
College of Saint Benedict and Saint John's University College of Saint Benedict and Saint John's University 

DigitalCommons@CSB/SJU DigitalCommons@CSB/SJU 

All College Thesis Program, 2016-2019 Honors Program 

Spring 2019 

Reducing Memory Access Latencies using Data Compression in Reducing Memory Access Latencies using Data Compression in 

Sparse, Iterative Linear Solvers Sparse, Iterative Linear Solvers 

Neil Lindquist 
nslindquist@csbsju.edu 

Follow this and additional works at: https://digitalcommons.csbsju.edu/honors_thesis 

 Part of the Numerical Analysis and Computation Commons, and the Numerical Analysis and Scientific 

Computing Commons 

Recommended Citation Recommended Citation 
Lindquist, Neil, "Reducing Memory Access Latencies using Data Compression in Sparse, Iterative Linear 
Solvers" (2019). All College Thesis Program, 2016-2019. 63. 
https://digitalcommons.csbsju.edu/honors_thesis/63 

Copyright 2019 Neil Lindquist 

https://digitalcommons.csbsju.edu/
https://digitalcommons.csbsju.edu/honors_thesis
https://digitalcommons.csbsju.edu/honors
https://digitalcommons.csbsju.edu/honors_thesis?utm_source=digitalcommons.csbsju.edu%2Fhonors_thesis%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/119?utm_source=digitalcommons.csbsju.edu%2Fhonors_thesis%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=digitalcommons.csbsju.edu%2Fhonors_thesis%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=digitalcommons.csbsju.edu%2Fhonors_thesis%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.csbsju.edu/honors_thesis/63?utm_source=digitalcommons.csbsju.edu%2Fhonors_thesis%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages


Reducing Memory Access Latencies

using Data Compression in Sparse,

Iterative Linear Solvers

An All-College Thesis

College of Saint Benedict/Saint John’s University

by Neil Lindquist
April 2019



Project Title: Reducing Memory Access Latencies using Data
Compression in Sparse, Iterative Linear Solvers

Approved by:

Mike Heroux
Scientist in Residence

Robert Hesse
Associate Professor of Mathematics

Jeremy Iverson
Assistant Professor of Computer Science

Bret Benesh
Chair, Department of Mathematics

Imad Rahal
Chair, Department of Computer Science

Director, All College Thesis Program

i



Abstract

Solving large, sparse systems of linear equations plays a significant role in cer-
tain scientific computations, such as approximating the solutions of partial dif-
ferential equations. However, solvers for these types of problems usually spend
most of their time fetching data from main memory. In an effort to improve
the performance of these solvers, this work explores using data compression to
reduce the amount of data that needs to be fetched from main memory. Some
compression methods were found that improve the performance of the solver
and problem found in the HPCG benchmark, with an increase in floating point
operations per second of up to 84%. These results indicate that, if similar im-
provements can be made with other linear systems, compression could improve
the performance of real-world solvers.
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1 Introduction

Solving large, sparse linear systems of equations plays a vital role in certain
scientific computations. For example, the finite element method solves a system
of linear equations to approximate the solution to certain partial differential
equations [15]. These problems can be large, with easily millions of variables or
more [2]. So, solving these problems efficiently requires a fast linear solver.

Iterative solvers are often used to solve these large, sparse systems. These
solvers take an initial guess then improve it until it is within some tolerance [15].
On modern computers, these solvers often spend most of their time fetching data
from main memory to the processor where the actual computation is done [11].
This work tries to improve the performance of iterative solvers by compressing
the data to reduce the time spent accessing main memory.

To avoid implementing an entire sparse linear solver, the High Performance
Conjugate Gradient (HPCG) benchmark was used as the initial codebase for
the project [4]. The HPCG benchmark is designed to measure the performance
of computing systems when processing sparse solvers and does so by solving
one such test problem. In addition, as a benchmark, HPCG has built in mea-
surements of elapsed time, solver iterations and the number of floating point
operations that needed to be computed. These factors all make the HPCG
codebase a natural starting point for developing improvements to sparse, itera-
tive linear solvers.

There are three main data structures that were experimented with in this
project: the vector values, the matrix values, and the matrix indices. For each
of these data structures, compression methods were found that were able to
fulfill the requirements on read and write access. Additionally, two models were
constructed to estimate the minimum performance a compression method would
need to outperform the baseline. Both models indicated that vector values must
be decoded with only a few instructions, but that decoding the matrix values has
a much larger, but still limited, window for improvement. In the actual tests,
a couple of configurations were found to be able to outperform the baseline
implementation, with an increase in performance of up to 84%.

1.1 Previous Work

First, this work draws heavily on existing data compression methods. Some of
the algorithms used were designed with scientific computations in mind, such as
ZFP and SZ compression [13, 3]. Other algorithms are more general purpose,
such as Huffman and Elias Codings [8, 5]. Section 2.2 goes into detail on what
compression methods were used and how they work.

Much work has been done on various aspects of utilizing single precision
floating point numbers while retaining the accuracy of double precision numbers
in iterative linear solvers. One approach, which this work draws inspiration
from, is to apply the preconditioner using single precision, while otherwise using
double precision, which result in similar accuracy unless the matrix is poorly
conditioned [1, 7]. This strategy of mixing floating point precision for various
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parts of the solver algorithm leads to the use of making certain vectors single
precision, as described in Section 2.2.2.

Another effort at compressing large, sparse Linear Systems is Compressed
Column Index (CCI) format to store matrices [11]. This format is based on
Compressed Sparse Row (CSR) matrix format except uses compression to reduce
the size of the matrix indices. The index compression used by CCI is described
in Section 2.2.8 and tested in this project. This project generalizes the ideas
of CCI matrices, both by compressing additional data structures and using
additional compression methods. However, only a single matrix is tested for
this project, as opposed to the suite of matrices used to look at the performance
of CCI matrices.

1.2 Mathematics of Conjugate Gradient

Conjugate Gradient is the iterative solver used by HPCG [4]. Symmetric, posi-
tive definite matrices will guarantee the converge of Conjugate Gradient to the
correct solution within n iterations, where n is the rows of the matrix, when
using exact algebra [15]. More importantly, Conjugate Gradient can be used

as in iterative method, providing a solution, ~x, where
∥∥∥A~x−~b∥∥∥ is within some

tolerance, after significantly fewer than n iterations, allowing it to find solutions
to problems where computing n iterations is infeasible [17]. As an iterative
method, Conjugate Gradient forms update directions from Krylov subspaces of
the form Kn(~r0,A) = span(~r0,A~r0,A

2~r0, . . . ,A
n~r0), where ~r = ~b−A~x0.

To understand the Conjugate Gradient, first consider the quadratic form of
A~x = ~b. The quadratic form is a function f : Rn → R where

f(~x) = 1
2~x

TA~x−~b · ~x+ c (1)

for some c ∈ R. Note that

∇f (~x) = 1
2

(
A + AT

)
~x−~b

Then, when A is symmetric,

∇f(~x) = A~x−~b

So, the solution to A~x = ~b is the sole critical point of f [14]. Since A is the
Hessian matrix of f at the point, if A is positive definite, then that critical
point is a minimum. Thus, if A is a symmetric, positive definite matrix, then
the minimum of f is the solution to A~x = ~b [17].

