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Modeling a Non-Uniform Memory Access Architecture for

Optimizing Conjugate Gradient Performance with Sparse Matrices

Jacob Hemstad in colloboration with Brandon Hildreth

December 10, 2013

Abstract

The last ten years have seen the rise of a new parallel computing paradigm with diverse hardware

architectures and software interfaces. One of the common architectures, known as ’non-uniform memory

access’ (NUMA), structures parallel computers so cores can access certain parts of memory faster than

others. In our work, we sought to model a specific NUMA machine and use that model to inform

optimizations for performing the Conjugate Gradient method. We used the model to come up with a

segmented design that puts data that a core needs in memory where it can access it fast. Our segmented

solution proved to be effective over the control with a maximum speed-up of 11.1x faster.
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1 Introduction

1.1 Parallel Paradigm Shift

Moore’s Law promises that transistor density doubles approximately every two years. In the past, the

additional transistors were used in part for frequency scaling, or the ramping of chip frequency, and Moore’s

Law provided a biennial doubling in chip performance. However, in the last 10 years frequency scaling

has ceased to be a viable option, as can be seen in Figure 1 which shows how Intel’s chip manufacturing

trends over the last thirty years has leveled off. The trade off of increasing frequency is increased power

consumption as seen in equation 1, which gives the power consumption of a CPU where C is the capacitance

being switched per cycle, V is voltage, and F is the processor frequency.

P = C ∗ V 2 ∗ F (1)

From Figure 1, one can see the balance between frequency and power consumption stabilized around 3.5GHz

in 2004 with Intel’s cancellation of their Tejas chip slated to operate at 7GHz[4]. With the end of frequency

scaling, the additional transistors provided by Moore’s Law are no longer needed for increased frequencies

and can instead by used for additional cores on a single die. The availability of transistors for additional

cores marked the industry wide shift to parallel computing and multi-core processors. Parallel computing

had been around for years at this point in the field of high performance computing, but it did not penetrate

into the marketplace until the fall off of frequency scaling.

1.2 Parallel Computing

Parallel computing is a mammoth field with volumes and volumes of literature beyond the scope of this

paper. We offer only the most cursory of overviews and will illuminate only the details that are relevant to

our work.

At the most basic level, parallel computing is a form of computation in which calculations are carried out

simultaneously. Large problems are divided into independent pieces and then solved concurrently. There

are many different levels of parallel computing from bit-level to task level. Likewise there are many different
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Figure 1: This graph shows the trend of MIPS/clock frequency for Intel processors over the last 30 years.[6]
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Figure 2: Diagram of a basic symmetric multiprocessing architecture. Four processors are connected to the
shared memory pool via a system bus[2].

forms of parallel computers from single multi-core chips to giant super computers like Blue Gene. Writing

programs for parallel execution introduces numerous difficulties not faced in sequential programming such

as race conditions, mutual exclusion, and synchronization.

1.2.1 Symmetric Multiprocessing

One of the most common smaller scale parallel architectures is symmetric multiprocessing (SMP). Most

consumer multicore chips are implementations of SMP. In this architecture scheme, two or more identical

processors (or cores in multicore chips) are connected to shared memory via a common bus, as seen in

Figure 2 where four cores share a bus to access shared memory. Usually in SMP, each core has private

access to its own fast cache memory and universal access to the shared DRAM. Read/write operations to

the shared memory are serialized and the system bus quickly becomes a major bottleneck as more processors

are added and compete for DRAM access. This limits the number of cores feasible on a SMP system and

one does not usually see more than 16 cores sharing a common bus.

3
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Figure 3: Diagram of a basic non-uniform memory access architecture. Two sets of four cores are con-
nected to nearby memory via a system bus and the two NUMA regions are then connected by a high speed
interconnect.[1]

1.2.2 Non-Uniform Memory Access

SMP is a Uniform Memory Access (UMA) architecture because all of the cores have equally fast access to all

of the shared memory and are equally affected by the bandwidth bottleneck of the shared bus. Non-Uniform

Memory Access (NUMA) architectures were devised to overcome the performance bottleneck in larger UMA

environments by providing a small number of cores with a separate bus to its own section of DRAM. These

cores and their direct access DRAM are called a NUMA region and regions are connected by a high speed

interconnect providing all cores with access to the entire memory space. Memory directly connected to a

core is called nearby and the rest of the memory space is distant. A simple model of this can be seen in

Figure 3.

The benefit of this design are the separate buses in each NUMA region. When cores access memory

in their region, the buses of other regions are unaffected. Assuming cores only access memory nearby, the

bandwidth bottleneck of traditional SMP implementations is greatly reduced. However, the trade off of this

design is that distant memory reads are quite slow and can slow down the entire system by adding to the

bandwidth demands.

4



1.3 C++ and OpenMP

There are many programming interfaces that provide for parallel programming from Intel’s Threading Build-

ing Blocks to NVIDIA’s CUDA. The interface we use in our work is OpenMP—a shared memory multipro-

cessing API that supports C, C++, and Fortran on most architectures and operating systems. OpenMP

was chosen because it is relatively easy to use with a highly flexible interface. It is an implementation

of multithreading, where a master thread executes during the serial portions of code and when a paral-

lel region is encountered a number of threads are spawned and the parallel computation divided among

them. Each thread has an associated thread id number which can be accessed with the OpenMP func-

tion omp get thread num(). Additionally our code is done in C++ as the existing work had already been

completed in C++.

Parallel regions are established in OpenMP with preprocessor directives, #pragma statements in C++,

that spawn the threads. There are several such directives, but relevant to our work are the omp parallel and

omp parallel for directives. They are used to mark a region of code to be ran in parallel among a thread

team generated by OpenMP. Their use can be seen below:

#pragma omp parallel for{

for(int i = 0; i < n; ++i){

y[i]=x[i]+z[i];

}

The omp parallel for directive above creates the appropriate number of threads (often a fixed number

specified ahead of time) and splits the iterations of the for loop among the threads. For example, if n=100

and four threads are in use, then thread 0 would be responsible for summing x[0] and z[0] through x[24] and

z[24]. The omp parallel for directive is specialized for the automatic parallelization of a for loop, the omp

parallel directive is much more general in that all the code within its specified region will be run by each

thread.

1.3.1 Compiler Environment

The compiler for this work was GNU’s g++ version 4.5.1 which supports OpenMP 3.0. The compilation

flags used were -O3 -funroll-all-loops -malign-double -fopenmp -DWALL, where -O3 -funroll-all-loops -malign-

5



double are optimization flags, -fopenmp enables the use of OpenMP, and -DWALL specifies the use of wall

time.

2 The HPCCG Mini-application

2.1 Finite Difference Method

Our goal is to optimize a linear algebra solution to a system of differential equations—namely the conjugate

gradient method for solving the linear system �y = A�x, where A is a known matrix, �y is a known vector,

and �x is an unknown vector . Specifically, we are optimizing Sandia National Laboratories’ HPCCG mini-

application—one of many benchmarking mini-apps included in the Mantevo project[5]. HPCCG benchmarks

the performance of numerically solving, with the conjugate gradient method, differential equations through

the finite difference/element/volume method. An example of the finite difference method in one dimension

is presented in the context of the steady-state heat equation, given by LaPlace’s equation.

On the interval [0, 1] we have u′′(x) = 0 with boundary conditions u(0) = a and u(1) = b. The solution

to this equation, u(x), will describe the distribution of heat at a point x on a wire of length 1 where each of

its ends is held at a constant temperature a and b, respectively. From the definition of the derivative of a

function u, we know

u′(x+ h) = lim
h→0

u(x+ h)− u(x)

h
(2)

for h ≈ 0 we can approximate the derivative as u′(x + h) ≈ u(x+ h)− u(x)

h
, which implies u′(x − h) ≈

u(x)− u(x− h)

h
. We can use the same definition of the derivative to find the second derivative

u′′(x) = lim
h→0

u′(x+ h)− u′(x)
h

(3)

combined with the definitions of the first derivative from above we find

u′′(x) ≈ u(x+ h)− 2u(x) + u(x− h)

h2
(4)

6



u(0)=a=u0 

0 0.25 0.5 0.75 1

u(.25)=u1 u(.5)=u2 u(.75)=u3 u(0)=b=u4 

Figure 4: Represents the n = 5 discretization of a unit length wire for the finite difference solution to the
heat equation. Notice that with this discretization, all the points are 0.25 distance away from immediate
neighbors, implying h in Equation 4 is 0.25.

Since this is a numerical approximation, it is impossible to find u(x) for all values of x. Instead we

discretize the interval of interest into n finite number of points, where better approximations will be had for

increasing values of n. In this example we allow n = 5, resulting in an interval as seen in Fig. 4.

We know u0 = a and u4 = b from the boundary conditions and can formulate a relationship between

the ui using the above finite difference equation (4). In general, the relationship among a point ui and its

neighbors ui−1 and ui+1 are given in Eq. 5. With this we can construct a linear system 6 to solve for the

vector (u1, u2, u3) and achieve a numerical solution to the steady state heat equation.

For simplicity we have presented a one-dimensional example where each point is concerned only with the

difference between immediate neighbors, generating a tri-diagonal matrix, but this method can be expanded

into higher dimensions. The linear systems HPCCG solves are generated from a 3D cube discretized into sub-

cubes, where each sub-cube is concerned with all the neighbors sharing a face, edge, or corner—26 neighbors

in all. This results in 27 element diagonal matrices of such size where it is computationally prohibitive to

solve by Gaussian elimination. Thus, alternative methods must be used. Further on we will discuss one such

alternative.

1

h2
(ui−1 − 2ui + ui+1) = 0 (5)

⎡
⎢⎢⎢⎢⎣

2 −1 0

−1 2 −1

0 −1 2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

u1

u2

u3

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

a

0

b

⎤
⎥⎥⎥⎥⎦ (6)
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2.2 Sparse Matrices: Compressed Row Storage

Notice that the above finite difference matrices, for arbitrary integer values of n, take on the general form

in 7: ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 . . . 0 0

−1 2 −1 . . . 0

0
. . .

. . .
. . .

...

...
. . .

. . .
. . . −1

0 0 0 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

u3

...

un−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a

0

0

...

b

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

This matrix can be called ‘sparse’—since many of its values are zero it is more memory efficient to only

store information about the non-zero values. There are several formats to store sparse matrices including:

compressed row storage, compressed column storage, block compressed row storage, compressed diagonal

storage, jagged diagonal storage, and skyline storage [3]. HPCCG uses compressed row storage (CRS) format

for its sparse matrices. In CRS, there are three things stored for each row: the number of non-zeros, an array

of the column indices of the non-zeros, and an array of the non-zero values. An example of the information

needed to describe a full 4x4 sparse matrix in this format is seen in Fig. 5.

A C++ implementation for populating a mxm sparse matrix can be seen here:

double ** values = new double *[m];

int ** indices = new int*[m];

int * nonzeros = new int [m];

//Rows in the matrix

for(i = 0; i < m; ++i){

nonzeros[i]=/* number of nonzeros in row i*/;

values[i] = new double[nonzeros[i]];

indices[i] = new int[nonzeros[i]];

//For all nonzeros in row i

for(j = 0; col < nonzeros[i]; ++j){

values[i][j]=/*value of jth entry in row*/;

indices[i][j]=/* column index of jth entry*/;

}

}
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Figure 5: An example of the data stored to represent a sparse matrix in the compressed row storage format.⎡
⎢⎢⎣
2 1 0 0
0 0 0 0
4 0 0 6
5 8 1 2

⎤
⎥⎥⎦

nonzeros[0] = 2 indices[0] = [0, 1] values[0] = [2, 1]

nonzeros[1] = 0 indices[1] = [ ] values[1] = [ ]

nonzeros[2] = 2 indices[2] = [0, 3] values[2] = [4, 6]

nonzeros[3] = 4 indices[3] = [0, 1, 2, 3] values[3] = [5, 8, 1, 2]

2.3 The Conjugate Gradient Method

The Conjugate Gradient method is an iterative method that is used to solve linear systems �y = A�x where

A is a known matrix, �y is a known vector, and �x is an unknown vector. The proof of this method is beyond

the scope of this paper, but those who wish to know more should look to the paper An Introduction to the

Conjugate Gradient Method Without the Agonizing Pain by Jonathan Shewchuk 1994 [7].

