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Section 1: Introduction

The earliest problem in graph theory is the Konigsberg Bridge Problem. The city of

Konigsberg had seven bridges connecting four landmasses. As a game, the people in this city

tried to walk around the city crossing each bridge exactly once. None of the residents seemed

to be able to do this, but they could not prove that it was impossible. The Konigsberg Bridge

Problem was solved by Leonard Euler who utilized what Gottfried Wilhelm Leibniz “referred

to as geometria situs, or geometry of position. This so-called geometry of position is what is

now called graph theory” [4]. Euler showed that it was impossible to walk around the city

crossing each bridge exactly once. His reasoning in solving the Konigsberg Bridge Problem

set the foundation for the concept of Eulerian circuits (to be defined in the next section)

which is an integral part of much that has been proven in this paper.

Before delving too deeply into this subject, it is important to know just what is meant

by a graph in the context of graph theory. When most people hear the word graph, they

immediately think of a graph as it would be on a Cartesian coordinate system with the x

and y axes and ordered pairs. Although this is certainly a graph in certain fields of math,

this is not the type of graph we study in graph theory. In this paper, we will define a graph

in the following way:

Definition 1: A graph is a set of vertices V = {v1, v2, v3, ...} with a set of edges E =

{e1, e2, e3, ...} on those vertices. An edge is constructed by connecting two distinct vertices

vi and vj. We say vivj ∈ E. The set of vertices of a graph G will be denoted V (G) and the

set of edges E(G). If two vertices form an edge, they are said to be adjacent.

Independence is a crucial topic within the scope of graph theory. We define indepen-

dence in the following way:
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Definition 2: Let I be a set of vertices on a graph G. I is said to be independent if

for every u, v ∈ I, uv is not an edge in G.

For an example of independent sets, consider the following scenario. There are nine

computers connected on a network and three printers (printer 1, printer 2, and printer 3)

that service this network. Three computers print to printer 1, three to printer 2, and three

to printer 3. We say the three computers that print to printer 1 are independent of printer

2 and printer 3, the three computers that print to printer 2 are independent of printer 1

and printer 3, and the three computers that print to printer 3 are independent of printer

1 and printer 2. This example can be seen in Figure 1 below. The blue vertices represent

computers, and the green vertices represent the three printers.

1

3

2

Figure 1: Graphical model of computer and printer network

This example illustrates that independence has to do with connections and lack thereof.

Since the three computers that print to printer 1 have no connection to printer 2 and printer

3, they are independent of printer 2 and printer 3. In graph theory, independence works the

same way. To describe events, we use vertices, and to describe connections, we use edges
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between vertices. If two vertices are connected by an edge, they are not independent, but if

they are not connected by an edge, they are independent.

Vertex coloring is another concept used when looking into problems in graph theory.

Definition 3: We color a vertex v by assigning it a color i. A set of vertices Si is a

color class if every vertex in Si is colored i.

To gain a deeper understanding of vertex coloring, consider the following scheduling

problem. Suppose a school is attempting to schedule times for the final test of each class

the school provides. They have a total of 6 classes offered. Figure 2 below represents classes

that cannot be scheduled at the same time as each other. The classes are represented by

vertices and the conflicts are represented by edges.

1

2

1 2

2

2

Figure 2: Graphical model of six classes and their conflicts

We can color the vertices of this graph in order to see how many testing times we will

need to schedule all the final exams. Figure 3 below shows that we will need two time slots

since all vertices can be colored with two color classes. All the classes colored red can be

given during the same time slot and all the classes colored green can be given during a second

time slot.
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1

2

1 2

2

2

Figure 3: Test time scenario for six classes with conflicts modeled by vertex coloring

This example shows how vertex coloring can be a useful tool in solving scheduling

problems.

In this paper, we will use coloring to signify vertices that must be placed together into

independent sets. As described in Definition 3, the vertices that are all colored the same

make up what is called a color class. This paper will focus on color classes that are also

independent sets.

Thus far, we have considered independent vertex sets and vertex coloring separately.

The edges of a graph represent connections between vertices of a graph, and these edges

show us vertices which cannot exist together in independent sets. Vertex colorings show

which vertices must exist together in independent sets. Independence and vertex coloring

on graphs are two concepts that together will define colored independence.