The method of Steepest Decent is useful for understanding Conjugate Gra-
dient, because they both use a similar approach to minimize Equation 1, and
thus solve A~x = ~b. This shared approach is to take an initial ~x0 and move
downwards in the steepest direction, within certain constraints, of the surface
defined by Equation 1 [14]. Because the gradient at a point is the direction of
maximal increase, ~x should be moved in the opposite direction of the gradient.
Thus, to compute the next value of ~x, use

~xi+1 = ~xi + αi~ri (2)

2



Algorithm 1 Steepest Decent [17].

~r0 ← ~b−A~x0
for i = 0, 1, . . . until ‖~ri‖ ≤ ε do
αi ← ~ri·~ri

~ri·A~ri
~xi+1 = ~xi + αi~ri
~ri+1 = ~ri − αA~ri

end for

for some αi > 0 and where ~ri = −∇f (~xi) = ~b−A~xi is the residual of ~xi. Since

A~x = ~b is the only critical point and a minimum of the quadratic function, f ,
the ideal value of αi is the one that minimizes f (~xi+1). Thus, choose αi such
that

0 = d
dαi

f (~xi+1)

= d
dαi

f (~xi + α~ri)

αi =
~ri · ~ri
~ri ·A~ri

.

Note that by using Equation 2, we can derive

~ri+1 = ~ri − αA~ri. (3)

Because A~ri is already computed to find αi, using Equation 3 to compute the
residual results in one less matrix-vector product per iteration. Algorithm 1
shows the resulting algorithm.

Example 1. Consider the linear system

A =

[
2 1
1 3

]
, ~b =

[
5
5

]
and use c = 0. Note that the solution is

~x =

[
2
1

]
.

When starting at the origin, the iteration of Method of Steepest Decent becomes

~x0 =

[
0
0

]
~r0 =

[
5
5

]
α0 = 2/7

~x1 =

[
10/7
10/7

]
~r1 =

[
5/7
−5/7

]
α1 = 2/3

~x2 =

[
40/21
20/21

]
~r2 =

[
5/21
5/21

]
α2 = 2/7

~x3 =

[
290/147
50/49

]
~r3 =

[
5/147
−5/147

]
α3 = 2/3

...
...

...
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Figure 1: Contour graph of the quadratic function and the first six values of ~x
produced by steepest decent for Example 1.

The ~xis are plotted with a contour graph of the quadratic form in Figure 1. �

The Conjugate Directions family of linear solvers, of which Conjugate Gra-
dient is a member of, attempts to improve on the number of iterations needed
by Steepest Decent. [17]. Note that, in Example 1, the directions of ~r0 and ~r2
are the same and the directions of ~r1 and ~r3 are the same. Thus, the same direc-
tion is traversed multiple times. Additionally, note that the two sets of residual
directions are perpendicular to each other. Conjugate Directions attempts to
improve on this, by making the search directions, ~d0, ~d1, . . ., A-orthogonal to
each other and only moving ~x once in each search direction. Two vectors, ~u,~v,
are A-orthogonal, or conjugate, if ~uTA~v = 0. The requirement for Conjugate
Directions is to make ~ei+1 A-orthogonal to ~di, where ~ei = ~xi−A−1~b is the error

of ~xi. The computation of αi changes to find the minimal value along ~di instead
of ~ri.

αi =
~dTi ~ri
~dTi A~di

.

Conjugate Gradient is a form of Conjugate Directions where the residuals
are made to be A-orthogonal to each other [17]. This is done using the Conju-

gate Gram-Schmidt Process. To do this, each search direction, ~di is computed
by taking ~ri and removing any components that are not A-orthogonal to the
previous ~d’s [17]. So, let ~d0 = ~r0 and for i > 0 let

~di = ~ri +

i−1∑
k=0

β(i,k) ~dk

4



Algorithm 2 Conjugate Gradient [15].

~r0 ← ~b−A~x0
~d0 ← ~r0
for i = 0, 1, . . . until ‖~ri‖ ≤ ε do
αi ← ~ri·~ri

~di·A~di

~xi+1 ← ~xi + αi ~di
~ri+1 ← ~ri + αiA~di
βi+1 ← ~ri+1·~ri+1

~ri·~ri
~ri+1 + βi+1

~di
end for

with β(i,k) defined for i > k. Then, solving for β(i,k) gives

β(i,k) = − ~ri ·A
~di

~dj ·A~dj
.

Note that each residual is orthogonal to the previous search directions, and
thus the previous residuals. So, it can be shown that ~ri+1 is A-orthogonal to

all previous search directions, except ~di [17]. Then, β(i,k) = 0 for i− 1 6= k. To
simplify notation, let βi = β(i,i−1). So, each new search direction can then be
computed by

~di = ~ri + βi~di−1.

Algorithm 2 shows the final Conjugate Gradient algorithm.

Example 2. Consider the linear system used in Example 1 where

A =

[
2 1
1 3

]
, ~b =

[
5
5

]
.

The result of applying Conjugate Gradient is

~x0 =

[
0
0

]
~r0 =

[
5
5

]
~d0 =

[
5
5

]
α0 = 2/7

~x1 =

[
10/7
10/7

]
~r1 =

[
5/7
−5/7

]
β1 = 1/49 ~d1 =

[
40/49
−30/49

]
α1 = 7/10

~x2 =

[
2
1

]
~r2 =

[
0
0

]
Note that after two iterations, ~x reaches the exact solution, compared to the
iterations of Steepest Decent in Example 1. Figure 2 shows the values of ~x with
the contour graph of the quadratic function. �

One way to improve the Conjugate Gradient method is to precondition the
system [15]. Instead of solving the original system, A~x = ~b, a Preconditioned
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Figure 2: Contour graph of the quadratic function and each value of ~x produced
by Conjugate Gradient for Example 2.

Conjugate Gradient solves M−1
(
A~x−~b

)
= 0 instead, where M−1 is the pre-

conditioner. Note that M should be similar to A, but M−1 should be easier
to compute than A−1. When M is similar to A, the system becomes close to
I~x = M−1~b, which is easy to solve if M−1~b can be computed cheaply. Algo-
rithm 3 shows the preconditioned variant of the Conjugate Gradient.

1.3 Mathematics of the Multigrid Preconditioner

Multigrid solvers are a class of methods designed for solving discretized partial
differential equations (PDEs) and take advantage of more information that just
the coefficient matrix and the right-hand side [15]. Specifically, the solvers
use discretizations of varying mesh sizes to improve performance of relaxation-
based solvers. In HPCG, a multigrid solver with high tolerance is used as the
preconditioner [4]. Because the solver provides an approximation to A−1, the
preconditioned matrix approximates A−1A = I. This reduces the condition
number of the linear system, and so, reduces the number of iterations needed
for Conjugate Gradient to converge [15].

The multigrid method uses meshes of varying sizes to improve performance
of a relaxation style iterative solver [15]. Relaxation based solvers “relax” a few
coordinates at a time to eliminate a few components of the current residual.
Most of these solvers can quickly reduce the components of the residual in the
direction of eigenvectors associated with large eigenvalues of the iteration ma-
trix. Such eigenvectors are called high frequency modes. The other components,
eigenvectors called low frequency modes, are difficult to reduce with standard
relaxation. However, on a coarser mesh, many of these low frequency modes

6



Algorithm 3 Preconditioned Conjugate Gradient [15].

~r0 ← ~b−A~x0
~z0 ←M−1~r0
~d0 ← ~z0
for i = 0, 1, . . . until ‖~ri‖ ≤ ε do
αi ← ~ri·~zi

~di·A~di

~xi+1 ← ~xi + αi ~di
~ri+1 ← ~ri + αiA~di
~zi+1 ←M−1~ri+1

βi+1 ← ~ri+1·~zi+1

~ri·~zi
~di+1 ← ~zi+1 + βi+1

~di
end for

are mapped to high frequency modes [15]. Thus, by applying a relaxation type
iterative solver at various mesh sizes, the various components of the residual
can be reduced quickly.