The essential routine of the conjugate gradient method is to give an initial guess for the vector �x, called

�x0, compute a sequence �xk (k = 1, 2, 3...) such that each �xk is “closer” to the actual value of �x. We can

understand �xk to be “close” to �x if we first let �xk = �x for some k. Then for that value of k we define

�rk = b−A �xk = �0 and it follows ‖�rk‖ = 0, where �r is called the residual vector. Then, for an arbitrary k, let

�rk = �b−A �xk. If ‖�rk‖ is ‘small’ (≈ 10−6), then we can say �xk is close to �x.

Given the initial guess, �x0, calculating the subsequent �xk values is given by the algorithm below. For the

matrix A, vectors �x,�b, �r, �p, �q, and scalars ρ, β, γ, α then:
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1: �x0 = �p0
2: A�p0 = �q0
3: �r0 = �b− �q0
4: ρ0 =< �r0, �r0 >
5: β0 = 0
6: while k ≤ max k ∧ ‖�rk‖ > tolerance do
7: if k = 1 then
8: �p1 = �r1
9: else

10: ρk−1 =< �rk−1, �rk−1 >

11: βk−1 = ρk−1/ρk−2

12: �qk = A�pk
13: γk =< �pk, �qk >
14: αk = ρk−1/γk
15: �xk = �xk−1 + αk�pk
16: �rk = �rk−1 − αk�qk
17: k = k + 1
18: end if
19: end while

An explanation of why this algorithm works can be found in the above mentioned Shewchuk paper, but

this information is of minor importance to our purposes. It is sufficient to understand that this is an iterative

process where each �xk is closer to the true �x, and the closeness is measured by ‖�rk‖. The process continues

until a specified maximum number of iterations is achieved (max k) or ‖�rk‖ is small, i.e. less than a set

‘tolerance’.

Of specific importance to our discussion further on are the three types of linear algebra operations present

in this algorithm, highlighted above: the inner or dot product (e.g. line 10), matrix-vector multiplication

(e.g. line 12), and vector-scalar multiplication and vector-vector addition (e.g. line 16). From here on out

we will likely abbreviate these operations as, respectively: ddot, matvec, and waxpby (i.e. �w = a�x+ b�y).

It will be relevant to future discussion to look at the complexity of these three functions in terms of the

approximate number of mathematical operations and memory read/writes they require. For n length vectors,

ddot requires n multiplications and n − 1 additions, for approximately 2n total mathematical operations.

ddot requires reading in the value of each vector once, for a total of 2n memory reads.

Waxpby requires 2n multiplications to scale each vector and n additions to add the scaled vectors, for a

total of 3n mathematical operations. It requires n reads of both vectors and n writes to the result vector for
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Table 1: Shows the approximate number of mathematical operations and memory operations (read/write)
necessary for each of CG’s core functions. Where n is the length of the vector and z is the number of
non-zeros in a sparse matrix.

Number of Operations Number of Memory Operations

DDOT 2n 2n
WAXPBY 3n 3n
MATVEC 2z 2z + n

3n total reads/writes.

For a sparse matrix with z non-zero values, it requires approximately z multiplications and z additions,

for a total of 2z mathematical operations. In terms of reads and writes it requires one read of all z non-

zeros and z reads of the multiplicative vector as well as n writes to the result vector for a total of 2z + n

memory operations. The matrices relevant to our computations have approximately 27 non-zeros per row,

thus for square nxn matrices, matvec will require approximately 55 ∗ n operations—clearly dominating over

the computational complexity of ddot and waxpby. A summary of each functions complexities is seen in

Table 1.

3 Target Machine: Beast

Our target machine for performance tuning is Beast at Saint John’s University. It’s technical specifications

are:

• Fedora 14 Linux x86 64

• Linux kernel version 2.6.35.14-95

• AMD Opteron 6168 (12 cores at 1.9GHz; 12MB L3 Cache)x4 (48 cores total)

• 2GB DDR3 SDRAM ECC Unbuffered DDR3 1333MHz Memory x32 (64 GB total)

Beast is a non-uniform memory access machine with 8 NUMA regions. Each of the four 12 core chips

form two NUMA regions connected via separate buses to 8GB of DRAM. An interconnect system links all

the regions’ buses and provides every core with access to the entire memory space, but as mentioned above,
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accessing distant memory comes at a performance cost.

3.0.1 Quantifying NUMA on Beast

To quantify how much slower distant memory access is on Beast we performed a number of benchmarks.

In the first benchmark, we stored a 100MB array on a NUMA region and had all the cores in Beast read

from it concurrently. We repeated this process in a round robin fashion among all the NUMA regions. We

timed how long it took for each core to finish reading and in Fig. 6 we present the results of this benchmark

as a color-coded image where each color corresponds to one of the 8 NUMA regions. The numbers within

each region are the ratios of the time it takes that region to read its data versus every other region’s data.

For example, in region 1 (red box), the black number is how much longer it takes to read data from region

0 (black box) than its own region, the gold number is how much longer it takes to read from region 2,

etc. Notice the clear non-uniform behavior with ratios that vary from 1.2x to 2.1x increased time to access

another region, with no noticeable pattern. We had guessed that regions sharing a physical chip (regions 0

and 1, or cores 0-11)would have an affinity for each other and have faster access to each others DRAM than

other regions, but that hypothesis was invalidated by these results.

To test to what degree the non-uniform memory access is due to bandwidth contention (all the cores

reading from the same block in memory at the same time) or latency (the distance and interconnects between

the socket and DRAM) we performed a similar benchmark where each core takes turns reading the data

array individually. The result of this test showed all cores reading distant regions 1.1x slower due to latency.

Clearly latency plays a role, but bandwidth obviously dominates.

3.1 Beast: An Abstract Model

From the above results, we know that when the cores in Beast are accessing the same region in the shared

memory space, performance can be reduced anywhere from 1.2x to 2.1x. Thus, to achieve the best perfor-

mance, one must take into account this non-uniform behavior and design around it. To facilitate the design

task of optimizing HPCCG for Beast, we first built a simplified, abstract machine and execution model to

help make decisions about how to structure our solution.

12



Figure 6: Shows the result of the NUMA benchmark of Beast where each region stores a 100MB array from
which all the cores read. The time it takes for each core within a region to read the data array is recorded
and averaged with its fellow cores. These timings are used to generate ratios of access time comparing the
cores accessing nearby data to accessing distant data. The ratios are color coded such that text in a given
color represents how much longer it takes to read from the region of the same color.
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Figure 7: A simplified, abstract machine model that represents the non-uniform memory access found on
Beast. In this model, when the CPU in region 0 accesses the distant DRAM in region 1, it is twice as slow
as accessing the nearby DRAM in region 0.

3.1.1 Machine Model

In the abstract machine model, we homogenized the various increased access times and simply say that

accessing distant memory is 2x as slow as accessing nearby memory. A simplified two core, two NUMA

region diagram can be seen in Fig. 7. In this model, we see when the CPU in region 0 accesses the distant

DRAM in region 1, it is twice as slow as accessing the nearby DRAM in region 0.

3.1.2 Execution Model

To see how the machine model informs performance questions, we present two execution models. In the first

model, seen in Fig. 8, all of the data needed for a given computation is located in region 0. If the work is

to be split between the two cores, then both cores will need to access the DRAM in region 0. If we call the

time it takes CPU 0 to access DRAM 0 ‘λ’, then we know from the machine model that it will take CPU 1

2λ time to access DRAM 0. Thus, memory access time for the computation in this scenario is 2λ.

In the second execution model, seen in Fig. 9, the data that CPU 0 needs for its portion of the work

resides in DRAM 0 and the data CPU 1 needs resides in DRAM 1. We know from the machine model that

each core can access its data in its nearby DRAM concurrently in λ time, for a total memory access time of

λ.

The obvious conclusion we draw from the abstract machine and execution models is that any parallel

computation ran on a non-uniform memory access machine like Beast should partition data so CPUs mainly

work on nearby data.
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Figure 8: In the first execution model, all the data for computation is located in region 0’s DRAM. It takes
CPU 0 λ time to access this data and CPU 1 2λ time to do the same, resulting in a total memory access
time of 2λ
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Figure 9: The second execution model has the data partitioned such that the data needed by CPU 0 is in
DRAM 0 and the data needed by CPU 1 is in DRAM 1. Each CPU can access its own DRAM in λ time,
resulting in a total memory access time of λ.
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4 Explicitly Segmented Matrices and Vectors

4.1 The Control

In light of the NUMA benchmark and resulting machine and execution models, we sought to improve

HPCCG’s standard OpenMP implementation that makes no consideration of the non-uniform access. How-

ever, we must first describe HPCCG’s normal design to serve as a backdrop to our improvements. This

implementation will serve as the control dataset against which we will compare the performance of our new

implementations.

Recall from previous discussion that HPCCG is a benchmark of parallel conjugate gradient (CG) per-

formance for sparse matrices and is made up of three core functions: ddot, matvec, and waxpby. We will

show and explain how these three functions are implemented in the control as they make up 99% of the

computation time of the CG.

4.1.1 DDOT

First the ddot function. The function will compute the inner product of two passed vectors x and y, where

it multiplies each xi and yi and sums the products. Note that these are vectors in the mathematical sense

and are implemented with primitive double arrays, not the C++ vector class. The function uses an OpenMP

parallel for directive which splits the n iterations of the for loop among the available threads (i.e. for n=100

and 4 threads, each thread will be responsible for 25 elements in the vectors). Additionally this pragma

specifies reduction+:local result, which hints to the compiler to optimize for the local results of each thread

being summed together. The final result of the dot product is stored in the passed result pointer.

//From ddot.cpp

// Routine to compute the dot product of two vectors where:

//n - number of vector elements

//x, y - input vectors

// result - on exit will contain result.

int ddot (const int n, const double * const x, const double * const y,

double * const result){

double local_result = 0.0;

#pragma omp parallel for reduction (+: local_result)

for (int i=0; i<n; i++)

local_result += x[i]*y[i];
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*result = local_result;

return (0);

}

4.1.2 WAXPBY

Next is the waxpby function which takes two vectors x and y, multiplies them respectively by the passed

scalars alpha and beta and adds the two vectors—storing the result in the passed w vector. The omp parallel

directive is used to mark a parallel region where the omp for directives split the n iterations of the for loop

among the available threads and the two if checks are to prevent needless multiplications.

//From waxpby.cpp

// Routine to compute the update of a vector with

//the sum of two scaled vectors where:

//w = alpha*x + beta*y

//n - number of vector elements

//x, y - input vectors

//alpha , beta - scalars applied to x and y respectively.

//w - output vector.

int waxpby (const int n, const double alpha ,

const double * const x, const double beta ,

const double * const y, double * const w){

#pragma omp parallel

{

if (alpha ==1.0)

#pragma omp for

for (int i=0; i<n; i++) w[i] = x[i] + beta * y[i];

else if(beta ==1.0)

#pragma omp for

for (int i=0; i<n; i++) w[i] = alpha * x[i] + y[i];

else

#pragma omp for

for (int i=0; i<n; i++) w[i] = alpha * x[i] + beta * y[i];

}

return (0);

}

4.1.3 MATVEC

Finally, matvec computes the matrix vector product y = A ∗ x. This is complicated by the fact that we

are dealing with sparse matrices. The HPC Sparse Matrix struct is defined in the HPCCG code and simply
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stores the necessary fields for the compressed row storage format described above. The struct has the

following fields:

• A->local nrow field tells how many rows are in the matrix

• A->ptr to vals in row[i] field gives the array of non-zero values in row i

• A->ptr to inds in row[i] field gives the array of non-zero value indices for row i

• A->nnz in row[i] field tells how many non-zeros are present in row i

With this information the matrix vector product can proceed where the omp for divides the nrow iterations

among the available threads so that each thread is responsible for a portion of the rows of A. Then, for each

row of the matrix, i, the inner for loop iterates across the non-zero values in the row and multiplies it by

the corresponding vector value in x and then sums these values into yi.