Colored independence is a way in which we can understand scheduling/storage problems

where events that cannot occur together are modeled by vertices connected by edges, and

events that must occur together are modeled by vertices that have the same color. The

dimension that is added by looking at colored independence versus just independence alone

allows us to explore a broader set of problems. As an example, consider the graph in Figure

4 below with six different color classes.
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1 2 3 1 4 5

6 4 6 2 5 3

5 1 2 3 4 6

Figure 4: Coloring of a 3 by 6 grid

As it turns out, the way in which we partitioned the vertices of this graph into color

classes yields an independent set of no more than three. This is the case because if a vertex

from any color class is chosen, that vertex and the rest of the vertices in its color class are

adjacent to a vertex in each of the other five color classes. So no other vertex could be

chosen. Otherwise our set of vertices chosen would not be independent. Three is the size

of the maximum independent set of vertices on this particular graph with this particular

partition of vertices.

In the remainder of this paper, we will look more deeply into the idea of colored inde-

pendence. In particular, we will apply this idea to cycle graphs as well as 2 by n grids. By

understanding this concept on more types of graphs, we can better model different situations

and use this concept to solve scheduling problems.
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Section 2: Useful Definitions and Theorems

In this section, we will define several terms and state several theorems that are impor-

tant to know in order to understand the remainder of this paper. Some of the definitions

and theorems will be accompanied by examples in order to further enlighten the reader on

the term or theorem. Many of the examples will use a type of graph called a path.

Definition 4 [1]: A path P is a graph with vertex set V = {v1, v2, v3, ..., vn} and edge

set E = {v1v2, v2v3, ..., vn−1vn}. If the path has n vertices, we denote the path by Pn and

say n is the order of Pn.

In Section 1, we formally defined a graph and how graphs are made of vertices and

edges. The following definitions and theorem allow us to better understand graphs.

Definition 5: A vertex, v, and an edge, e, on a graph, G, are said to be incident if v

is one endpoint of e.

Definition 6: Let v be a vertex in a graph G. The degree of v, denoted deg(v), is the

number of edges incident with v.

Theorem 1 [2]: Let G be a graph with vertex set V = {v1, v2, ..., vn} and edge set

E = {e1, e2, ..., em}. Then
�

v∈V deg(vi) = 2|E|. In other words, the sum of the degrees

of vertices in G equals twice the number of edges.

Although we briefly discussed vertex colorings and independent vertex sets in the in-

troduction, the following definitions will give further explaination of these ideas. First, we

will expand on our knowledge of independent vertex sets by defining maximal and maximum

independent vertex sets.
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Definition 7: An independent vertex set M is a maximal independent vertex set if for

any vertex v not in M , M ∪ {v} is not independent.

Definition 8: Let L be a maximal independent vertex set on V (G) where G is any graph.

L is a maximum independent vertex set if for every maximal independent vertex set M on

V (G), |M | ≤ |L|. We denote the size of a maximum independent vertex set on a given graph

G as β(G).

Figure 5: Maximal and maximum independent vertex sets on P7

In Figure 5 above, the vertices colored green form a maximal independent vertex set,

and the vertices colored blue form a maximum independent vertex set.

The next definitions will expand our knowledge of vertex colorings and color classes

which were illustrated in the class scheduling example found in the introductory section.

Definition 9: Let G be any graph. A partition of the vertices of G into disjoint color

classes, S1, S2, S3, ..., Sr, is a proper vertex coloring if each color class Si is an independent

set. Note that these sets need not be maximal.

Definition 10: Two color classes, Si and Sj, on the vertices of a graph G are color class

neighbors if there exists some vi ∈ Si and some vj ∈ Sj such that vivj ∈ E(G).

Definition 11: Let Si and Sj be color classes. Si and Sj are said to be independent color

classes if they are not color class neighbors.
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In this paper, we will restrict the way in which we partition the vertices of a graph to

proper vertex colorings. Recall that given a partition Φ = {S1, S2, ..., Sr} of the vertices of

a graph G,
�

r

i=1 Si = V (G).

Definition 12: Given a graph G and partition Φ = {S1, S2, ..., Sr} of the vertices of G,

D ⊂ V (G) is a colored independent set if for each Si ∈ Φ either Si ∩D = Si or Si ∩D = ∅.