In HPCG, a symmetric Gauss-Seidel iteration is used by the multigrid as
the relaxation iteration solver at each level of coarseness [4]. The symmetric
Gauss-Seidel iteration consists of a forward Gauss-Seidel iteration followed by
a backward Gauss-Seidel iteration. Letting A = L + D + U where L is strictly
lower triangular, D is diagonal, and U is strictly upper triangular, the iteration
can be represented by

~xi∗ = D−1
(
~b− L~xi∗ −U~xi

)
~xi+1 = D−1

(
~b−U~xi+1 − L~xi∗

)
with ~xi∗ representing an intermediate vector. Note that while ~xi∗ and ~xi+1 are
on both sides of the equation where they are respectively computed, they can
be computed with this formulation by computing the entries in order as they
become available for the product with L and U , respectively, by iterating in row
order then in reverse row order. So, the update of a Gauss-Seidel step can be
computed in place.

2 Problem Implementation

This project uses the High Performance Conjugate Gradient (HPCG) bench-
mark as the baseline implementation. This means that an implementation of
the Conjugate Gradient algorithm with a multigrid precondition variant is used
as the linear solver [4]. The benchmark’s linear system is a discretization of a
steady-state heat equation problem in three dimensions. The zero vector is the
initial value for x.

The problem used to create the linear system used by HPCG, and thus by
this project, is a three-dimensional partial differential equation (PDE) model [4].
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This problem is approximating the function u(x, y, z) over the three-dimensional
rectangular region Ω ⊂ R3 such that

∆u =
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= 0,

with u(x, y, z) = 1 along the boundaries of Ω. Note that the solution is
u(x, y, z) = 1 for the region Ω. The linear system is created by using the
finite difference method with a 27-point stencil on the PDE over a rectangular
grid with nodes of fixed distance. The matrix’s diagonal consists of the value
26, and -1’s fill the entries for the row’s 26 grid neighbors. The right-hand side
of the equation has a value of 14 for corner points, 12 for edge points, 9 for side
points and 0 for interior points [10]. The solution vector consists of all 1’s.

As HPCG is designed to emulate the performance characteristics of real-
world problems without needing to be a robust solver, it only uses 3 levels of
grid coarseness with only a single smoother iteration at the coarsest grid level.
The smoother used by the multigrid is based on a symmetric Gauss-Seidel step;
however, values are only synchronized between processors at the beginning of
the step. The restriction operation simply samples half the points in dimension,
resulting in a reduction of grid size by a factor of eight in each level of coarseness.
To prolong the coarse grids, each coarse point is added to the fine point it was
sampled from.

The problem is distributed over 60 processes, each with a cubic subproblem
96 nodes per side. The processors are distributed in a rectangular prism of size
5 by 4 by 3 processors. The resulting linear system has 53,084,160 total rows.
MPI is used for interprocess communication.

2.1 Data Access Patterns of High Performance Conjugate
Gradient

The Conjugate Gradient and Multigrid implementations in HPCG do not di-
rectly access the matrix and vector values, but instead use low-level functions to
manipulate the data structures [4]. These low-level functions include copying a
vector, setting a vector to zero, the dot product, a scaled vector sum, the matrix
vector product, the symmetric Gauss-Seidel step, the multigrid restriction, and
the multigrid prolongation. Further data accessing functions exist in HPCG,
however, they are not part of the timing. So, any additionally restrictions can
be overcome by converting to an uncompressed format, applying the function,
then recompressing. The low-level functions used in the timed section of the
code can be viewed together to produce the overall data access requirements,
For the matrices, the matrices do not need to be mutable, the rows need to be
readable in both a forward and backward iteration, the data for a given row
has no restriction on its read order, and the diagonal for a given row must be
accessible. The vectors, on the other hand, need both random read and write
access, with the writes being immediately accessible to future reads.

In addition to the restrictions on usable compression schemes imposed by the
data access patterns, they influence the effectiveness of compression schemes.

8



Note that in the inner loop of both the sparse matrix vector product and the
symmetric Gauss-Seidel step do not have a data dependency between matrix
values and the vector values; however, the vector values are dependent on the
matrix indices. So, the matrix values can be fetched in parallel to the matrix
indices and vector values [6]. This will result in ineffective compression when
just compressing one part of the problem, as discussed in Section 2.2.9.

Copying a vector and setting a vector to zero provide the least data access
requirements. Note that a vector’s content can by copied by transferring the
current representation of the values without any processing. Setting a vector
to zero merely requires the ability to write vector values. These functions add
little to the data access requirements and are both simple to implement with
alternative vector representation.

The dot product and sum of scaled vectors are both straightforward func-
tions. Each of them iterates over two or three vectors and applies a few arith-
metic operations. The dot product accumulates the sum of the product of the
pair of vector entries across the iterations. The sum of scaled vectors computes
wi = αxi + βyi for each set of entries. Note that the only data iteration be-
tween rows in either of these operations is the sum in the dot product, however
addition is an associative operation. Thus, these functions can be arbitrarily
parallelized or have their iteration reordered.

The matrix vector product iterates once over the rows and for each row sums
the nonzero entries times the vectors corresponding entries [4]. Both the rows
and the sum in each row may be iterated in any order or in parallel. Thus,
the matrix information can be compressed for any iteration order of rows and
any iteration order of the values in each row. However, the vector information
must be able to be read at an arbitrary index. For each iteration, the matrix
information is read only once, and the vector entries are read for each nonzero
value in the corresponding column (8 to 27 times for this matrix). So, assuming
the problem is too large for the matrix to fit entirely in the memory caches,
the matrix data will always need to be read from main memory, while vector
data will be able to utilize caches, resulting in up to 27-fold fewer reads than
the matrix data. This hints that the compressing matrix information is more
likely to provide an increase in performance of the matrix vector product than
compressing the vector information.

The symmetric Gauss-Seidel step is similar to the sparse matrix-vector prod-
uct, with added complications. First, the step has two iterations, one forward
and one backward. Instead of simply summing the row-vector product, each
row does the following calculation

xi ← bi −
1

aii

n∑
j=1

aijxj

where only terms with nonzero aij are computed, xi, bi are the ith elements of

~x,~b respectively and aij is the entry of A in the ith row and jth column [4]. Note
that each xi is used immediately in the subsequent rows, this means that any
deviation from the base row iteration order or any parallelization of the rows

9



Strategy Vector Values Matrix Values Matrix Indices
Single Precision Yes Yes Not Able
Mixed Precision Yes Not Able Not Able

1 Bit Not Able Yes Not Able
Squeeze (SZ) Yes Yes Yes

ZFP Yes Yes Not Able
Elias Gamma Not Able Not Able Yes

Elias Delta Not Able Not Able Yes
Huffman Not Able No Yes
Op Code Not Able Not Able Yes

Figure 3: Overview of compression strategies.

may reduce the effectiveness of the step. Because any delay in writing the new
values to ~x results in effectively parallelizing the iteration of the rows, the vector
values must be written immediately or within a few iterations. Additionally, the
Gauss-Seidel step has the additional requirement that the matrix diagonal of
the current row must be accessible.

The restriction and prolongation functions used in the multigrid are the last
matrix and vector value accessing functions used in the Conjugate Gradient
implementation. Restriction samples points from two fine grid vectors and stores
the difference in a coarse grid vector. Prolongation takes the entries in a coarse
grid vector and adds them to select fine grid vectors. So, between these two
functions, random read and write access is needed by vectors in all but the
coarsest mesh.

