate. After 6 hours of incubation, the medium was 
changed back to normal and the cells were allowed to grow. For a given 6-well plate, 
2 wells were designated NTC, 2 wells would receive sh1, and 2 wells would receive 
sh2. All experiments except for the migration assay were started immediately after 
transfection. For the migration assay, cells were allowed to grow until confluence 
and the amount of time to confluence varied between the different cell lines. 

 
 
Migration assay 
 
Cells were allowed to grow until confluent in a 6-well plate. Scratch assays were 
performed using a micropipette tip. Initial pictures were taken of each scratch using 
the EVOS FL microscope. After 24 hours, pictures were taken again and differences 
were calculating using computational analysis.  

 
Cell adhesion 
 
Cell adhesion of LRRC15 knockdown and LRRC15 overexpressing endometrial 
cancer cells was assessed by cell adhesion assay. 96-well plates were plated with 0.1 
mg/ml of collagen and incubated for 24 hours. Next, the 96-well plates were plated 
with approximately 8,000 cells/well and incubated 24 hours. 10 μM Cell TrackerTM 
Working Solution was added to the medium and the cells were incubated for 30 
minutes at 37 °C. Next, the Cell TrackerTM Working Solution was removed and the 
medium was changed.  Cell adhesion was measured using raw data readings from 
the SYNERGY multi-mode reader taken at various time points up to five hours. 
Representative pictures of GFP florescence were taken at the 15 minute and 1 hour 



 18 

time points using an EVOS FL microscope for when cells adhered they gave off green 
fluorescence. Three replicates were performed and error bars represent standard 
deviation of the mean. 

 
Western blotting 
 
Cells were harvested for Western blotting using trypsin and subsequently pelleted. 
Approximately 100 μl of lysis buffer was added to the pellet and incubated on ice for 
30 minutes. Next, the sample was spun in a centrifuge at 4 °C at 13,000 rpm for 10 
minutes. The protein concentration was then calculated using a standard. The 
amounts of lysate, lysis buffer, and 30 μl of 4x loading dye were subsequently 
determined and measured into an Eppendorf tube. Once in the tube, the contents 
were mixed and placed on a hot plate for 5 minutes. A gel electrophoresis chamber 
was set up with running buffer and the gel was loaded with 5 μl of standard in one 
well and 35 μl of sample in subsequent wells. The gel was run at 150V for one hour. 
Then the gel was transferred to a PDVF membrane and incubated in 5% blocking 
milk for one hour. Primary antibody was added to BSA in a 1:1000 ratio. The 
primary antibody solution was added to the membrane overnight where it 
incubated at 20 °C. The next morning secondary antibody was added to the blocking 
milk in a 1:2000 ratio. This secondary antibody solution was placed on the 
membrane for one hour and then the membrane was imaged using a fluorescent 
imager. Beta-actin was used as a control. 
 

ABBV-085 Treatment 
 
SPAC-1L cells were plated in 96-well plates with 5,000 cells/well and incubated for 
24 hours. Next, the wells were treated with varying concentrations (0-1000 nM) of a 
respective drug (ABBV-085, Isotype MMAE, Isotype AB, or M25) for 48 hours. The 
media was then changed back to normal and at the 72 hour time point cell viability 
was determined by MTT assay.  

 
Statistical Analysis 
 
Limited statistical analysis was performed for our study primarily because the raw 
data is being stored at the Mayo Clinic, and I do not have direct access to it. The 
error bars in our bar graphs represent the standard error of the mean of the data 
and each bar graph was constructed using three replicates. If I were going to 
perform statistical analysis I would use two-tailed unpaired t-tests and consider p 
values less than 0.05 as significant. 
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