Note, D is an independent vertex set, but D need not be maximal.

An example of a colored independent set on P7 with partition Φ can be found in Figure

6 below. On this graph with this partition, D = S1 ∪ S3 is a colored independent set since

S1 ∩D = S1, S2 ∩D = ∅, S3 ∩D = S3, and S4 ∩D = ∅.

Next we will define the Φ-independence number as well as the independence partition

number. The independence partition number is the main focus of this paper.

Definition 13 [3]: Given a partition Φ of the vertices of a graph G, the Φ-independence

number is defined as the maximum size of a colored independent set. We denote the Φ-

independence number of a graph G with partition Φ as β(G; Φ).

Definition 14 [3]: The k-independence partition number is defined as

min{β(G; Φ) | Φ is a partition of V (G) into r color classes and |Si| ≤ k for 1 ≤ k ≤ r}.

We denote the k-independence partition number of a graph G as βPRT (k)(G).

Definition 15 [3]: The independence partition number of a graph G is βPRT (G) :=

min{β(G; Φ) | Φ is a partition of V (G)}.

A more informal way to describe the definition of the independence partition number is

as follows: For a graph G, there is a maximum independent vertex set associated with each
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partition Φ of the vertices of G. We call the size of these sets β(G; Φ) where G is a graph and

Φ is a partition of V (G). The independence partition number is the smallest β(G; Φ) value

we can get given every possible partition Φ of V (G). The independence partition number is

the number we strive to understand for different types of finite graphs.

Consider some partition Φ. Two or more color classes in Φ can be in a colored indepen-

dent set together as long as the color classes in the colored independent set are independent

from each other. It is worth noting that the colored independent set formed in this way is

not necessarily maximal. When looking for the independence partition number, we assume

that every color class is a neighbor with every other color class. If not, then there exist

independent color classes which could be combined into a single color class.

Φ 1 2 1 2 3 4 3

Γ 1 2 3 1 4 3 2

Θ 1 2 3 1 4 4 2

Figure 6: Three colorings of P7

Figure 6 above shows examples for many of the previous definitions regarding coloring.

First of all, the partitions of the vertices Φ and Γ are proper vertex colorings, but the

partition Θ is not a proper vertex coloring because the red color class includes two vertices
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which are adjacent. Next, notice there are many instances of color class neighbors. For

example, in the graph with partition Φ, the blue color class is a color class neighbor with the

green color class. We also see that the blue color class is independent from the yellow color

class. So, we could say the blue and yellow color class together form a colored independent

set. In fact, this is the maximum independent vertex set that can be found on this graph

with this particular partition. So, we say β(P7; Φ) = 4. Notice that β(P7; Γ) = 3. It turns

out that 3 is the minimum size of all the maximum independent sets found for all partitions

of P7. So βPRT (P7) = 3.

In order to prove claims for the independence partition number for different types of

graphs in this paper, we will use the idea of colored independence on paths. The inde-

pendence partition number on paths of order n has already been described in the following

theorem.

Theorem 2 [1]: For t ≥ 3 and a path of order n = 2(t− 1)2 + b, we have

βPRT (P2(t−1)2+b) =






t− 1 if b = 0

t if 1 ≤ b ≤ 3t− 2

t+ 1 if 3t− 1 ≤ b ≤ 4t− 3

.

Note that Theorem 2 describes the independence partition number on all finite paths.

In the proof of Theorem 2, another type of graph, called a linear forest, is used. We will also

be using linear forests in this paper. In order to define a linear forest, we first need several

other definitions.

Definition 16 [2]: A walk is a sequence of vertices and edges in a graph such that the

sequence alternates between vertices and edges, starting and ending with vertices, and each

edge in the sequence joins the vertices that occur immediately before and after it in the

sequence.
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Definition 17 [2]: Let G be a graph. H is a subgraph of G if V (H) ⊆ V (G) and

E(H) ⊆ E(G). We say G contains H. A graph is connected if every vertex is joined to

every other vertex by a walk. A disconnected graph is a graph that is not connected.