//From HPC_sparsemv.cpp

// Routine to compute matrix vector product y = Ax where:

//A - known matrix

//x - known vector

//y - On exit contains Ax.

int HPC_sparsemv( HPC_Sparse_Matrix *A,

const double * const x, double * const y){

#pragma omp parallel

{

int nrow = A->local_nrow;

#pragma omp for

for (int i=0; i< nrow; i++){

double sum = 0.0;

double *cur_vals = A->ptr_to_vals_in_row[i];

int *cur_inds = A->ptr_to_inds_in_row[i];

int cur_nnz = A->nnz_in_row[i];

for (int j=0; j< cur_nnz; j++)

sum += cur_vals[j]*x[cur_inds[j]];

y[i] = sum;

}

}

return (0);

}

The most important thing to note is that the data used by these functions are all simply primitive data

arrays that are declared and initialized in serial portions of the code—meaning that all the data will likely

be stored in memory in a single region near whichever core happens to be the master core. A representative
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Figure 10: Represents the control implementation where data is represented by the black filled in area in
each region. Notice that all the data is in region 0 and the rest are empty.

image is seen in Fig. 10 of the control’s data distribution in four NUMA regions, where all the data is in

region 0. If we apply the model we developed previously, then all the cores in region 0 will have λ time access

to the data, but cores in the other regions will have 2λ access time. Clearly this is a non-optimal solution

as 75% of the cores will suffer an extreme performance hit.

4.2 segMatrix and segVector Classes

To improve the performance of the HPCCG mini-app for Beast, we sought to build an implementation

informed by the machine and execution models and avoid the pitfalls of the Control by ensuring that the

data needed by a specific core is near that core.

Our solution is the introduction of two new classes: segMatrix and segVector. They take the data found

in the control implementation and explicitly segment the data—ensuring it is distributed throughout the

NUMA regions and cores will operate on primarily local data. We achieved this by reading in the data

of the control implementation and copying it into new arrays that are declared and initialized in parallel

sections of code. Since this occurs in a parallel region, it means that each thread will declare and initialize

its portion of the data in nearby memory, so that future access will be fast. The data distribution of this

new solution can be understood by looking at Fig. 11, where the data is now distributed throughout all the
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Figure 11: Represents the data distribution of the new segmented implementation where data is represented
by the black filled in area in each region. Notice that the data is evenly distributed throughout all the
regions.

regions. However, there is no way to reference data declared inside parallel regions once outside that region.

We overcame this with a global array as long as there are many threads and at the close of the initialization

parallel region, each thread stores a pointer to its local data at the index in the global array that corresponds

to the thread’s thread number. Therefore, whenever a thread needs to work with its portion of data in future

parallel computations, it simply acquires the pointer to its data and proceeds accordingly.

A simple example of this for four threads can be seen in Fig. 12. The four thread local arrays are created

in a parallel region and then each thread stores a pointer in the global array to its local data at the index

of the thread number, e.g. thread 0 stores to the global array at index 0, thread 1 to index 1, etc. In future

parallel regions, threads simply reference the global pointer at the index of their thread number to begin

work with their local data.

4.2.1 Thread Pinning

Before continuing we need to underscore the importance of thread pinning. Our segmented implementation

relies on a specific thread number running on the same physical core from one parallel region to the next. For

example, say thread 0 initializes its data on physical core 0. Then, in another parallel region, thread 0 is now

on core 9 and when it retrieves the pointer for thread 0’s data it will be accessing data that is far away from
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Figure 12: An example of how the explicitly segmented data is stored and referenced. Each thread local
array was created within a parallel region and resides near the core that created it. To reference it for future
use, each thread also stores a pointer to its data to a globally scoped array.

core 9, resulting in 2x slower memory operations. Thread pinning ensures this does not happen by enforcing

thread n will always run on physical core n. This is achieved in OpenMP with the GNU compiler by setting

the environment variableGOMP CPU AFFINITY. For example, export GOMP CPU AFFINITY=0-47 will

bind thread 0 to core 0, thread 1 to core 1, etc.

4.2.2 segVector Implementation

We show below how the two segmented classes are implemented in C++ with OpenMP. The segVector class

partitions chunks of a primitive array among the available threads, e.g. if the array has length 100 and we

are using 4 threads, then thread 0 gets elements 0-24, thread 1 gets 25-49, etc. This can be seen in Figure 13.

First, it takes an input array to be segmented, the length of the array, and the number of threads to be used.

It then allocates the global pointer array, ptr array, which holds the start address of each thread’s local data.

It also allocates two arrays, thread id and offsets, which are used to access values of the segmented vector

and will described in more detail shortly. It then enters the parallel region where each thread establishes

its thread number, the range of vector values it is responsible for and then initializes its thread local array.

Finally it stores a pointer to the thread local data in the global pointer array.

// From segVector.cpp

// Constructor accepts premade primitive array

// and initializes a segVector with its values
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Figure 13: Diagram that provides an understanding of how a segVector partitions a standard array among
cores. Core 0 is responsible for elements 0-24, Core 1 is responsible for elements 25-49, etc.

segVector :: segVector(double * input_array ,

int length , int num_threads){

// Holds address of each threads first element

ptr_array=new double *[ num_threads ];

// Holds location information for get() function

// which is used to return the value of element ’n’

// thread_id tells which thread element ’n’ is on

// offsets tells what the thread local

// offset is for the specified element

thread_id=new int[length ];

offsets=new int[length ];

#pragma omp parallel

{

int my_thread_num = omp_get_thread_num ();

int my_start , my_stop;

// Computes range of elements thread is responsible for

// from my_start to my_stop

computeStartStop(my_thread_num , num_threads ,

length , my_start , my_stop , false);

// How many elements this thread is responsible for

int my_chunk_size = my_stop - my_start;

// Thread local array

double * my_data = new double[my_chunk_size ];

// Initialize local array to with values
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// this thread is responsible for from input array

for(int i = 0; i<my_chunk_size; ++i){

my_data[i] = input_array[my_start+i];

}

// Write to thread ID array and offset array

int offset =0;

for(int i = my_start; i < my_stop; ++i){

thread_id[i]= my_thread_num;

offsets[i]= offset;

offset ++;

}

// Stores start address of thread local

// array to global pointer array

ptr_array[my_thread_num] = my_data;

}

}

4.2.3 The get(n) Function

The thread ids and offsets arrays are used in the segVector class function get(n), which is used to return

the value of an arbitrary element n in a segVector. In order to do this, one must know two things: which

thread n was initialized by and what n’s index is in that thread’s local array. The get(n) function could be

implemented where it computes both of these things (threadid and offset) on the fly, but it was found early

on that it is much faster to simply store the information ahead of time in the thread ids and offsets array

for each n and simply retrieve it in order to return n’s value.

// From segVector.cpp

// Returns the nth value of a segVector

// Uses the thread_id array to determine element n’s thread location

// Uses offsets array to determine element n’s thread local offset

double get(const int n) const{

// Tells which thread element n is on

int thread_num=thread_id[n];

// Tells what the thread local offset is of element n

int offset=offsets[n];

// Points to the correct thread ’s local data

double* element=ptr_array[thread_num ];

element += offset;

// Returns the desired element

return *element;

}
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4.2.4 segMatrix Implementation

The segMatrix class works in much the same way as segVector, except instead of partitioning elements in a

vector, it partitions the rows of a sparse matrix. Recall from above that each row of a CRS sparse matrix

has three things associated with it: the number of non-zeros, an array of the non-zero values, and an array

of the column indices of each non-zero. Thus, each thread will be responsible for a sparse, sub-matrix of

the actual matrix. Its constructor takes an HPC Sparse Matrix struct as its input matrix and the number

of threads to be used. It then allocates three global arrays (values ptr, indices ptr, nonzeros ptr) which will

hold the pointers to the thread local data.

The parallel region begins and each thread discovers its thread number and computes the range of

rows it is responsible for. Each thread then iterates through its rows from input matrix and populates the

my row nonzeros array with the number of non-zeros per row. Likewise themy row values andmy row indices

arrays are populated in a double for loop by first iterating through the thread’s rows and then through all

the non-zeros in that row, grabbing the value and index of that matrix element. A pointer to each thread

local array is then stored to the global array for future reference.

// from segMatrix.cpp

// Accepts an HPC_Sparse_Matrix struct and segments

// it among the number of threads specified

segMatrix :: segMatrix(const HPC_Sparse_Matrix &input_matrix ,

const int num_threads){

num_rows = input_matrix.total_nrow;

num_cols = input_matrix.local_ncol;

// Global array holds addresses of

// each thread local 2D array of row values

values_ptr = new double **[ num_threads ];

// Holds addresses of each

// thread local 2D array of row indices

indices_ptr = new int**[ num_threads ];

// Holds addresses of each

// thread local 1D array of row nonzeros

nonzeros_ptr = new int*[ num_threads ];

#pragma omp parallel

{

int my_thread_num = omp_get_thread_num ();

int my_start , my_stop;

// Computes range of rows thread is responsible for
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// from my_start to my_stop

computeStartStop(my_thread_num , num_threads ,

num_rows , my_start , my_stop , false);

// How many rows thread owns

int row_chunk_size = my_stop - my_start;

// 1D array holds # non -zeros per row

int * my_row_nonzeros = new int[row_chunk_size ];

for(int i=0; i < row_chunk_size; ++i){

my_row_nonzeros[i] = input_matrix.nnz_in_row[my_start+i];

}

nonzeros_ptr[my_thread_num] = my_row_nonzeros;

// Values

// 2D array holds thread local row values

double ** my_row_values = new double *[ row_chunk_size ];

// Iterates across my rows

for(int i=0; i < row_chunk_size; ++i){

// Allocates storage for all non -zero values in row i

my_row_values[i] = new double[my_row_nonzeros[i]];

// For all non -zero columns in row i

for(int j = 0; j < my_row_nonzeros[i]; ++j){

// Store thread local values from sparse input matrix

my_row_values[i][j] =

input_matrix.ptr_to_vals_in_row[my_start+i][j];

}

}

values_ptr[my_thread_num] = my_row_values;

// Indices

// 2D array holds thread local indices of non -zeros

int ** my_row_indices = new int*[ row_chunk_size ];

// Iterates across my rows

for(int i=0; i < row_chunk_size; ++i){

// Allocates storage for all non -zero values in row i

my_row_indices[i] = new int[my_row_nonzeros[i]];

// For all non -zero columns in row i

for(int j = 0; j < my_row_nonzeros[i]; ++j){

// Store thread local indices from sparse input matrix

my_row_indices[i][j] =

input_matrix.ptr_to_inds_in_row[my_start+i][j];

}

}

indices_ptr[my_thread_num] = my_row_indices;

}

}

The segVector and segMatrix classes, in conjunction with thread pinning, ensure that the data is evenly
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distributed throughout all the regions whose cores are active in the computation. Now the ddot, waxpby, and

matvec functions can proceed with very few distant memory accesses. We now present how these functions

have been reimplemented to use the new segmented data classes.

4.2.5 Segmented DDOT

The new dot product function takes two segVectors and computes their inner product. A diagrammatic

understanding of the segmented implementation of ddot can be seen in Figure 14. Different from the

control’s omp for directive splitting iterations of a for loop, a omp parallel directive has each thread execute

the code inside the parallel region. The reduction(+:result) tells the compiler that local result of each thread

is to be summed. Inside the parallel region, each thread discovers its number, and the subset of vector

elements it owns. The segVector class function, getThreadPointer(thread num), is used to get the pointer to

the specified thread’s local data for the x and y vectors. Finally the function computes the dot product for

the range of vector elements it is responsible for, thus it is as if each thread is computing the dot product of

a smaller sub-vector and then each thread’s result is summed.