2.2 Compression Strategies

Numerous compression strategies were considered for this project. Figure 3
lists the compressions tried for each of the main data structures. Note that
most compression methods were only used with one or two of the data types,
even if able to be reasonably used within the constraints of other types of data.

2.2.1 Restrictions on Compression Strategies

The restrictions on usable compression strategies primarily come from the data
access requirements described in Section 2.1. These requirements were that ma-
trix rows need to be readable in both a forward and backward iteration, the
diagonal for a given row must be accessible, and the vectors have both random
read access and random, immediate write access. Due to the highly regular
nature of the particular matrix used and the existence of solvers specially op-
timized for solving this type of problem, the requirement that all compression
techniques can handle any sparse matrix was added to increase the usefulness
of this work [15]. Although, an exception was made to the requirement to han-
dle general matrices for the 1-bit Compression described in Section 2.2.3 as
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that compression method is designed to provide an upper bound for improve-
ments from compressing matrix values. Finally, integer compression was limited
to lossless compression methods to ensure that the proper vector entries were
fetched, while floating point compression was allowed to be lossy.

Note that some cleverness can be used to work around some restrictions. By
compressing the data in small blocks, sequential compression strategies can be
used while retaining effectively random access reads and writes [13]. Then, at
most, the individual block needs to be decompressed or recompressed for a single
read or write. Similarly, a sequential compression method can be used on the
matrix information by compressing the data twice, once for forward iteration
and once for backwards iteration.

2.2.2 Single and Mixed Precision Floating Point Numbers

The most obvious compression of floating point data is using single precision
representation instead of double precision representation. While it only has a
compression rate of 1:2, it allows the compression and decompression of values
using at most 1 extra hardware operation. Additionally, it provides the same
data access properties as the double precision version. For the matrix values,
single precision representation is lossless in the test problem, since each matrix
value is an integer. However, for the vector values, using single precision floats
resulted in a significant increase of Conjugate Gradient iterations due to the loss
of precision. So, by making only select vectors single precision, a compromise
can be found where vectors that need high precision can keep that precision and
vectors that do not need as much precision can get improved performance.

2.2.3 1-bit Compression

To provide an estimated upper bound for improvements in performance from
matrix value compression, 1-bit compression was devised. This scheme uses
the fact that the matrix values in the test matrix are all either -1 or 26. Note
that as implemented, this scheme can compress a limited number of matrices.
However, certain compression schemes that modify the compression based on the
data being compressed, such as Huffman coding described in Section 2.2.7, can
achieve the same compression for the test matrix. Note that the upper bound
provided for 1-bit compression is only an upper bound for the particular pair
of vector and index compressions that 1-bit compression was used with. The
importance of compressing multiple structures, as described in Section 2.2.9, is
shown using 1-bit compression.

2.2.4 Squeeze (SZ) Compression

Squeeze (SZ) compression is a group of compression strategies based on using
curve fitting and can be used for both integers and floating point values. The
compression strategy referred to as SZ compression in this paper deviates from
the original description by using a generalization of the core approach of the
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Uncompressed vi ← original ith value
Neighbor vi ← vi−1

Linear vi ← 2vi−1 − vi−2

Quadratic vi ← 3vi−1 − 3vi−2 + vi−3

Neighbor’s Neighbor vi ← vi−2

Last Uncompressed vi ← last value stored uncompressed
Increment vi ← vi−1 + 1

Figure 4: Prediction functions used in SZ compression.

original implementation of SZ compression [3]. SZ compression allows for string
bounds to be placed on the compression error.

The compressed data is stored in two arrays, one storing the predictor each
value is compressed with and the other storing values that could not be predicted
within tolerance. To compress each value, the error between the prediction made
by each predictor is compared. If the smallest error is within the user supplied
tolerance, the associated predictor is stored. Otherwise, the value is appended
to the list of uncompressed values and the predictor is stored as uncompressed.
Because only the compressed value is available when decompressing, those val-
ues are used during compression when computing the value produced by each
predictor. This allows error requirements to be met. The compression rate is

ps+ dlog2(n)e
s

where s be the number of bits used by an uncompressed value, p be the percent
of values that are compressed, and n be the number of predictors available.
Note that due to the granularity of the matrix values and indices, bounding the
error to be less than one results in an effective error bound of 0. Thus, when
compressing those data structure, only an error bound of 0 is used.

The predictors available are selected based on the nature of the data being
compressed. Figure 4 shows all predictor functions used. For compressing vector
values, the Neighbor, Linear and Quadratic predictors were used. Because the
vector values represent a value at each grid point, these predictors attempted to
capture smooth changes and relations in the data. The matrix indices were com-
pressed using only the increment compression mode, since approximately two
thirds of the indices fit that pattern. The matrix values were compressed with
a few different combinations of predictors. These combinations were Neighbor
alone, then Neighbor and Neighbor’s Neighbor. These predictors were chosen
to find the best way to compress a series of -1’s with occasional 26’s.

2.2.5 ZFP Compression

ZFP compression is a lossy floating point compression scheme designed for spa-
tial correlated data [13]. ZFP compression is designed to take advantage of
spatial relations for data up to 4 dimensions. Note that the matrix values were
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Compression Rate

gamma(1) = 12 1:32

gamma(2) = 0 102 3:32

gamma(3) = 0 112 3:32

gamma(4) = 00 1002 5:32

gamma(5) = 00 1012 5:32

gamma(6) = 00 1102 5:32

gamma(7) = 00 1112 5:32

gamma(8) = 000 10002 7:32

gamma(64) = 000000 10000002 13:32

gamma(256) = 00000000 1000000002 17:32

gamma(1024) = 0000000000 100000000002 21:32

Figure 5: Select examples of Elias Gamma Coding.

compressed with ZFP, even though there is no spatial relation between points.
Because the vectors represent points in 3 dimensions, 1- and 3- dimensional com-
pression was tried. The matrix values were only compressed with 1 dimension.
ZFP compresses its values by grouping the data into blocks of 4d elements,
where d is the number of dimensions compressing with [13]. When random
access is required, each block is compressed at a fixed size to allow access to
arbitrary blocks. ZFP was implemented using the existing C++ library. Both
the high-level and low-level interfaces were tried for the vector compression.

2.2.6 Elias Gamma Coding and Delta Coding

Elias Gamma and Delta codings are a pair of similar compression methods that
are designed to compress positive integers by not storing extra leading 0’s [5].
Because these schemes are better at compressing smaller numbers, the matrix
indices were stored as the offset from the preceding value. Then, because these
codings are only able to compress positive integers, the indices of each row must
be sorted in acceding order. Finally, the first index in each row is stored as the
offset from -1, to ensure an index of 0 is properly encoded.

To encode an integer n with Gamma coding, let N = blog2(n)c + 1 be the
number of bits needed to store n. Then, n is represented by N−1 zeros followed
by the N bits of n [5]. Thus, n can be stored with only 2N − 1 bits. For small
values of N this is highly affected, reaching compression ratios of up to 1:32.
See Figure 5 for examples of gamma coding.