Definition 18 [2]: Let H be a subgraph of a graph G. The subgraph H is a component

of G if H is connected and H is not contained in any connected subgraph K of G where

|V (H)| < |V (K)| or |E(H)| < |E(K)|.

Definition 19 [2]: A graph LFn is a linear forest if each component of LFn is a single

vertex or a walk. We denote the number of vertices in the linear forest with the subscript

n. Note that a path is a linear forest.

Figure 7: LF7

An example of a linear forest and components of a graph can be seen in Figure 7 above.

There are three components in Figure 7. In additon to the definition of a linear forest, we

will use the following theorem concerning linear forests in the next section.

Theorem 3 [1]: βPRT (k)(LFn) ≥ n

2k .

In Section 1, we mentioned the name Euler. In order to prove several results in the next

section, we rely on a topic in graph theory attributed to Euler, namely, Eulerian circuits.

We will first define a circuit and then use that definition to define an Eulerian circuit.

Definition 20 [2]: A circuit is a walk that starts and ends at the same vertex.
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Definition 21 [2]: A circuit on a graph G is an Eulerian circuit if the circuit uses each edge

of G exactly once.

1

2

3

4

5

6

7

8 9

10

11

12

Figure 8: Eulerian circuit on a graph with 6 vertices of degree 4

In addition to the definition of an Eulerian circuit, we need the following theorem.

Theorem 4 [2]: A graph G has an Eulerian circuit if and only if every vertex in G has even

degree.

Figure 8 above illustrates an Eulerian circuit as well as the theorem we have about

Eulerian circuits. The vertices of the graph in Figure 8 all have even degree, and the

Eulerian circuit is made evident by the arrows and numbers associated with each edge. If

we follow the arrows starting at edge one, we will form an Eulerian circuit on this graph.
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Before moving on to the next section, we need to define two other types of graphs.

Definition 22 [2]: A complete graph is a graph in which each pair of vertices of the graph

is adjacent.

Definition 23: Amultigraph is a graph in which multiple edges are allowed between vertices.

As we move into the next sections, we will apply colored independence to different types

of graphs. Section 3 will look at colored independence on cycle graphs and Section 4 will

concentrate on colored independence on finite grids. The definitions in this section will aid in

the understanding of the lemmas, corollaries, and theorems found in the following sections.
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Section 3: Colored Independence on Cycle Graphs

With the definitions we covered in the last section, we can move on to describing the

independence partition number for all cycle graphs. We will use the previous definitions and

theorems to help us as we proceed. First of all, let us define a cycle.

Definition 24: A cycle Cn is a graph with vertex set V = {v1, v2, v3, ..., vn} and edge

set E = {v1v2, v2v3, ..., vn−1vn, vnv1}. If the cycle has n vertices, we denote this with sub-

script n and say n is the order of the cycle.

Ultimately, in this section, we will show that the independence partition number for cy-

cles Cn can be described with a single formula. In order to prove this, we need to start with

lemmas and theorems that will lead us to this end result. We will start with the following

lemma.

Lemma 1: For a cycle Cn of order n, βPRT (k)(Cn) ≥ n−k

2k .

Proof. Consider any cycle graph Cn, and suppose the vertices of Cn have some partition

Φ = {S1, S2, S3, ..., St} where max1≤i≤t|Si| ≤ k. We construct an independent set A = SI ⊆

V (Cn) where SI signifies one color class or the union of multiple color classes. The size of A

will then give us a lower bound for Cn.

Take any vertex v in Cn. The vertex v must be in some color class Si. Put the elements

of Si in A. Note that by definition of a proper vertex coloring A is an independent set.

Delete from Cn all vertices of the set Si ∪ {Sj : u ∈ Sj, v ∈ Si, and uv ∈ E(Cn)}. In other

words delete every vertex in Si and every vertex in a color class adjacent to Si. So, |Si|

elements have been added to A and, at most, |Si| + 2k|Si| total vertices have been deleted

from Cn.
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Since max1≤i≤t|Si| ≤ k, assume |Si| = k. So, at most, k+2k2 vertices are deleted. Note

that deleting any edge or combination of edges in a cycle results in a linear forest. So, we

are left with a linear forest with at least n−k−2k2 vertices. We continue adding vertices to

A and deleting vertices from our original graph in the same way as before. From Theorem

3, we have βPRT (k)(LFn−k−2k2) ≥ n−k−2k2

2k . Adding this to |A|, we have k + n−k−2k2

2k = n−k

2k .