// From dot.cpp

// Takes x_ and y_ segVectors and

// returns result of the dot product of two segVectors

double dot(const segVector &x_, const segVector &y_){

double result = 0.0;

#pragma omp parallel reduction (+: result){

int my_thread_num = omp_get_thread_num ();

// Range of elements in x and y this thread is responsible for

int my_start , my_stop;

computeStartStop(my_thread_num , x_.getNumThreads (),

x_.getLength (), my_start , my_stop , false);

int my_length = my_stop -my_start;

// Pointers to this threads local data of x and y

double * x = x_.getThreadPointer(my_thread_num);

double * y = y_.getThreadPointer(my_thread_num);

// Computes dot product on local sections of x and y

for(int i=0; i<my_length; ++i){

result +=x[i]*y[i];

}

}

// Final dot product of entire x and y

return result;

}

26



Core 0

Core 1

Core 2

Core 3

0

24

25

49

50

74

75

99

0

24

25

49

50

74

75

99

u v

D0 

D1

D2

D3

D 

Figure 14: Diagram represents how the dot product is computed with the segmented data class. Each core
computes the dot product on the local portions of the vectors and the local results of each core is summed
for the complete dot product.

27



Core 0

Core 1

Core 2

Core 3

0

24

25

49

50

74

75

99

0

24

25

49

50

74

75

99

xw

0

24

25

49

50

74

75

99

y

Figure 15: Diagram represents how waxpby is computed with the segmented data class. Each core scales
and sums local portions of �x and �y and stores the results into local portion of �w.

4.2.6 Segmented WAXPBY

The new waxpby function works in much the same way as the new ddot. A diagrammatic understanding of

the segmented implementation of waxpby can be seen in Figure 15. It takes two segVectors x and y and

their multiplicative scalars alpha and beta as well as the result segVector w . The omp parallel directive

specifies that each thread will execute the code in the parallel region where each thread acquires its number

and the range of values it is responsible for in each vector. Each thread then acquires the pointer to its local

data of x , y , and w with the getThreadPointer(thread num) function. Several if checks are performed in

attempt to reduce needless multiplications and then the waxpby operation is performed on the thread local

data.

// Takes segVectors x_, y_, and w_ with scalars alpha and beta and computes

// w_= alpha*x_ + beta*y_

void waxpby (const segVector &x_, const segVector &y_,

const double alpha , const double beta , const segVector &w_){
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#pragma omp parallel

{

int my_thread_num = omp_get_thread_num ();

// Range of elements this thread is responsible for

int my_start , my_stop , dummy;

computeStartStop(my_thread_num , x_.getNumThreads (),

x_.getLength (), my_start , my_stop , false);

int my_length = my_stop -my_start;

// Pointers to thread local data of x, y, and w

double * x = x_.getThreadPointer(my_thread_num);

double * y = y_.getThreadPointer(my_thread_num);

double * w = w_.getThreadPointer(my_thread_num);

// Performs waxpby operation on thread local data

if(alpha == 0.0)

for(int i=0; i<my_length; ++i)

w[i] = y[i]*beta;

else if (alpha == 1.0)

for(int i=0; i<my_length; ++i)

w[i] = x[i] + y[i]*beta;

else if (beta == 0.0)

for(int i=0; i<my_length; ++i)

w[i] = x[i]* alpha;

else if (beta == 1.0)

for(int i=0; i<my_length; ++i)

w[i] = x[i]* alpha + y[i];

else

for(int i=0; i<my_length; ++i)

w[i] = x[i]* alpha + y[i]*beta;

}

}

4.2.7 Segmented MATVEC

The new matvec function takes a segMatrix A, segVectors x and y and computes A∗x = y. An omp parallel

directive is used so that all threads will execute the code within the parallel region where each thread first

determines its thread number and the range of rows in A and range of elements in x and y (same range of

values) it is responsible for.

Notice that this is the only new, segmented function that can result in distant memory accesses. For

example, if we have 4 threads (each in its own NUMA region) and 100 rows and columns in A and 100

elements in x, then thread 0 will be responsible for rows and elements 0-24. If any of the non-zero values

in rows 0-24 have column indices 25-99, then this requires multiplying by an element in �x 25-99 that is in
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another NUMA region. Figure 16 shows this. If the band down the diagonal represents our diagonal matrix,

then the green values represent the matrix values that require local �x references and the orange require

non-local �x references. (Note: this is not meant to be accurate for our 27 element diagonal matrix.) This

diagram also highlights an important aspect of our segmented design—we take advantage of the fact that

we are working with diagonal matrices. If the matrix were dense, then a majority of the values in each row

would require non-local �x references and performance would be dismal.

Each thread then acquires pointers to its local data of A, x, and y. Then, in a double for loop, it iterates

over its owned rows and for every non-zero in that row, it checks if the column index is between my start

and my stop, i.e. a value in the green portion of Figure 16. If it is, then the matrix element is multiplied by

the corresponding value in the locally referenced my x values vector. Otherwise, the necessary value of x is

in another memory region and the segVector class get() function is used to return the needed value. After all

the multiplications and additions for a given row are complete, the row result is stored in the corresponding

value of y.

// From matvec.cpp

// A - segMatrix sparse matrix to be multiplied by x

// x - segVector to be multipied by A

// y - segVector stores results of A*x

void matvec(const segMatrix &A, const segVector &x, segVector &y){

int num_rows = A.getNumRows ();

int num_threads = A.getNumThreads ();

#pragma omp parallel

{

int my_thread_num = omp_get_thread_num ();

// Range of rows this thread is responsible for

int my_start , my_stop;

computeStartStop(my_thread_num , num_threads , num_rows ,my_start , my_stop , false);

int row_chunk_size = my_stop - my_start;

// Pointers to thread local data of matrix A and vectors x, y

double ** my_row_values = A.getValuesArray(my_thread_num);

int ** my_row_indices = A.getIndicesArray(my_thread_num);

int * my_row_nonzeros = A.getNonZerosArray(my_thread_num);

double * my_x_values = x.getThreadPointer(my_thread_num);

double * my_y_values = y.getThreadPointer(my_thread_num);

int index;

int local_vector_index;

double row_result;

int row_nonzeros;

for(int i =0; i < row_chunk_size; ++i){

row_result =0.0;
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Figure 16: Represents the segmented implementation of matvec. Each core iterates over its rows and
multiplies the non-zero values by the corresponding values in �x. The green portion of the matrix represents
matrix values that require local references to �x and the orange portion are values that require non-local
references to �x.
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row_nonzeros = my_row_nonzeros[i];

for(int j=0; j<row_nonzeros; ++j){

index = my_row_indices[i][j];

// Check if the vector value is near my thread

if(index >= my_start && index < my_stop){

local_vector_index = index - my_start;

row_result += my_row_values[i][j]* my_x_values[local_vector_index ];

}

// Otherwise use get() function

else{

row_result += my_row_values[i][j]*x.get(index);

}

}

my_y_values[i]= row_result;

}

}

}

4.3 Segmented Implementations

The segVector and segMatrix classes as described above are the foundation of our new implementation, but

as we progressed in our solution design we thought of several variations to try to increase performance. These

variations focus primarily on how to optimize the matvec function as it far more computationally complex

than the other functions and dominates the computation of the CG. We discuss these variations below.

4.3.1 Standard Matrix

“Standard Matrix” is our baseline implementation and is simply the design as described above. It uses the

full 27 element diagonal matrix with the matvec function implemented with the segVector get(n) function.

The get(n) function is a point of weakness in this implementation because every time it is called, it requires

an access to the thread id and offsets arrays. This adds two additional memory operations to the already

complex matvec function. Additionally, these arrays are not explicitly distributed through the NUMA regions

and will result in distant memory access for most cores.
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4.3.2 Best Matrix

In what we dub the Best Matrix implementation, we purposefully structure our matrix so it will result in

each thread only making local memory references. These matrices are no longer representative of a real

problem, but are an attempt to see how badly the get(n) function affects the performance of matvec in the

CG. We build these matrices by scanning in and segmenting an HPC Sparse Matrix struct in parallel as

in the normal Standard implementation except we only read in non-zero values whose indices are within

the range of rows owned by a thread. For example, if thread 1 is responsible for rows 25-49 of the matrix,

it will only store values whose indices are between 25 and 49. Thus, in the matvec function, each thread

will only make local memory references. In summary, this implementation eliminates the orange portions of

Figure 16.

4.3.3 Vector Pointer Array

In attempt to rid our solution of the get(n) function, we devised a method in the segMatrix class to store

pointers to the needed values in a segVector for matrix vector multiplication. In the CG method, there is

only one matrix and it is always being multiplied by the same vector. The values of the vector change,

but their location in memory do not. We used this to our advantage and created a new constructor for the

segMatrix class that accepts a segVector in addition to the standard arguments. In this new constructor,

we create an additional, thread local, 2D array of the same dimensions as the values and indices arrays of

the sparse matrix. The additional code for this implementation is seen below. In a similar double for loop,

we iterate over each row of the matrix and create an array as long as there are non-zero values in the row.

We then iterate over all the non-zeros in the row and determine their column index. Finally we acquire a

pointer to the corresponding element in the segVector and store this to the thread local vector pointer array.

// 2D array of pointers to vector p values

double *** my_row_vec_ptrs = new double **[ row_chunk_size ];

// Vector pointers

for(int i = 0; i < row_chunk_size; ++i){

// Room for this row’s necessary pointers to vector values

my_row_vec_ptrs[i] = new double *[ my_row_nonzeros[i]];

for(int j = 0; j < my_row_nonzeros[i]; ++j){

// Column index for the jth non -zero value

int matrix_column_index = my_row_indices[i][j];
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// Store pointer to corresponding vector value

my_row_vec_ptrs[i][j] = (p.get_pointer(matrix_column_index));

}

}

vec_ptr[my_thread_num] = my_row_vec_ptrs;

The matvec function is reimplemented to use this pointer array to directly access the vector values without

any computation or unnecessary distant memory access. In the snippet below, we see how it uses the same

double for loop structure, but instead of using the get(n) function, it simply dereferences the pointer to the

corresponding vector value.

for(int i =0; i < row_chunk_size; ++i){

row_result =0.0;

row_nonzeros = my_row_nonzeros[i];

for(int j=0; j < row_nonzeros; ++j){

// Simply dereference the pointer to the corresponding vector value

row_result += my_row_values[i][j] *(*( my_vec_ptrs[i][j]));

}

my_y_values[i]= row_result;

}

Notice that this vector pointer array is the same size as the values and indices arrays and will increase

the sparse matrix’s size in memory by approximately 50%. Because our computation and environment are

memory bound, the increased size may adversely affect performance and negate any benefit of eliminating

the get(n) function.

4.3.4 Unsuccessful Implementations

There are several implementations that we tried where it was clear from early testing that they would not

perform well at all. We mentioned one such implementation earlier where in place of the get(n) function,

we compute the thread and thread local offset for an arbitrary element n in a segVector. We could see

from initial testing that this implementation increased the runtime by a factor of two and we did not bother

further exploring it.

Another idea we had was to store a full copy of the vector needed by the matrix vector multiplication

in each NUMA region. The problem is that this vector is updated in other computations and we either

needed to have each region perform the computation on its copy of the vector or perform the computation
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on one copy and update the rest. We attempted both methods and they performed so poorly that we did

not explore the idea further.

5 Results

We ran HPCCG on Beast with our three implementations and the control at problem dimensions of 100,

200, and 300. The problem size specifies the length, width, and height of the 3D cube that we are using to

generate our matrix, thus, for a problem size of n, the matrix will be n3xn3 and the vectors will be length n3.

We ran each problem size using 6 cores, then 12 cores, etc. up to 48 cores. We repeated this ten times and

recored the total number of MegaFLOPS (millions of floating point operations per second) for each problem

size and cores in use. We present the average of the 10 runs and use the standard deviation as the measure of

uncertainty. We also computed the maximum speed-up at each problem size of our solutions over the control

by taking the highest MegaFLOPS of a given implementation and dividing it by the control’s MegaFLOPS

at the same number of cores. We propagated the error in the standard way seen in Equation 8.