Delta coding is like Gamma coding, except instead of preceding the number
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Compression Rate

delta(1) = 12 1:32

delta(2) = 010 02 4:32

delta(3) = 010 12 4:32

delta(4) = 011 002 5:32

delta(5) = 011 012 5:32

delta(6) = 011 102 5:32

delta(7) = 011 112 5:32

delta(8) = 00100 0002 8:32

delta(64) = 00111 0000002 11:32

delta(256) = 0001001 000000002 15:32

delta(1024) = 0001011 00000000002 17:32

Figure 6: Select examples of Elias Delta Coding.

with N−1 0’s, the number is preceded by gamma(N) and only the last N−1 bits
are stored. So, n can be stored with only N+2blog2(N)c bits. Figure 6 contains
examples of delta coding. Note that delta coding provides better compression for
large numbers, but worse compression for certain smaller numbers. Additionally,
because decoding a delta encoded value requires decoding a gamma encoded
value, decoding a delta coded value is more expensive than decoding a gamma
coded value.

2.2.7 Huffman Coding

Huffman coding is an optimal prefix code usable for lossless compression [8].
A prefix code is a coding where each representable value is assigned a unique
coding such that no code is the beginning of another code. However, Huffman
coding does not take advantage of local patterns in the data, just the overall
frequencies of each value. Additionally, Huffman coding can only be decoded
sequentially, due to the variable length of storage for each value. So, while it
can compress matrix values and indices, it is unable to meet the requirements
to compress vector values. Note that the Huffman coding of the matrix values
in the test problem is equivalent to the 1-bit coding described in Section 2.2.3.
Thus, only matrix indices were tested with Huffman coding.

2.2.8 Opcode Compression

Opcode compression is based on the index compression used in Compressed
Column Index (CCI) matrices [11]. Note that this integer compression is never
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Opcode Length
0 4 bits
100 5 bits
110 15 bits
101 20 bits
111 26 bits

Table 1: CCI format opcodes [11].

given its own name in the original description and so is referred to as opcode
compression in this paper. Opcode compression is inspired by CPU instruction
encodings which are separated into an “opcode” portion and a data portion
(hence the name). To read each value, the first few bits are read to determine
the number of bits used for the data portion, which stores the encoded value.
Like Gamma and Delta coding, opcode compression reduces the number of
leading 0’s stored, and similarly is utilized by encoding the difference from
the preceding index. If some opcodes are used significantly, that opcode can be
shorted to save bits. This shortened opcode can be handled in a lookup table by
placing the opcode’s information at every location that begins with the opcode.
For example, if 0, 10 and 11 are the possible opcodes, then the information for
opcode 0 is located at the indices of 00 and 01.

The description of CCI matrix format uses a fixed decode table. However,
when using a lookup table, using custom decode tables to adjust the compression
for the specific matrix’s sparsity pattern will not have a significant performance
penalty to decoding. Table 1 shows the opcodes used for CCI format.

2.2.9 Combined Compression Strategies

In addition to compressing a single data structure at a time, compression strate-
gies which compress multiple data structures were tried. This provided the op-
portunity to achieve an overall reduction in data that could not be achieved by
compressing a single data structure. Additionally, as discussed in Section 2.1
and as shown in Section 4, compressing matrix values alone cannot provide
performance improvement.

3 Performance Models

To help understand the requirements for an improvement in overall performance,
models were constructed to estimate the amount of time spent fetching and de-
coding information. Two models were constructed, an analytical model that
did not consider processor level parallelism and a simulation-based model that
considered certain processor level parallelism. Both models are based on the
sparse matrix-vector product, but, due to the similarity of the data access for
the symmetric Gauss-Seidel step, should provide an estimate on both kernels.
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L1 Cache Latency 4-5 cycles
L2 Cache Latency 12 cycles
L3 Cache Latency 38 cycles

Main Memory Latency 38 cycles + 58 ns
Clock Rate 2.2GHz

Table 2: Estimate cluster performance [9].

Additionally, the models only provide estimates for rows with 27 elements, be-
cause there are O(n3) of those rows and only O(n2) of other rows where the
matrix has O(n3) rows. Finally, the models assume that the compression does
not reduce the rate of convergence. The models were analyzed using the mem-
ory access latencies of the head node of the testing cluster. These latencies are
shown in Table 2. The models were primarily used to find the minimum com-
pression performance to outperform the baseline implementation. The following
variables represent the relevant compression characteristics in this section

vectDecode = time to decode one vector value

vectEncode = time to encode one vector value

vectBytes = the number of bytes per vector value

matIndDecode = time to decode one matrix index

matIndBytes = the number of bytes per matrix index

matValDecode = time to decode one matrix value

matValBytes = the number of bytes per matrix value

Both models indicate that vector decoding must be incredibly efficient to see
overall performance improvement, while matrix decoding can be less efficient.
This implies matrix compression has greater potential for overall performance
improvement. However, both models make significant assumptions and simplifi-
cations that limit the accuracy of these results. Additionally, the models provide
slightly different results. For example, the analytical model indicates vector en-
coding time is negligible while the simulation model puts vector encoding time
half the factor of vector decoding.

3.1 Analytical Model

The analytical model is a set of equations that computes the amount of time
spent serially fetching and decoding the information. This model is implemented
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using the following system of equations

27 · vectDecode + vectEncode + 18 · L1Time

+

(
64− vectBytes

64
· 9 · L1Time +

vectBytes

64
· (6 · L2Time + 3 · RAMTime)

)
+27 ·matIndDecode

+27 ·
(

matIndBytes

64
· RAMTime +

64−matIndBytes

64
· L1Time

)
+27 ·matValDecode

+27 ·
(

matValBytes

64
· RAMTime +

64−matValBytes

64
· L1Time

)
where

L1Time = the access latency for L1 cache

L2Time = the access latency for L2 cache

RAMTime = the access latency for main memory.

This model utilizes a few facts and assumptions. Firstly, the number of bytes
per value divided by 64 provides the percent of values that will require fetching
a cache line from main memory or higher caches, while 1 minus this value is the
percent of values that will be able to only need to access L1 cache. Secondly, due
to the matrix sparsity pattern, two thirds of vector readers will always be in L1
cache and, assuming there are 963 rows per process, two thirds of the remaining
values will be in L2 cache. The model was only studied using the performance
characteristics shown in Table 2. This model was used to create approximate
bounds that need to be met to outperform the baseline implementation. The
model can be simplified by letting

decode =vectDecode + matValDecode + matIndDecode

matBytes =matValBytes + matIndBytes.

Then, the performance bounds are, approximately,

vectEncode <878.513

decode <32.5375− 0.037037 · vectEncode

matBytes <12.9664− 0.398506 · decode− 0.0147595 · vectEncode

vectBytes <107.34− 3.29897 · decode− 0.122184 · vectEncode

− 8.27835 ·matBytes

where all encode and decode times are in clocks. Note that the upper bound
on the number of bytes per vector value is reduced by 3.29897 per 1 clock
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Decode Matrix Index

Fetch Vector Value

Decode Vector Value

(a) Serial Model.

Fetch Matrix Index

Decode Matrix Index
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Decode Vector Value

Fetch Matrix Value

Decode Matrix Value

(b) Parallel Model.

Figure 7: Comparison of the data dependency graphs used by each model, where
lower nodes are dependent on higher nodes.

increase in decode time. This indicates that only highly effective compression
techniques will be effective for vector values. Matrix compression on the other
hand, appears to be able to achieve a performance improvement with a slower
decompression than required by the vector values.