Therefore, we can conclude βPRT (k)(Cn) ≥ n−k

2k .

1

2

3

1

5

6

4

1

3

5

2

4

A = ∅

Figure 9: Coloring of C12

6 A = S1

Figure 10: C12 after removing S1 and all color class neighbors of S1

Figure 9 and Figure 10 above show the idea behind Lemma 1. Figure 9 is a colored cycle

graph with 12 vertices and six color classes partitioning those vertices. Suppose we pick a

vertex v in S1. By putting the vertices of color class S1 into A, the resulting graph after

the deletion steps found in Lemma 1 is shown in Figure 10. Thus far, A = S1. Following
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Lemma 1, we include the vertices of S6 in A. So, A = S1 ∪ S6. Therefore, |A| = 4 since S1

has 3 vertices and S6 has 1 vertex. And, indeed, 4 ≥ n−k

2k = 12−3
6 = 3

2 .

This result from Lemma 1 helps us to prove the next two theorems, namely, that

βPRT (k)(C2k2+k) = k and βPRT (k)(C2k2) = k.

Theorem 5: βPRT (k)(C2k2+k) = k.

Proof. By Lemma 1, we know βPRT (k)(C2k2+k) ≥ n−k

2k = 2k2+k−k

2k = k. So, we need

to show βPRT (k)(C2k2+k) ≤ k. Given k, we can use 2k + 1 color classes, each of order k, to

construct a partition Φ. We will construct Φ so that for 1 ≤ i < j ≤ 2k + 1, there exists

elements vi ∈ Si and vj ∈ Sj such that vivj ∈ E(C2k2+k). This will ensure there will only be

one color class in any independent set since all color classes will be color class neighbors.

Let V (C2k2+k) = {v1, v2, ..., v2k2+k}. Let V (H) = {u1, u2, ..., u2k+1} where H is a com-

plete graph on 2k + 1 vertices. Note that the vertices of H all have degree 2k. So, each

vertex has even degree. This implies an Eulerian circuit exists on H beginning and ending at

u1. The Eulerian circuit contains exactly 2k2+k vertices. We get this number because there

are 2k2 + k edges in H. Since we use each edge of H exactly once in our Eulerian circuit,

we have 2k2 + k vertices in the circuit. Note that the circuit formed in this way is not a

subgraph of H. The Eulerian circuit found in H is a tool for constructing a partition of the

vertices of a cycle graph. In particular, this circuit will be used to construct the partition

Φ on C2k2+k. Each vertex vi on C2k2+k is placed into the color class Suj where uj is the i
th

vertex in the Eulerian circuit on H.

For color classes Si and Sj with 1 ≤ i < j ≤ 2k + 1, there are vertices vi ∈ Si and

vj ∈ Sj such that vivj ∈ E(C2k2+k) since the edge uiuj in H was traversed by the Eulerian

circuit. Therefore, any Φ-independent set can contain no more than one color class. So,

βPRT (k)(C2k2+k) ≤ k which means βPRT (k)(C2k2+k) = k.
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An instance of Theorem 5 can be seen in the following example. Consider the case k = 3.

The cycle has the vertex set V (C21) = {v1, v2 , ..., v21} and the complete graph H has the

vertex set V (H) = {u1, u2, ..., u7}. Since each vertex of H is even, an Eulerian circuit exists

onH. We will use this Eulerian circuit, u1u2u3u4u5u6u7u1u3u5u7u2u4u6u1u4u7u3u6u2u5 (note

that the first vertex u1 and the last vertex u5 connect to form the circuit), to construct the

partition Φ on C21. In fact, Φ = {S1, S2, S3, S4, S5, S6, S7}. Since u1 is the first vertex in the

Eulerian circuit, the first vertex in C21, v1, is placed into the color class S1. Similarly, since

u2 is the second vertex in the Eulerian circuit, v2 is placed into the color class S2.