R =
X

Z

δR =|R|
√(

δX

X

)2

+

(
δZ

Z

)2 (8)

5.1 Dimension Size 100

In Table 2 we can see the reported averages and standard deviation of all the implementations at problem

size 100 for 6 through 48 cores. At this problem size, the matrix dimensions are 1,000,000x1,000,000 and the

vectors are of length 1,000,000. The results were graphed in Fig. 17 with total MegaFLOPS on the y-axis

and the number of cores used in the computation on the x-axis. From the graph, we can see the all the

solutions performed nearly the same when 6 cores were in use. The three segmented solutions have nearly

identical linear speed increases from 6 to 48 cores, with the Best Matrix solution slightly pulling ahead

after 24 cores. The control has a gradual performance decrease and levels off as more cores are used. The

maximum speed-ups of our solutions over the control are summarized in Table 3. Our Best Matrix solution

35



Table 2: Summarizes the total MegaFLOPS for each implementation at problem size 100 across 6 through
48 cores.

Cores Control Standard Matrix Best Matrix Vector Pointer

6 1710± 2 1522± 18 1551± 13 1351± 8
12 1229± 2 298± 64 3130± 25 2735± 20
18 1130± 2 4474± 55 4683± 45 4127± 36
24 1032± 3 5830± 128 6068± 148 549± 27
30 962± 3 7176± 153 758± 127 6810± 50
36 886± 7 8149± 172 8924± 165 8086± 83
42 975± 6 9205± 167 10320± 172 9302± 73
48 1038± 4 9980± 254 11562± 125 10126± 117

Table 3: Summarizes the maximum speed-ups of our three solutions over the control at problem size 100.

Maximum Speed-up

Standard Matrix 9.6± 0.2
Best Matrix 11.1± 0.1

Vector Pointer 9.8± 0.1

shows a maximum speed up of 11.1 ± 0.1x faster than the control when 48 cores are in use.

5.2 Dimension Size 200

In Table 4 we can see the reported averages and standard deviation of all the implementations at problem

size 200 for 6 through 48 cores. At this problem size, the matrix dimensions are 8,000,000x8,000,000 and

vectors are of length 8,000,000. These results were graphed in Fig. 18 with total MegaFLOPS on the y-axis

and the number of cores used in the computation on the x-axis. We can see the all the solutions performed

nearly the same when 6 cores were in use and the three segmented solutions have nearly identical linear speed

increases from 6 to 48 cores. The graph shows that the Best Matrix solution performed slightly better than

the Standard Matrix solution, which performed marginally better than the Vector Pointer solution. The

control has a gradual performance decrease and levels off as more cores are used. The maximum speed-ups

of our solutions over the control are summarized in Table 5 and our Best Matrix solution shows a maximum

speed up of 10.8 ± 0.1x faster than the control when 48 cores are in use.
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Figure 17: Shows the performance trend for the control and our three implementations at problem size 100
across 6 through 48 cores.
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Figure 18: Shows the performance trend for the control and our three implementations at problem size 200
across 6 through 48 cores.
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Table 4: Summarizes the total MegaFLOPS for each implementation at problem size 200 across 6 through
48 cores.

Cores Control Standard Matrix Best Matrix Vector Pointer

6 1685± 1 1262± 19 1245± 14 1037± 36
12 1195± 4 2953± 33 2998± 39 1795± 120
18 1077± 3 4302± 99 4442± 50 3927± 19
24 1003± 3 5583± 110 5854± 66 5223± 15
30 943± 2 7021± 70 7250± 90 6497± 18
36 876± 8 8213± 138 8652± 70 7743± 38
42 964± 6 9513± 179 10070± 158 9025± 37
48 1048± 4 10745± 218 11329± 142 10356± 23

Table 5: Summarizes the maximum speed-ups of our three solutions over the control at problem size 200.

Maximum Speed-up

Standard Matrix 10.3± 0.2
Best Matrix 10.8± 0.1

Vector Pointer 9.9± 0.1

5.3 Dimension Size 300

In Table 6 we can see the reported averages and standard deviation of all the implementations at problem

size 300 for 6 through 48 cores. At this problem size, the matrix dimensions are 27,000,000x27,000,000 and

vectors are of length 27,000,000. The results were graphed in Fig. 19 with total MegaFLOPS on the y-axis

and the number of cores used in the computation on the x-axis. The performance of this problem size is far

more erratic than previous results with the control outperforming our segmented solutions when 6 and 12

cores are in use and then dropping sharply in performance when 18 cores are in use with a gradual rise in

performance to 42 cores. We theorize that at the 300 problem size, the data does not fit fully in one NUMA

region and runs into the next. Thus, the addition of the six cores in the next NUMA region have a chance

to work with nearby data and would show the performance boost when 12 cores are used. The segmented

solutions follow nearly identical increases in performance, within error, from 6 to 48 cores. The maximum

speed-ups of our solutions over the control are summarized in Table 7 and our Vector Pointer solution shows

a maximum speed up of 3.00 ± 0.18x faster than the control when 48 cores are in use.
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Table 6: Summarizes the total MegaFLOPS for each implementation at problem size 300 across 6 through
48 cores.

Cores Control Standard Matrix Best Matrix Vector Pointer

6 1129± 8 440± 6 443± 1 549± 30
12 2354± 4 766± 5 762± 3 668± 27
18 917± 12 1344± 11 1340± 22 1359± 16
24 708± 6 2211± 18 2185± 11 1768± 102
30 1104± 6 2730± 16 2715± 17 2534± 162
36 1397± 3 2952± 13 2897± 13 3281± 238
42 1577± 7 3770± 28 3698± 12 3822± 263
48 1327± 5 3764± 24 3758± 16 3985± 233

Table 7: Summarizes the maximum speed-ups of our three solutions over the control at problem size 300.

Maximum Speed-up

Standard Matrix 2.84± 0.02
Best Matrix 2.83± 0.02

Vector Pointer 3.00± 0.18

Notice that the speed-up as well as the range of MEGAflops is much lower at this problem size than

previously seen. We are unable to fully explain why this is, but we hypothesize that it is due to the large

amount of data involved in the computation at this problem size in comparison to the previous problem

sizes. At the 300 problem size, the total memory footprint of our code is ≈22GB, in comparison to ≈7GB at

problem size 200, and ≈4GB at problem size 100. The memory footprint at 300 problem size is not enough

to overflow DRAM, forcing storage on disk, but it is considerable and we could find no other reason for this

performance reduction.

6 Conclusion

We wished to test the impact of non-uniform memory access on Beast and explore how to optimize HPCCG’s

implementation for this unique architecture. We began by quantifying to what degree memory access on

Beast was non-uniform. From these results we theorized a machine model where accessing memory in a

distant NUMA region is twice as slow as accessing memory nearby. With this model we devised explicitly
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Figure 19: Shows the performance trend for the control and our three implementations at problem size 300
across 6 through 48 cores.
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segmented data classes that ensured data is distributed throughout the memory space. We tested three

implementations of our segMatrix and segVector solution against the control at problem sizes of 100, 200,

and 300 using 6 through 48 of Beast’s cores. Our results showed that our segmented solutions outperformed

the control at nearly all problem sizes and number of cores used, for a maximum speed up of 11.1 ± 0.1x

faster than the control. Additionally, the three different implementations performed at a relatively equal

level.

From these results we conclude the following:

• In NUMA environments, explicitly distributing problem data through the memory space so cores

primarily work on nearby data will realize greater performance than naive data placement.

• Our abstract model of Beast’s NUMA environment appears to be a valid tool for reasoning about

problem design and may prove useful for future problems.

• Specific to our task of optimizing HPCCG, it does not significantly matter how off region memory

accesses are handled, as seen by the small variance between our three implementations.

• In order to achieve the greatest scalable performance when designing code for NUMA machines, great

care must be used to ensure data is distributed through the memory regions so as to reduce the number

of off region memory hits.

6.1 Future Work

In future work for further optimization of HPCCG for Beast we would look further at the matvec function

and how we might have each thread read in the values of the multiplicative vector ahead of time into a

thread local array. The structure of our sparse matrices result in a large amount reuse of the same values in

the vector and our current implementations do not take advantage of this. We would also look at how we

might structure the data in all the functions to take advantage of cache blocking. In other words, explicitly

partitioning problem data into sizes that fit into each core’s cache.
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A Segmented Code

// @HEADER

// ************************************************************************

//

// HPCCG: Simple Conjugate Gradient Benchmark Code

// Copyright (2006) Sandia Corporation

//

// Under terms of Contract DE-AC04 -94 AL85000 , there is a non -exclusive

// license for use of this work by or on behalf of the U.S. Government.

//
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// This library is free software; you can redistribute it and/or modify

// it under the terms of the GNU Lesser General Public License as

// published by the Free Software Foundation; either version 2.1 of the

// License , or (at your option) any later version.

//

// This library is distributed in the hope that it will be useful , but

// WITHOUT ANY WARRANTY; without even the implied warranty of

// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

// Lesser General Public License for more details.

//

// You should have received a copy of the GNU Lesser General Public

// License along with this library; if not , write to the Free Software

// Foundation , Inc., 59 Temple Place , Suite 330, Boston , MA 02111 -1307

// USA

// Questions? Contact Michael A. Heroux (maherou@sandia.gov)

//

// ************************************************************************

// @HEADER

#ifndef GENERATE_MATRIX_H

#define GENERATE_MATRIX_H

#ifdef USING_MPI

#include <mpi.h>

#endif

#include "HPC_Sparse_Matrix.hpp"

void generate_matrix(int nx, int ny, int nz, HPC_Sparse_Matrix **A, double **x,

double **b, double ** xexact);

#endif

// @HEADER

// ************************************************************************

//

// HPCCG: Simple Conjugate Gradient Benchmark Code

// Copyright (2006) Sandia Corporation

//

// Under terms of Contract DE-AC04 -94 AL85000 , there is a non -exclusive

// license for use of this work by or on behalf of the U.S. Government.

//

// This library is free software; you can redistribute it and/or modify

// it under the terms of the GNU Lesser General Public License as

// published by the Free Software Foundation; either version 2.1 of the

// License , or (at your option) any later version.

//

// This library is distributed in the hope that it will be useful , but

// WITHOUT ANY WARRANTY; without even the implied warranty of

// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

// Lesser General Public License for more details.
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//

// You should have received a copy of the GNU Lesser General Public

// License along with this library; if not , write to the Free Software

// Foundation , Inc., 59 Temple Place , Suite 330, Boston , MA 02111 -1307

// USA

// Questions? Contact Michael A. Heroux (maherou@sandia.gov)

//

// ************************************************************************

// @HEADER

// ///////////////////////////////////////////////////////////////////////

// Routine to read a sparse matrix , right hand side , initial guess ,

// and exact solution (as computed by a direct solver).