3.2 Simulation Based Model

The parallel model attempts to estimate the performance required to outper-
form the baseline implementation while considering processor level parallelism.
Figure 7 shows the dependencies used by each model. Note that this model
assumes that the compiler and processor can fully parallelize any operations
without data dependencies, while, the instructions must be at least read seri-
ally [6]. Additionally, the model assumes that the bytes of each compressed value
is constant, which is not true for most matrix compression and for some vector
compression. Also, the model was not used to analyze compressing multiple
data structures simultaneously due to the difficulty of analyzing the resulting
seven-dimension region. Lastly, the model was used with integral values for the
bytes, decode times and encode times. The model then takes the same compres-
sion properties as the first model and computes the time to fetch and decode
the values and encode the result value over 10 matrix rows with 27 entries per
row. Appendix A contains source code for this model.

The bounds on outperforming the baseline implementation were hard to
determine for the simulation model due to the nature of the model as a sum of
maximizations. However, some boundaries were computed. Table 3 shows the
restrictions when compressing only a single data structure. The matrix index
and value columns contain the maximum time to decode a value, in clocks.
The vector column contains equations that restrict the decode and encode time,
with values in clocks. Note that the vector limits are not the only way to
compute the restriction. These compression bounds appear to be significantly
related to the frequency at which multiple values are fetched from main memory
simultaneously.
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Matrix Index Matrix Value Vector
Bytes Decode Decode Encode and Decode

1 66 41 4.75 ≥ 1.75 · decode + encode
2 51 14 4.75 ≥ 1.75 · decode + encode
3 66 40 2 ≥ 2 · decode + encode
4 0 0 0 = decode = encode
5 - 37 4.75 ≥ 1.75 · decode + encode
6 - 9 Not Possible
7 - 35 0 = decode = encode
8 - 0 0 = decode = encode

Table 3: Maximum decode times in clocks for single data structure compression,
according to the simulation based model.

4 Test Results

Tables 4, 5, and 6 show the compression results for compressing just the vector
values, matrix values, and matrix indices, respectively. These tables, and all
following tables of test results, contain the HPCG rating; the GFLOP rating
with convergence overhead; the number of iterations needed for convergence;
and, where computed, the compression rate based on the number of cache lines
fetched, which may be different then the memory allocated. Note that some
compression strategies had multiple variations that were tested. Sections 4.1,
4.2, and 4.3 provide details on the compression of each specific data structure.

Note that for comparing times, ten runs of the baseline implementation
with the standard test settings had a range of 0.6128 and a standard deviation
of 0.1846 for the HPCG rating. For the effective GFLOP/s, there was a range of
0.4629 and a standard deviation of 0.1504. Thus, when comparing similar values,
it should be noted that the values likely vary by a few tenths of a GFLOP/s
between runs.

Next, because compressing a single data structure failed to improve perfor-
mance, both matrix data structures were compressed. SZ and single precision
compression where tried for the matrix values and using SZ, gamma and delta
compression for the matrix indices. Table 7 shows the results of these combined
schemes. The combined scheme with the best performance used SZ compres-
sion for both values and indices. The only other approach that outperformed
the baseline implementation used 32-bit compression for the values and gamma
compression for the indices.

Finally, vector compression was combined with the successful combined ma-
trix compression. Only the best few versions of mixed precision vector com-
pression were used. Table 8 shows the results for these compression strategies.
The first column indicates which vectors were stored in 32bit; the rest of the
columns correspond to their counterparts in Table 7. Note that vector compres-
sion improved the performance of the SZ compressed matrices but reduced the
performance of the gamma compressed matrices. So, the best implementation
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HPCG GFLOPs Compression
Compression Rating Rating Iterations Rate
Baseline 15.3654 15.7394 50 1:1
Single Precision 7.023 01 7.101 26 115 1:2
Mixed Precision
~d 5.184 76 5.226 74 150 11:12
~b, ~x 15.3701 15.7503 50 5:6
~b, ~x,A~d 15.0428 15.4048 51 3:4
~b, ~x, ~d 5.208 32 5.250 84 150 3:4
~b, ~x, ~d,A~d 5.232 08 5.275 03 150 2:3
~b, ~x, ~d,A~d, ~z 6.958 94 7.035 99 115 7:12
~b, ~x, ~d, ~z 6.913 43 6.988 23 115 2:3
~b, ~x, ~z 12.2146 12.4516 64 3:4

ZFP - 1d
16 bits/value 0.690 138 0.690 913 51 1:4
32 bits/value 0.393 97 0.394 225 50 1:2

ZFP - 3d
11 bits/value nan nan ≥ 500 11:64
12 bits/value 2.776 71 2.789 38 53 3:16
14 bits/value 2.794 16 2.806 92 51 7:32
16 bits/value 2.720 78 2.733 11 51 1:4
24 bits/value 2.487 93 2.4982 50 3:8

SZ
7 values/block 5.891 38 5.947 58 57 8:7
8 values/block 5.787 11 5.841 15 57 1:1 to 2:1
12 values/block 4.985 36 5.025 68 57 2:3 to 4:3
15 values/block 4.515 94 4.548 98 57 8:15 to 16:15
16 values/block 4.535 36 4.568 68 57 1:2 to 3:2
24 values/block 3.677 48 3.699 07 57 1:3 to 4:3
32 values/block 3.1735 3.189 73 57 1:4 to 5:4

4: Results of compressing vector values.
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HPCG GFLOPs Compression
Compression Rating Rating Iterations Rate
Baseline 15.3654 15.7394 50 1:1
Single Precision 12.6331 12.8958 50 1:2
1-bit 15.1743 15.5452 50 1:64
SZ
1 mode 13.5037 13.813 50 ∼ 2:11
2 modes 13.8195 14.131 50 ∼ 1:7

ZFP
High Level API 0.817 469 0.818 857 50 1:2
Low Level API 0.960 338 0.962 149 53 1:2

5: Results of compressing matrix values.

HPCG GFLOPs Compression
Compression Rating Rating Iterations Rate
Baseline 15.3654 15.7394 50 1:1
SZ 14.9322 15.2964 50 ∼1:2
Elias Gamma 14.6553 15.0062 50 ∼1:9
Elias Delta 14.3036 14.6485 51 ∼1:8
Huffman
No First Index
4-bit window 10.654 10.8548 51 ∼1:9
8-bit window 10.8941 11.1043 51 ∼1:9
12-bit window 10.8158 11.0251 51 ∼1:8
First Index
4-bit window 10.9359 11.148 51 ∼1:9
8-bit window 11.1134 11.3336 51 ∼1:9
16-bit window 10.3323 10.5819 51 ∼20:11

Op Code
CCI Format [11] 8.512 57 8.635 78 51 ∼3:10
Best Result 8.522 72 8.647 52 51 ∼1:6

6: Results of compressing matrix indices.
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Compression HPCG GFLOPs
Value Index Rating Rating Iterations

Baseline 15.3654 15.7394 50
SZ SZ 18.9702 19.5759 50
SZ Gamma 13.661 13.9794 51
SZ Delta 10.9903 11.1961 50
32 bits SZ 14.1796 14.5156 51
32 bits Gamma 17.6676 18.1835 51
32 bits Delta 12.56 12.8181 51

7: Results of combined matrix value and index compression schemes.

Compression
32-bit HPCG GFLOPs
Vectors Value Index Rating Rating Iterations

Baseline 15.3654 15.7394 50
None SZ SZ 18.9702 19.5759 50
~b, ~x SZ SZ 23.967 24.9875 50
~b, ~x,A~d SZ SZ 27.5974 28.9699 50
None 32 bits Gamma 17.6676 18.1835 51
~b, ~x 32 bits Gamma 16.6048 17.0684 50
~b, ~x,A~d 32 bits Gamma 16.5665 17.0294 50

8: Results of combined vector, matrix value and matrix index compression
schemes.
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for the test problem uses mixed precision vectors with ~b, ~x and A~d stored in
single precision, and SZ compressed matrix values and indices.