// ///////////////////////////////////////////////////////////////////////

// nrow - number of rows of matrix (on this processor)

#include <iostream >

using std::cout;

using std::cerr;

using std::endl;

#include <cstdlib >

#include <cstdio >

#include <cassert >

#include "generate_matrix.hpp"

void generate_matrix(int nx, int ny, int nz, HPC_Sparse_Matrix **A, double **x,

double **b, double ** xexact)

{

#ifdef DEBUG

int debug = 1;

#else

int debug = 0;

#endif

#ifdef USING_MPI

int size , rank; // Number of MPI processes , My process ID

MPI_Comm_size(MPI_COMM_WORLD , &size);

MPI_Comm_rank(MPI_COMM_WORLD , &rank);

#else

int size = 1; // Serial case (not using MPI)

int rank = 0;

#endif

int local_nrow = nx*ny*nz; // This is the size of our subblock

assert(local_nrow >0); // Must have something to work with
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int local_nnz = 27* local_nrow; // Approximately 27 nonzeros per row (except for

boundary nodes)

int total_nrow = local_nrow*size; // Total number of grid points in mesh

long long total_nnz = 27* (long long) total_nrow; // Approximately 27 nonzeros

per row (except for boundary nodes)

int start_row = local_nrow*rank; // Each processor gets a section of a chimney

stack domain

int stop_row = start_row+local_nrow -1;

// Allocate arrays that are of length local_nrow

int *nnz_in_row = new int[local_nrow ];

double ** ptr_to_vals_in_row = new double *[ local_nrow ];

int ** ptr_to_inds_in_row = new int *[ local_nrow ];

double ** ptr_to_diags = new double *[ local_nrow ];

*x = new double[local_nrow ];

*b = new double[local_nrow ];

*xexact = new double[local_nrow ];

// Allocate arrays that are of length local_nnz

double *list_of_vals = new double[local_nnz ];

int *list_of_inds = new int [local_nnz ];

double * curvalptr = list_of_vals;

int * curindptr = list_of_inds;

long long nnzglobal = 0;

for (int iz=0; iz <nz; iz++)

for (int iy=0; iy <ny; iy++)

for (int ix=0; ix <nx; ix++) {

int curlocalrow = iz*nx*ny+iy*nx+ix;

int currow = start_row+iz*nx*ny+iy*nx+ix;

int nnzrow = 0;

ptr_to_vals_in_row[curlocalrow] = curvalptr;

ptr_to_inds_in_row[curlocalrow] = curindptr;

for (int sz=-1; sz <=1; sz++)

for (int sy=-1; sy <=1; sy++)

for (int sx=-1; sx <=1; sx++) {

int curcol = currow+sz*nx*ny+sy*nx+sx;

if (curcol >=0 && curcol <total_nrow) {

if (curcol == currow) {

ptr_to_diags[curlocalrow] = curvalptr;

*curvalptr ++ = 27.0;

}

else

*curvalptr ++ = -1.0;
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*curindptr ++ = curcol;

nnzrow ++;

}

}

nnz_in_row[curlocalrow] = nnzrow;

nnzglobal += nnzrow;

(*x)[curlocalrow] = 0.0;

(*b)[curlocalrow] = 27.0 - (( double) (nnzrow -1));

(* xexact)[curlocalrow] = 1.0;

} // end ix loop

if (debug) cout << "Process�"<<rank <<"�of�"<<size <<"�has�"<<local_nrow;

if (debug) cout << "�rows.�Global�rows�"<< start_row

<<"�through�"<< stop_row <<endl;

if (debug) cout << "Process�"<<rank <<"�of�"<<size

<<"�has�"<<local_nnz <<"�nonzeros."<<endl;

*A = new HPC_Sparse_Matrix; // Allocate matrix struct and fill it

(*A)->title = 0;

(*A)->start_row = start_row ;

(*A)->stop_row = stop_row;

(*A)->total_nrow = total_nrow;

(*A)->total_nnz = total_nnz;

(*A)->local_nrow = local_nrow;

(*A)->local_ncol = local_nrow;

(*A)->local_nnz = local_nnz;

(*A)->nnz_in_row = nnz_in_row;

(*A)->ptr_to_vals_in_row = ptr_to_vals_in_row;

(*A)->ptr_to_inds_in_row = ptr_to_inds_in_row;

(*A)-> ptr_to_diags = ptr_to_diags;

return;

}

// @HEADER

// ************************************************************************

//

// HPCCG: Simple Conjugate Gradient Benchmark Code

// Copyright (2006) Sandia Corporation

//

// Under terms of Contract DE-AC04 -94 AL85000 , there is a non -exclusive

// license for use of this work by or on behalf of the U.S. Government.

//

// This library is free software; you can redistribute it and/or modify

// it under the terms of the GNU Lesser General Public License as

// published by the Free Software Foundation; either version 2.1 of the
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// License , or (at your option) any later version.

//

// This library is distributed in the hope that it will be useful , but

// WITHOUT ANY WARRANTY; without even the implied warranty of

// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

// Lesser General Public License for more details.

//

// You should have received a copy of the GNU Lesser General Public

// License along with this library; if not , write to the Free Software

// Foundation , Inc., 59 Temple Place , Suite 330, Boston , MA 02111 -1307

// USA

// Questions? Contact Michael A. Heroux (maherou@sandia.gov)

//

// ************************************************************************

// @HEADER

#ifndef HPC_SPARSE_MATRIX_H

#define HPC_SPARSE_MATRIX_H

// These constants are upper bounds that might need to be changes for

// pathological matrices , e.g., those with nearly dense rows/columns.

const int max_external = 100000;

const int max_num_messages = 500;

const int max_num_neighbors = max_num_messages;

struct HPC_Sparse_Matrix_STRUCT {

char *title;

int start_row;

int stop_row;

int total_nrow;

long long total_nnz;

int local_nrow;

int local_ncol; // Must be defined in make_local_matrix

int local_nnz;

int * nnz_in_row;

double ** ptr_to_vals_in_row;

int ** ptr_to_inds_in_row;

double ** ptr_to_diags;

#ifdef USING_MPI

int num_external;

int num_send_neighbors;

int *external_index;

int *external_local_index;

int total_to_be_sent;

int *elements_to_send;

int *neighbors;

int *recv_length;
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int *send_length;

double *send_buffer;

#endif

};

typedef struct HPC_Sparse_Matrix_STRUCT HPC_Sparse_Matrix;

#endif

#include <cstdlib >

#include <cstdio >

#include <iostream >

#include <omp.h>

#include "segVector.h"

#include "dot.h"

#include "waxpby.h"

#include "segMatrix.h"

#include "matvec.h"

#include "HPC_Sparse_Matrix.hpp"

#include <cmath >

#include "mytimer.hpp"

#include "generate_matrix.hpp"

#include <assert.h>

#include "results_log.h"

#define TICK() t0 = mytimer () // Use TICK and TOCK to time a code section

#define TOCK(t) t += mytimer () - t0

#define MATVEC_OPTION 2 // Specifies which implementation of matvec () to use. See

matvec.cpp

int main(int argc , char * argv []) {

if(argc != 3) {

std::cout << "Usage:�" << argv [0] << "�Length(x*y*z)�Num_Threads" << std::endl

;

exit (1);

}

int nx = atoi(argv [1]);

int ny = atoi(argv [1]);

int nz = atoi(argv [1]);

// nx*ny*nz 3D cube

int length = nx*ny*nz;

int num_threads = atoi(argv [2]);

double t0 = 0.0, t1 = 0.0, t2 = 0.0, t3 = 0.0, t4 = 0.0;

omp_set_num_threads(num_threads);

double *x, *b, *xexact;

HPC_Sparse_Matrix *sparse_matrix;
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generate_matrix(nx,ny,nz ,& sparse_matrix ,&x,&b,& xexact);

segMatrix seg_A(* sparse_matrix ,num_threads); // Matrix A

// segVectors r, x, p, q, b

segVector seg_r(length ,num_threads);

segVector seg_x(x,length ,num_threads);

segVector seg_b(b,length ,num_threads);

segVector seg_p(length ,num_threads);

segVector seg_q(length ,num_threads);

// Scalars

double normr =0.0;

double rho =0.0;

double oldrho =0.0;

double tolerance =0.0;

int max_iter = 150;

int niters = 0;

// Used for prints

int print_freq = max_iter /10;

if (print_freq >50) print_freq =50;

if (print_freq <1) print_freq =1;

// Start timing right away

double t_begin = mytimer ();

// x=p

// waxpby(const segVector &x_, const segVector &y_, const double alpha_ , const

double beta_ , const segVector &w_);

TICK(); waxpby(seg_x ,seg_x ,1.0,0.0, seg_p); TOCK(t1);

// A*p = q

// matvec(const segMatrix &A, const segVector &x, segVector &y, const int option

);

TICK(); matvec(seg_A , seg_p , seg_q ,MATVEC_OPTION); TOCK(t2);

// r=b-q

// waxpby(nrow , 1.0, b, -1.0, Ap, r)

TICK(); waxpby(seg_b ,seg_q ,1.0,-1.0, seg_r); TOCK(t1);

// rho=<r,r>

rho = dot(seg_r ,seg_r);

//sqrt(<r,r>)

normr = sqrt(rho);

std::cout << "Initial�Residual�=�" << normr << std::endl;

for(int k=1; k<max_iter && normr > tolerance; ++k ) {
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// p(1) = r(1)

if(k == 1){

TICK();

waxpby(seg_r ,seg_r ,1.0,0.0, seg_p);

TOCK(t1);

}else{

oldrho = rho;

// #1

// rho=<r,r>

TICK();

rho = dot(seg_r ,seg_r);

TOCK(t3);

// #2

// beta=rho/oldrho

double beta = rho/oldrho;

// #3

// p(i)= r(i-1)+beta(i-1)*p(i-1)

TICK();

waxpby(seg_r ,seg_p ,1.0,beta ,seg_p);

TOCK(t1);

}

normr = sqrt(rho);

if(k%print_freq == 0 || k+1 == max_iter)

std::cout << "Iteration�=�" << k << "���Residual�=�" << normr << std::endl;

// #4

// q(i)=A*p(i)

TICK();

matvec(seg_A ,seg_p ,seg_q ,MATVEC_OPTION);

TOCK(t2);

double alpha = 0.0;

// #5

// alpha=<p(i),q(i)>

TICK();

alpha = dot(seg_p ,seg_q);

TOCK(t3);

// #6

// alpha=rho(i-1)/alpha

alpha = rho/alpha;

// #7

// x(i)=x(i-1) + alpha(i)*p(i)
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TICK();

waxpby(seg_x ,seg_p ,1.0,alpha ,seg_x);

TOCK(t1);

// #8

// r(i)=r(i-1) - alpha(i)*q(i)

TICK();

waxpby(seg_r ,seg_q ,1.0,-alpha ,seg_r);

TOCK(t1);

niters=k;

}

t0=mytimer ()-t_begin;

double fniters = niters;

double fnrow = sparse_matrix ->total_nrow;

double fnnz = sparse_matrix ->total_nnz;

double fnops_ddot = fniters *4* fnrow;

double fnops_waxpby = fniters *6* fnrow;

double fnops_sparsemv = fniters *2* fnnz;

double fnops = fnops_ddot+fnops_waxpby+fnops_sparsemv;

double results [9];

//std::cout << "Final Residual = " << normr << std::endl;

//std::cout << "Threads used = " << num_threads << std::endl;

//std::cout << " waxpby time = " << t1 << " sec" << std::endl;

//std::cout << " matvec time = " << t2 << " sec" << std::endl;

//std::cout << " dot time = " << t3 << " sec" << std::endl;

//std::cout << " Total time = " << t0 << " sec" << std::endl;

std::cout << "Number�of�iterations�=�" << niters << ".\n" << std::endl;

std::cout << "Final�residual�=�" << normr << ".\n" << std::endl;

std::cout << "**********�Performance�Summary�(times�in�sec)�***********" <<

std::endl << std::endl;

std::cout << "Total�Time/FLOPS/MFLOPS���������������=�"

<< t0 << "/" << fnops << "/"

<< fnops/t0/1.0E6 << "." << std::endl;

std::cout << "DDOT��Time/FLOPS/MFLOPS���������������=�"

<< t3 << "/" << fnops_ddot << "/"

<< fnops_ddot/t3/1.0E6 << "." << std::endl;

std::cout << "WAXPBY�Time/FLOPS/MFLOPS��������������=�"

<< t1 << "/" << fnops_waxpby << "/"

<< fnops_waxpby/t1/1.0E6 << "." << std::endl;

std::cout << "SPARSEMV�Time/FLOPS/MFLOPS������������=�"

<< t2 << "/" << fnops_sparsemv << "/"

<< fnops_sparsemv/t2/1.0E6 << "." << std::endl;
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results [0]=t0;

results [1]= fnops/t0/1.0E6;

results [2]=t3;

results [3]= fnops_ddot/t3/1.0E6;

results [4]=t1;

results [5]= fnops_waxpby/t1/1.0E6;

results [6]=t2;

results [7]= fnops_sparsemv/t2/1.0E6;

results_log("standard_matrix",nx,num_threads ,results);

return 0;

}

#ifndef DOT_H

#define DOT_H

double dot(const segVector &x_, const segVector &y_);

#endif

#include "segVector.h"

#include "omp.h"

#include "computeStartStop.hpp"

#include <assert.h>

double dot(const segVector &x_, const segVector &y_){

double result = 0.0;

#pragma omp parallel reduction (+: result)

{

int my_thread_num = omp_get_thread_num ();

int my_start , my_stop;

double * x = x_.getThreadPointer(my_thread_num);

double * y = y_.getThreadPointer(my_thread_num);

computeStartStop(my_thread_num , x_.getNumThreads (), x_.getLength (), my_start ,

my_stop , false);

int my_length = my_stop -my_start;

for(int i=0; i<my_length; ++i){

result +=x[i]*y[i];

}

}

return result;

}

#ifndef WAXPBY_H

#define WAXPBY_H

void waxpby(const segVector &x_, const segVector &y_, const double alpha_ , const

double beta_ , const segVector &w_);

#endif
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#include "segVector.h"

#include "omp.h"

#include "computeStartStop.hpp"

#include <cstdio >

#include <iostream >

#include <assert.h>

/*

*

*/

// Takes segVectors x_, y_, and w_ with scalars alpha and beta and computes

// w_= alpha*x_ + beta*y_

void waxpby (const segVector &x_, const segVector &y_, const double alpha , const

double beta , const segVector &w_){

#pragma omp parallel

{

int my_thread_num = omp_get_thread_num ();

// Range of elements this thread is responsible for

int my_start , my_stop , dummy;

computeStartStop(my_thread_num , x_.getNumThreads (), x_.getLength (), my_start ,

my_stop , false);

int my_length = my_stop -my_start;

// Pointers to thread local data of x, y, and w

double * x = x_.getThreadPointer(my_thread_num);

double * y = y_.getThreadPointer(my_thread_num);

double * w = w_.getThreadPointer(my_thread_num);

// Performs waxpby operation on thread local data

if(alpha == 0.0)

for(int i=0; i<my_length; ++i)

w[i] = y[i]*beta;

else if (alpha == 1.0)

for(int i=0; i<my_length; ++i)

w[i] = x[i] + y[i]*beta;

else if (beta == 0.0)

for(int i=0; i<my_length; ++i)

w[i] = x[i]* alpha;

else if (beta == 1.0)

for(int i=0; i<my_length; ++i)

w[i] = x[i]* alpha + y[i];

else

for(int i=0; i<my_length; ++i)

w[i] = x[i]* alpha + y[i]*beta;

}

}

#include "segMatrix.h"

#include "segVector.h"

#ifndef MATVEC_H

#define MATVEC_H
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void matvec(const segMatrix &A, const segVector &x, segVector &y, const int option

);

#endif

#define _GNU_SOURCE

#include "matvec.h"

#include "assert.h"

#include <omp.h>

#include "computeStartStop.hpp"

#include <cstdlib >

#include <cstdio >

#include <iostream >

#include <sched.h>

// y=Ax

void matvec(const segMatrix &A, const segVector &x, segVector &y, const int option

){

//::cout <<"-----MatVec -----"<<std::endl;

//std::cout <<"Main thread is currently on CPU: " << sched_getcpu () << std::endl;

assert(x.getLength ()==y.getLength ());

assert(A.getNumCols ()==x.getLength ());

// Most basic implementation , uses the get() for segMatrix and get() for segVector

if(option ==0){

for(int rows = 0; rows < A.getNumRows (); ++rows){

double row_result =0.0;

for(int cols = 0; cols < A.getNumCols (); ++cols){

row_result +=x.get(cols)*A.get(rows ,cols);

}

y[rows]= row_result;

}

}

else if(option ==1){

int num_rows = A.getNumRows ();

int num_threads = A.getNumThreads ();

#pragma omp parallel

{

int my_thread_num = omp_get_thread_num ();

// #pragma omp critical

// std::cout << "Thread " << omp_get_thread_num () << " is currently on CPU: "

<< sched_getcpu () << std::endl;

int my_start , my_stop , dummy;
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computeStartStop(my_thread_num , num_threads , num_rows , my_start , my_stop , false)

;

int row_chunk_size = my_stop - my_start;

double ** my_row_values = A.getValuesArray(my_thread_num);

int ** my_row_indices = A.getIndicesArray(my_thread_num);

int * my_row_nonzeros = A.getNonZerosArray(my_thread_num);

for(int i =0; i < row_chunk_size; ++i){

double row_result =0.0;

for(int j=0; j<my_row_nonzeros[i]; ++j){

row_result += my_row_values[i][j]*x.get(my_row_indices[i][j]);

}

y[i+my_start ]= row_result;

}

}

}

// segMatrix directly accesses thread local vector values instead of using get()

else if(option ==2){

int num_rows = A.getNumRows ();

int num_threads = A.getNumThreads ();

#pragma omp parallel

{

int my_thread_num = omp_get_thread_num ();

int my_start , my_stop , dummy;

computeStartStop(my_thread_num , num_threads , num_rows ,my_start , my_stop , false

);

int row_chunk_size = my_stop - my_start;

double ** my_row_values = A.getValuesArray(my_thread_num);

int ** my_row_indices = A.getIndicesArray(my_thread_num);

int * my_row_nonzeros = A.getNonZerosArray(my_thread_num);

double * my_vector_values = x.getThreadPointer(my_thread_num);

double * my_y_values = y.getThreadPointer(my_thread_num);

int row_index;

int local_vector_index;

double row_result;

int row_nonzeros;

for(int i =0; i < row_chunk_size; ++i){

if(my_row_nonzeros[i]==0) continue;

row_result =0.0;

row_nonzeros = my_row_nonzeros[i];

for(int j=0; j<row_nonzeros; ++j){

row_index = my_row_indices[i][j];

// Check if the vector value is near my thread
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if(row_index >= my_start && row_index < my_stop){

local_vector_index = row_index - my_start;

row_result += my_row_values[i][j]* my_vector_values[local_vector_index ];

}

// Otherwise use get() function

else{

row_result += my_row_values[i][j]*x.get(row_index);

}

}

my_y_values[i]= row_result;

}

}

}

}

#ifndef SEGMATRIX_H

#define SEGMATRIX_H

#include "HPC_Sparse_Matrix.hpp"

#include <omp.h>

#include <iostream >

#include <cstdio >

#include "computeStartStop.hpp"

#include <assert.h>

#include "HPC_Sparse_Matrix.hpp"

#include "segVector.h"

#include <sched.h>

class segMatrix

{

private:

// Dimensions of Sparse Matrix , often these values are equal

int num_rows , num_cols;

// Holds addresses of each thread local 2D array of row values

double *** values_ptr;

// Holds addresses of each thread local 2D array of row indices

int *** indices_ptr;

// Holds address of each thread local 2D array of pointers to segVector values

double **** vec_ptr;

// Holds addresses of each thread local 1D array of row nonzeros

int ** nonzeros_ptr;
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// Provides for mapping the get() function to the correct thread local value

int * thread_id;

int * offsets;

int num_threads;

public:

segMatrix(const HPC_Sparse_Matrix &input_matrix , const int num_threads_);

double get(const int m_row , const int n_col) const;

int getNumRows () const;

int getNumCols () const;

int getNumThreads () const;

double ** getValuesArray(const int thread_num_) const;

int** getIndicesArray(const int thread_num_) const;

int* getNonZerosArray(const int thread_num_) const;

double *** getVecPtrArray(const int thread_num_) const;

void printMatrix () const;

};

#endif

#define _GNU_SOURCE

#include "segMatrix.h"

//#define THREAD_PIN_TEST

segMatrix :: segMatrix(const HPC_Sparse_Matrix &input_matrix , const int num_threads_

){

#ifdef THREAD_PIN_TEST

std::cout <<"-----segMatrix�Creation -----"<<std::endl;

std::cout <<"Main�thread�is�currently�on�CPU:�" << sched_getcpu () << std::endl;

#endif

num_rows = input_matrix.total_nrow;

num_cols = input_matrix.local_ncol;

assert(num_rows >0);

assert(num_cols >0);

num_threads=num_threads_;

// Holds addresses of each thread local 2D array of row values

values_ptr = new double **[ num_threads ];

// Holds addresses of each thread local 2D array of row indices

indices_ptr = new int**[ num_threads ];

// Holds location information for get() function
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// thread_id tells for a given row value of the logical matrix which thread it

is on

// offsets tells for a given row value of the logical matrix which row of the

thread local

// 2D matrix it is on

nonzeros_ptr = new int*[ num_threads ];

thread_id = new int[num_rows ];

offsets = new int[num_rows ];

#pragma omp parallel

{

int my_thread_num = omp_get_thread_num ();

#ifdef THREAD_PIN_TEST

#pragma omp critical

std::cout << "Thread�" << my_thread_num << "�is�currently�on�CPU:�" <<

sched_getcpu () << std::endl;

#endif

int my_start , my_stop , dummy;

computeStartStop(my_thread_num , num_threads , num_rows , my_start , my_stop , false)

;

// How many rows thread owns

int row_chunk_size = my_stop - my_start;

// 1D array holds # non -zeros per row

int * my_row_nonzeros = new int[row_chunk_size ];

for(int i=0; i < row_chunk_size; ++i){

my_row_nonzeros[i] = input_matrix.nnz_in_row[my_start+i];

}

nonzeros_ptr[my_thread_num] = my_row_nonzeros;

// Values

// 2D array holds thread local row values

double ** my_row_values = new double *[ row_chunk_size ];

// Iterates across my rows

for(int i=0; i < row_chunk_size; ++i){

// Allocates storage for all non -zero values in row i

my_row_values[i] = new double[my_row_nonzeros[i]];

// For all non -zero columns in row i

for(int j = 0; j < my_row_nonzeros[i]; ++j){

// Store thread local values and indices from sparse input matrix

my_row_values[i][j] = input_matrix.ptr_to_vals_in_row[my_start+i][j];

}

}

values_ptr[my_thread_num] = my_row_values;

// Indices
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// 2D array holds thread local indices of non -zeros

int ** my_row_indices = new int*[ row_chunk_size ];

// Iterates across my rows

for(int i=0; i < row_chunk_size; ++i){

// Allocates storage for all non -zero values in row i

my_row_indices[i] = new int[my_row_nonzeros[i]];

// For all non -zero columns in row i

for(int j = 0; j < my_row_nonzeros[i]; ++j){

// Store thread local values and indices from sparse input matrix

my_row_indices[i][j] = input_matrix.ptr_to_inds_in_row[my_start+i][j];

}

}

indices_ptr[my_thread_num] = my_row_indices;

//// Provides for mapping the get() function to the correct thread local value

//int offset =0;

//for(int i = my_start; i < my_stop; ++i){

// thread_id[i]= my_thread_num;

// offsets[i]= offset;

// offset ++;

//}

}

}

// Returns the desired m,n element of the large logical matrix

double segMatrix ::get(int m_row , int n_col) const{

assert(m_row >= 0 && m_row < num_rows);

assert(n_col >= 0 && n_col < num_cols);

int thread_num=thread_id[m_row];

int offset=offsets[m_row];

double return_value =0.0;

// Get to desired thread and thread local row

int* row_indices = indices_ptr[thread_num ][ offset ];

double* row_values = values_ptr[thread_num ][ offset ];

int row_nonzeros = nonzeros_ptr[thread_num ][ offset ];

// Iterate over non -zero indices to see if n_col matches

for(int col = 0; col < row_nonzeros; ++col){

if(n_col == row_indices[col]){

return_value= row_values[col];

}

}

return return_value;

}
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int segMatrix :: getNumRows () const{

return num_rows;

}

int segMatrix :: getNumCols () const{

return num_cols;

}

int segMatrix :: getNumThreads () const{

return num_threads;

}

double ** segMatrix :: getValuesArray(const int thread_num_) const{

return values_ptr[thread_num_ ];

}

int** segMatrix :: getIndicesArray(const int thread_num_) const{

return indices_ptr[thread_num_ ];