4.1 Vector Compression

As shown in Table 4 and discussed previously, vector compression was not suc-
cessfully used to improve performance. However, certain combinations of single
and double precision vector values were able to perform close to the baseline
performance. These mixed precision implementations were able to improve per-
formance when combined with other compressions, as shown in Table 8. Note
that the single precision implementation has a 2.3-times increase in iterations
to converge over the baseline implementation and that the GFLOPs rating of
the single precision implementation is reduced by a factor of approximately 2.19
from the baseline implementation. This hints that, even without increasing the
number of Conjugate Gradient iterations, vector compression requires a com-
pression rate better than 1:2 to provide much of an improvement in performance.

The compression schemes used mixed precision vectors are listed by which
vectors are stored in single precision; the unlisted vectors are stored in double
precision. When only~b, ~x, and optionally A~d, are stored in single precision, then
the code can perform close to the baseline implementation. Note that ~b only
contains integers in the test problem, so using single precision does not result
in any loss of precision. Similarly, ~x is not used to compute other values. Thus,
any error that occurs in ~x will not be propagated into the computation of other
values. Additionally, making ~x single precision does not affect the accuracy
of the solution. Using single precision for ~x and ~b did not affect the value of
‖~xcomputed − ~xexact‖2. However, making ~x,~b and A~d single precision increased
the value from 1235.61 to 1658.75.

ZFP had poor performance when compressing vector information. The high-
level array API was used to provide the necessary random access. That API
provides an adjustable cache for decoded values. Figure 8 shows the perfor-
mance of 1d ZFP compression versus the cache size. Note that the two large
jumps occur when the values only need to be decoded once per matrix-vector
product and when the values can be left permanently decoded. The results in
Table 4 use the default cache size of 2 blocks for 1 dimensional compression and
2 · dnz/2e · dny/2e blocks for 3-dimensional compression. The array API also al-
lows selecting the compression rate, with a 16-bit granularity for 1-dimensional
compression and a 1-bit granularity for 3-dimensional compression [13]. These
granularity restrictions and the resulting iterations needed were used to select
the tested compression rates.

SZ compression has two main configurable settings, the number of values in
each block and the error bound. There were two measures of error that were
considered, absolute error and pointwise relative error. The performance was
tested with both a single error being bounded, and both errors being bounded.
Absolute error is the absolute value of the difference between predicted and
actual. The pointwise relative error is the absolute error divided by the actual
value. Table 4 contains results for various block sizes with both an absolute
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Figure 8: Performance of 1d ZFP compression with 16 bits per value versus the
size of the decoded values cache. The horizontal line shows the performance of
the baseline implementation.

error bound of 10−10 and a pointwise relative error bound of 10−10. Table 9
contains a comparison of various error bounds for a block size of 8 values per
block. Note that an absolute bound of 10−2 was unable to converge within 500
iterations.

4.2 Matrix Value Compression

Like vector compression, matrix value compression alone was unable to out-
perform the baseline implementation. As shown in Table 5, 1-bit compression
underperformed the baseline implementation, indicating compressing the ma-
trix values alone in unable to improve performance. Both SZ compression and
single precision compression were not significantly under the baseline, indicat-
ing that they may be usable in conjunction with other compression techniques.
On the other hand, ZFP compression performed over a magnitude slower than
the baseline, making it unlikely that it could improve performance, even when
combined with other techniques.

As mentioned in Section 2.2.4, there were two possible sets of predictors that
could be used for matrix value compression. One setup uses only the Neighbor
predictor, and the other setup uses both the Neighbor and Neighbor’s Neighbor
predictors. Both setups performed similarly, with the 2-predictor version per-
forming slightly better. The 1-predictor version was used when combining with
other compression methods. Also, because the only matrix values are -1 and
26, all reasonable error bounds provide equivalent compression.

ZFP compression had multiple configurations that could be used. However,
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HPCG GFLOPs
Error Bound Rating Rating Iterations
10−2 relative 3.668 59 3.690 56 69
10−6 relative 5.7806 5.834 61 57
10−10 relative 5.825 27 8.879 61 57
10−14 relative 5.813 57 5.8677 57
10−18 relative 5.732 77 5.785 96 57
10−2 absolute NA NA ≥ 500
10−6 absolute 4.518 27 4.551 58 57
10−10 absolute 5.140 58 5.183 13 57
10−14 absolute 5.643 38 5.694 36 57
10−18 absolute 5.816 42 5.870 97 57
10−2 absolute and 10−10 relative 5.755 38 5.809 57
10−10 absolute and 10−2 relative 5.225 92 5.270 53 57
10−10 absolute and 10−10 relative 5.787 11 5.841 15 57

9: Results of compressing vector values with SZ compression using various error
bounds.

the possible configurations were not fully experimented with since the matrix
values lacks the spatial relations that ZFP is designed for and ZFP performs
poorly on the configurations that were tested, for both vector and matrix value
compression. First, unlike ZFP vector compression, only the 1-dimensional
codec was tested because the data does not have spatial patterns, let alone
multiple dimensions of them. Second, due to the simple access pattern for
matrix values, both the high-level array API and the low-level API were tried.
The compression rate was kept at 32 bits per value. None of the configurations
tested were able to provide even mediocre performance, so ZFP compression
was not tested further for matrix compression.

4.3 Matrix Index Compression

Matrix index compression was unable to outperform the baseline implemen-
tation. Both SZ compression and the Elias codings were able to perform in
the ballpark of the baseline implementation. Neither Huffman coding nor Op
Code compression were able to perform close to the performance of baseline
implementation.

Variations of the Huffman coding implementation were experimented with
to find the best set of parameters. The first parameter was whether to compress
the first index or to leave it uncompressed. Because Huffman coding needs a
codeword for each represented value, compressing the first index will reduce
the memory of that value but reduce the efficiency of compressing the rest of
the values [8]. Since neither version was obviously better, both were tried.
The second parameter was how many bits to view at a time when decoding.
Second, decoding was implemented using chaining of lookup tables. Decoding
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Opcode Length
0 1 bits
100 7 bits
110 14 bits
101 20 bits
111 29 bits

10: Opcode set with the best performance.

is implemented using chained lookup tables. So, each lookup checked the next
window size bits, which either provided the value and number of bits consumed
or a further table to check the next window size bits on [16]. So, a higher
window size increases the memory needed, but reduces the total number of
lookups to do, providing a tradeoff between the amount of cache space used up
and the average time to decode each value.

Although Opcode compression has outperformed uncompressed values in
some settings, it was unable to perform well in this code base [11]. Several
sets of opcodes were tried, including the original shown in Figure 1. The set of
opcodes with the best performance is shown in Figure 10; it was designed for
the best performance on the matrices used. The difference in success of the CCI
opcodes from previous works likely comes from a difference in the data access
patterns, cache sizes or decoding implementation.

4.4 Testing Environment

The compression rates were either analytically computed or computed from the
compressed size. Other numbers were provided by HPCG’s benchmark results.
The HPCG rating is the benchmark’s rating, located in the yaml results file
as the “GFLOP/s Summary: Total with convergence and optimization phase
overhead” field. The GFLOP/s rating can similarly be found in the “GFLOP/s
Summary: Total with convergence overhead” field. The iteration count was
determined using the content of the “Iteration Count Overhead” field. All
results were obtained with a minimum run time of 300 seconds.