}

int* segMatrix :: getNonZerosArray(const int thread_num_) const{

return nonzeros_ptr[thread_num_ ];

}

double *** segMatrix :: getVecPtrArray(const int thread_num_) const{

return vec_ptr[thread_num_ ];

}

void segMatrix :: printMatrix () const{

std::cout << "Printing�Matrix:�" << std::endl;

std::cout << "------------------------------------------------------" << std::

endl;

for(int i=0; i<getNumRows (); ++i){

for(int j=0; j<getNumCols (); ++j){

printf("%*.f" ,3,0,get(i,j));

}

std::cout <<std::endl;

}

std::cout << "------------------------------------------------------" << std::

endl;

}

#include <assert.h>

#ifndef SEGVECTOR_H

#define SEGVECTOR_H

class segVector

{
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private:

int length;

int chunk_size;

int num_threads;

double ** ptr_array;

int* thread_id;

int* offsets;

double * input_array;

public:

segVector(int chunk_size_ , int num_threads_ , bool simple_);

segVector(int length_ , int num_threads_);

segVector(double * input_array_ , int length_ , int num_threads_);

void scale(double multiplier_);

void test(int diagnostic_level_) const;

inline double& operator [] (const int n){

assert(n<length);

assert(n>=0);

int thread_num=thread_id[n];

int offset=offsets[n];

double* element=ptr_array[thread_num ];

element += offset;

return *element;

}

int getLength () const;

double* getThreadPointer(int thread_num_) const;

int getNumThreads () const;

int getChunkSize () const;

void printVector () const;

inline double get(const int n) const{

assert(n<length);

assert(n>=0);

int thread_num=thread_id[n];

int offset=offsets[n];

double* element=ptr_array[thread_num ];

element += offset;

return *element;

}

};

#endif

#define _GNU_SOURCE

#include <omp.h>

#include <iostream >

#include <cstdio >

#include "computeStartStop.hpp"

#include "segVector.h"

62



#include <assert.h>

#include <sched.h>

//#define THREAD_PIN_TEST

// Simple Constructor where n%(n/p)==0

// The bool value is irrelvant and is used only to overload the constructor

segVector :: segVector(int chunk_size_ , int num_threads_ , bool simple_)

{

chunk_size=chunk_size_;

num_threads=num_threads_;

ptr_array=new double *[ num_threads ]; // Holds address of each threads first

element

#pragma omp parallel

{

int my_thread_num = omp_get_thread_num ();

double * my_data = new double[chunk_size ]; // Thread local array

for(int i = 0; i<chunk_size; ++i){ // Initialize local array to all 1.0

my_data[i] = 1.0;

}

ptr_array[my_thread_num] = my_data; // Stores start address of thread local

array to global pointer array

}

}

// Constructor for when n%(n/p)!=0

// Chunksize is not constant across all threads

// void computeStartStop(int myThreadNum , int numThreads , int loopLength , int

numGhost , int & myStart , int & myStop ,

// int & numLeftGhost , int & numRightGhost , bool debug)

segVector :: segVector(int length_ , int num_threads_)

{

#ifdef THREAD_PIN_TEST

std::cout <<"-----segVector�Creation -----"<<std::endl;

std::cout <<"Main�thread�is�currently�on�CPU:�" << sched_getcpu () << std::endl;

#endif

length=length_;

num_threads=num_threads_;

ptr_array=new double *[ num_threads ]; // Holds address of each threads first

element

thread_id=new int[length ];

offsets=new int[length ];

#pragma omp parallel

{
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int my_thread_num = omp_get_thread_num ();

#ifdef THREAD_PIN_TEST

#pragma omp critical

std::cout << "Thread�" << omp_get_thread_num () << "�is�currently�on�CPU:�" <<

sched_getcpu () << std::endl;

#endif

int my_start , my_stop , dummy;

computeStartStop(my_thread_num , num_threads , length , my_start , my_stop , false);

int my_chunk_size = my_stop - my_start;

double * my_data = new double[my_chunk_size ]; // Thread local array

for(int i = 0; i<my_chunk_size; ++i){ // Initialize local array

my_data[i] = 1.0;

}

int offset =0;

for(int i = my_start; i < my_stop; ++i){ // Write to thread ID array

thread_id[i]= my_thread_num;

offsets[i]= offset;

offset ++;

}

ptr_array[my_thread_num] = my_data; // Stores start address of thread local

array to global pointer array

}

}

/*

* Constructor accepts premade primitive array and initializes a segVector with its

values

*/

segVector :: segVector(double * input_array_ , int length_ , int num_threads_){

length=length_;

num_threads=num_threads_;

ptr_array=new double *[ num_threads ]; // Holds address of each threads first

element

thread_id=new int[length ];

offsets=new int[length ];

input_array=input_array_;

#pragma omp parallel

{

int my_thread_num = omp_get_thread_num ();

int my_start , my_stop , dummy;

computeStartStop(my_thread_num , num_threads , length , my_start , my_stop , false);
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int my_chunk_size = my_stop - my_start;

double * my_data = new double[my_chunk_size ]; // Thread local array

for(int i = 0; i<my_chunk_size; ++i){ // Initialize local array to values from

input array

my_data[i] = input_array[my_start+i];

}

// Write to thread ID array and offset array

int offset =0;

for(int i = my_start; i < my_stop; ++i){

thread_id[i]= my_thread_num;

offsets[i]= offset;

offset ++;

}

ptr_array[my_thread_num] = my_data; // Stores start address of thread local

array to global pointer array

}

}

// Multiplies entire array by ’multiplier_ ’

void segVector ::scale(double multiplier_)

{

#pragma omp parallel

{

double my_multiplier=multiplier_;

int my_thread_num = omp_get_thread_num ();

double * my_data = ptr_array[my_thread_num ];

for(int i = 0; i<chunk_size; ++i){

my_data[i]= my_multiplier*my_data[i];

}

}

}

// Diagnostic function:

// Level 0: Prints first element of each threads local array

// Level 1: Prints all the elements of each threads local array

void segVector ::test(int diagnostic_level_) const{

std::cout << "------------------------------------------------------" << std::

endl;

if(diagnostic_level_ ==0){

for(int i = 0; i < num_threads; ++i){

std::cout << "First�value�of�thread�" << i << "�" << "is:�" << *ptr_array[i]

<< std::endl;
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}

}

std::cout << "------------------------------------------------------" << std::

endl;

}

void segVector :: printVector () const{

std::cout << "Printing�Vector:�" << std::endl;

std::cout << "------------------------------------------------------" << std::

endl;

for(int i = 0; i < getLength (); ++i){

std::cout << get(i) << std::endl;

}

std::cout << "------------------------------------------------------" << std::

endl;

}

int segVector :: getLength () const{

return length;

}

double* segVector :: getThreadPointer(int thread_num_) const{

assert(thread_num_ >= 0 && thread_num_ < num_threads);

return ptr_array[thread_num_ ];

}

int segVector :: getNumThreads () const{

return num_threads;

}

int segVector :: getChunkSize () const{

return chunk_size;

}

void computeStartStop(int myThreadNum , int numThreads , int loopLength , int &

myStart , int & myStop , bool debug);

#include <iostream >

#include <omp.h>

void computeStartStop(int myThreadNum , int numThreads , int loopLength , int &

myStart , int & myStop , bool debug) {

int myChunkSize = loopLength/numThreads; // n/p

int chunkRemainder = loopLength%numThreads; // when n

%(n/p) != 0 remainder need be distributed

if (myThreadNum <chunkRemainder) { //

Distribute one element per thread starting with first thread

myChunkSize ++;
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myStart = myThreadNum * myChunkSize; // If a

thread gets a remainder its previous

// thread

had a

remainder

=>

start

position

changes

}

else {

// This figures out the position of the last chunk that received a remainder

element

// and updates the start position of all threads that didn’t receive an extra

item

myStart = chunkRemainder *( myChunkSize +1) + (myThreadNum -chunkRemainder)*

myChunkSize;

}

myStop = myStart+myChunkSize; // How far

to go based on your length

return;

}

// @HEADER

// ************************************************************************

//

// HPCCG: Simple Conjugate Gradient Benchmark Code

// Copyright (2006) Sandia Corporation

//

// Under terms of Contract DE-AC04 -94 AL85000 , there is a non -exclusive

// license for use of this work by or on behalf of the U.S. Government.

//

// This library is free software; you can redistribute it and/or modify

// it under the terms of the GNU Lesser General Public License as

// published by the Free Software Foundation; either version 2.1 of the

// License , or (at your option) any later version.

//

// This library is distributed in the hope that it will be useful , but

// WITHOUT ANY WARRANTY; without even the implied warranty of

// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

// Lesser General Public License for more details.

//

// You should have received a copy of the GNU Lesser General Public

// License along with this library; if not , write to the Free Software

// Foundation , Inc., 59 Temple Place , Suite 330, Boston , MA 02111 -1307

// USA
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// Questions? Contact Michael A. Heroux (maherou@sandia.gov)

//

// ************************************************************************

// @HEADER

#ifndef MYTIMER_H

#define MYTIMER_H

double mytimer(void);

#endif // MYTIMER_H

// @HEADER

// ************************************************************************

//

// HPCCG: Simple Conjugate Gradient Benchmark Code

// Copyright (2006) Sandia Corporation

//

// Under terms of Contract DE-AC04 -94 AL85000 , there is a non -exclusive

// license for use of this work by or on behalf of the U.S. Government.

//

// This library is free software; you can redistribute it and/or modify

// it under the terms of the GNU Lesser General Public License as

// published by the Free Software Foundation; either version 2.1 of the

// License , or (at your option) any later version.

//

// This library is distributed in the hope that it will be useful , but

// WITHOUT ANY WARRANTY; without even the implied warranty of

// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

// Lesser General Public License for more details.

//

// You should have received a copy of the GNU Lesser General Public

// License along with this library; if not , write to the Free Software

// Foundation , Inc., 59 Temple Place , Suite 330, Boston , MA 02111 -1307

// USA

// Questions? Contact Michael A. Heroux (maherou@sandia.gov)

//

// ************************************************************************

// @HEADER

// ///////////////////////////////////////////////////////////////////////

// Function to return time in seconds.

// If compiled with no flags , return CPU time (user and system).

// If compiled with -DWALL , returns elapsed time.

// ///////////////////////////////////////////////////////////////////////

#ifdef USING_MPI

#include <mpi.h> // If this routine is compiled with -DUSING_MPI

// then include mpi.h

double mytimer(void)
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{

return(MPI_Wtime ());

}

#elif defined(UseClock)

#include <time.hpp >

double mytimer(void)

{

clock_t t1;

static clock_t t0=0;

static double CPS = CLOCKS_PER_SEC;

double d;

if (t0 == 0) t0 = clock ();

t1 = clock () - t0;

d = t1 / CPS;

return(d);

}

#elif defined(WALL)

#include <cstdlib >

#include <sys/time.h>

#include <sys/resource.h>

double mytimer(void)

{

struct timeval tp;

static long start=0, startu;

if (!start)

{

gettimeofday (&tp , NULL);

start = tp.tv_sec;

startu = tp.tv_usec;

return (0.0);

}

gettimeofday (&tp , NULL);

return( (( double) (tp.tv_sec - start)) + (tp.tv_usec -startu)/1000000.0 );

}

#elif defined(UseTimes)

#include <cstdlib >

#include <sys/times.h>

#include <unistd.h>

double mytimer(void)

{

struct tms ts;

static double ClockTick =0.0;
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if (ClockTick == 0.0) ClockTick = (double) sysconf(_SC_CLK_TCK);

times(&ts);

return( (double) ts.tms_utime / ClockTick );

}

#else

#include <cstdlib >

#include <sys/time.h>

#include <sys/resource.h>

double mytimer(void)

{

struct rusage ruse;

getrusage(RUSAGE_SELF , &ruse);

return( (double)(ruse.ru_utime.tv_sec+ruse.ru_utime.tv_usec / 1000000.0) );

}

#endif
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