The timings presented were obtained when using a per-process problem size
of 963 matrix rows across 60 processes, as described in Section 2. The cluster
used for timings had a 20-core, 2.2 GHz, Intel Xeon E5-2698 v4 head node and
an additional five 8-core, 1.7GHz, Intel Xeon E5-2605 nodes. One process was
created for each core, with a single OMP thread per process.

The code was implemented using version 3.0.0 of the HPCG benchmark [4].
Many of the implementations with timings listed in this paper can be found at
https://github.com/Collegeville/HPCG-ZFP [12]. The code was compiled
with the OpenMPI cxx wrapper using GCC version 4.8.5. OpenMPI 3.0.2 was
used for the compiler wrapper and MPI runtime. The O3 and fopenmp flags
were used for compilation, in addition to a selection of warning flags and the
std flag, as necessary. No HPCG OPTS flags were enabled.
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5 Conclusions

Data compression was able to successfully increase the performance of the sparse
linear solver in HPCG [4]. The best performance increase came from using
SZ compression on the matrix indices and values and using single precision
values for select vectors with an increase in the effective GFLOPs of about
84%. However, there are only a few compression strategies that outperform the
baseline.

When considering more general matrices, note that the effectiveness of SZ
compression is highly dependent on local relationships between compressed val-
ues. So, SZ based compression strategies will likely lose performance on many
other matrices. However, because the performance of single precision “compres-
sion” is unaffected by the values being compressed and that the effectiveness
of gamma compression is proportional to the number of significant bits, using
32bit matrix values and gamma compressed matrix indices will likely perform
more consistently than the SZ based compression approach and may perform
better on some matrices.

5.1 Future Work

There are two general directions in which this work can be extended: different
problem setups and different compression methods. The first direction extends
this idea of this project to more general situations, including different linear
systems and different solvers. The second direction is to provide either bet-
ter compression for this problem or demonstrate that the effective compression
methods cannot be significantly outperformed.

Note that the stencil matrix used by HPCG is very consistent and has a large
amount of repetition; this makes it easy to compress. So, experimenting with
other matrices would provide a more general idea of the performance, and should
be done before applying this work to production solvers. The SuiteSparse Matrix
Collection provides linear systems that could be used for this investigation [2].
However, note that the HPCG implementation makes some assumptions about
the matrix in the problem setup, so some of the setup sections would need to
be rewritten [4].

Another aspect that could be further experimented with is the solver used.
Other solvers and preconditioner likely have different data access patterns than
the solver used in HPCG. These differences may change the available compres-
sion strategies, have different precision requirements, or have different ratios
of memory fetches to arithmetic. So, different solvers may have better optimal
compression strategies. Additionally, GPU accelerated solvers may performance
differently due to the differences between GPU and CPU execution and perfor-
mance.

The last area this work could be extended is different compression methods
and variants of previously used compression methods. One such topic would
be looking at using different error tolerances for different vectors, like what is
done with single precision compression, for SZ or another compression. Another
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possible variation would be to compress additional data structures, such as the
matrix diagonals. Finally, other compression strategies could be tried.
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A Performance Model Source Code

Below is the implementation of the simulation-based performance model. The
model was implemented in Common Lisp and used with Steel Bank Common
Lisp version 1.4.0.

1 ; ; ; Globa l V a r i a b l e s
2

3 ; C l u s t e r p r o p e r t i e s
4 (defparameter ∗ l1−time∗ 5)
5 (defparameter ∗ l2−time∗ 12)
6 (defparameter ∗main−mem−time∗ 1656/10)
7

8 ; Model parameters
9 (defparameter ∗rows−to−check∗ 128)

10

11 ; D e f a u l t compression s e t t i n g s
12 (defparameter ∗bytes−per−mat−ind∗ 4)
13 (defparameter ∗bytes−per−mat−val∗ 8)
14 (defparameter ∗bytes−per−vect∗ 8)
15 (defparameter ∗ inds−decode−time∗ 0)
16 (defparameter ∗vals−decode−time∗ 0)
17 (defparameter ∗vect−decode−time∗ 0)
18 (defparameter ∗vect−encode−time∗ 0)
19

20
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21 ; ; ; Model Implementation
22

23 (defmethod f e t c h ( ( obj ( eql : mat−inds ) ) ( i i n t e g e r ) )
24 ”Computes the co s t o f f e t c h i n g the i t h matrix index ”
25 ( i f (/= ( f loor (∗ (1− i ) ∗bytes−per−mat−ind ∗) 64)
26 ( f loor (∗ i ∗bytes−per−mat−ind ∗) 64) )
27 ∗main−mem−time∗
28 ∗ l1−time ∗ ) )
29

30 (defmethod f e t c h ( ( obj ( eql : mat−vals ) ) ( i i n t e g e r ) )
31 ”Computes the co s t o f f e t c h i n g the i t h matrix va lue ”
32 ( i f (/= ( f loor (∗ (1− i ) ∗bytes−per−mat−val ∗) 64)
33 ( f loor (∗ i ∗bytes−per−mat−val ∗) 64) )
34 ∗main−mem−time∗
35 ∗ l1−time ∗ ) )
36

37 (defmethod f e t c h ( ( obj ( eql : vect ) ) ( i i n t e g e r ) )
38 ”Computes the code o f f e t c h i n g the i t h vec to r va lue ”
39 (cond
40 ; 2/3 rds o f v a l u e s were used by the p r e v i o u s index
41 ((/= (mod i 3) 2) ∗ l1−time ∗)
42 ; 2/9 t h s o f v a l u e s were used by y−1
43 ((< (/ i 3) 6) ∗ l2−time ∗)
44 ; 1/9 th o f v a l u e s are be ing used f o r the f i r s t time
45 ( t ( i f (/= ( f loor (∗ (1− (/ i 27) ) ∗bytes−per−vect ∗)
46 64)
47 ( f loor (∗ (/ i 27) ∗bytes−per−vect ∗)
48 64))
49 ∗main−mem−time∗
50 ∗ l1−time ∗ ) ) ) )
51

52

53 (defun 1−row ( )
54 ”Computes the average co s t to load a row .
55 ∗rows−to−check∗ prov ides the number o f rows to use ”
56 (+ (/ ( loop
57 : f o r i : from 0 : below (∗ ∗rows−to−check∗ 27)
58 : f o r inds− fetch−time = ( f e t c h : mat−inds i )
59 : f o r vals− fetch−t ime = ( f e t c h : mat−vals i )
60 : f o r vect− fetch−time = ( f e t c h : vect i )
61 : f o r total−vals−t ime = (+ vals− fetch−t ime
62 ∗vals−decode−time ∗)
63 : f o r total−vect−t ime = (+ inds− fetch−time
64 ∗ inds−decode−time∗
65 vect− fetch−time
66 ∗vect−decode−time ∗)
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67 : summing (min total−vals−t ime total−vect−t ime ) )
68 ∗rows−to−check ∗)
69 ∗vect−encode−time ∗ ) )
70

71

72 (defun 1−row−with−props ( ind− s i ze va l− s i z e vect− s i z e
73 ind−decode val−decode
74 vect−decode vect−encode )
75 ” Like 1−row , but s e t s the compress ion p r o p e r t i e s ”
76 ( l et ( (∗ bytes−per−mat−ind∗ ind− s i ze )
77 (∗ bytes−per−mat−val∗ va l− s i z e )
78 (∗ bytes−per−vect∗ vect− s i z e )
79 (∗ inds−decode−time∗ ind−decode )
80 (∗ vals−decode−time∗ val−decode )
81 (∗ vect−decode−time∗ vect−decode )
82 (∗ vect−encode−time∗ vect−encode ) )
83 (1−row ) ) )
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