By placing every vertex vi in to the color class defined by the ith vertex in the Eulerian

circuit, S1 = {v1, v8, v15}, S2 = {v2, v12, v20}, S3 = {v3, v9, v18}, S4 = {v4, v13, v16}, S5 =

{v5, v10, v21}, S6 = {v6, v14, v19}, and S7 = {v7, v11, v17}. In this example, it is clear that

βPRT (k)(C2k2+k) = k. This is illustrated in Figure 11 and Figure 12 below. Figure 11 shows

the Eulerian circuit on the complete graph with seven vertices. Figure 12 shows the coloring

of the cycle C21 based on the Eulerian circuit found in Figure 11.

In a similar way, we can show that βPRT (k)(C2k2) = k.

Theorem 6: βPRT (k)(C2k2) = k.

Proof. From Lemma 1, we know that βPRT (k)(C2k2) ≥ n−k

2k = 2k2−k

2k = k − 1
2 . Since

βPRT (G) has to be a whole number, we can say that βPRT (k)(C2k2) ≥ k.

Now we need to show βPRT (k)(C2k2) ≤ k. Given k, we can use 2k color classes each of

order k to construct a partition Φ. We will construct the partition Φ so that for 1 ≤ i < j ≤

2k, there exists some element vi ∈ Si and vj ∈ Sj such that vivj ∈ E(C2k2). This again will

ensure there is only one color class in any independent set.

Let V (C2k2) = {v1, v2, ..., v2k2} where v1v2, v2v3, ..., v2k2−1v2k2 , v2k2v1 ∈ E(C2k2). In order

17
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Figure 11: Eulerian circuit on the complete graph with six vertices
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Figure 12: Coloring of C21 based on the Eulerian circuit in Figure 11

to construct the partition on the cycle, consider a multigraphH with V (H) = {u1, u2, ..., u2k}

where H is constructed by starting with a complete graph on 2k vertices and adding the k
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edges u1u2, u3u4, ..., u2k−1u2k. Note that each vertex in H has even degree. This implies that

an Eulerian circuit exists on H beginning and ending at u1. The Eulerian circuit contains

exactly 2k2 vertices. This circuit will be used to define the partition Φ on C2k2 . Each vertex

vi on C2k2 will be placed into the color class Suj where uj is the ith vertex in the cycle on H.

For color classes Si and Sj, with 1 ≤ i < j ≤ 2k, there are vertices vi ∈ Si and vj ∈ Sj

such that vivj ∈ E(C2k2) since the edge uiuj is traversed by the Eulerian circuit in the

multigraph H. Therefore, any Φ-independent set can contain no more than one color class,

so βPRT (k)(C2k2) ≤ k, thus βPRT (k)(C2k2) = k.

For an example of Theorem 6 for a specific value of k, consider the case k = 3. The

cycle has the vertex set V (C18) = {v1, v2, ..., v18} and the multigraph H has the vertex set

V (H) = {u1, u2, ..., u6}. We construct the multigraph by starting with a complete graph

on six vertices and add three additional edges, u1u2, u3u4, and u5u6. We use the Eulerian

circuit u1u3u4u2u5u6u2u3u5u4u1u6u3u4u6u5u1u2 (Note that the first vertex u1 and the last

vertex u2 connect to form the cycle.) of H to construct the partition Φ on C18. In fact,

Φ = {S1, S2, S3, S4, S5, S6}. By placing every vertex vi into the color class defined by the

i
th vertex in the Eulerian circuit, S1 = {v1, v11, v14}, S2 = {v4, v7, v18}, S3 = {v2, v8, v13},

S4 = {v3, v10, v16}, S5 = {v5, v9, v15}, and S6 = {v6, v12, v17}. It is clear in this example that

βPRT (k)(C2k2) = k. This is illustrated in Figure 13 and Figure 14 below. Figure 13 shows

the Eulerian circuit on the multigraph with six vertices. Figure 14 shows the coloring of the

cycle C18 based on the Eulerian circuit found in Figure 13.

Now that we have shown that βPRT (k)(C2k2) = k and βPRT (k)(C2k2+k) = k for some

partition on their respective graphs, we need to show this is the case for any partition of the

vertices of C2k2 and C2k2+k.

19



1

2

3

4

5

6

Figure 13: Eulerian circuit on a multigraph with six vertices.
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Figure 14: Coloring of C18 based on the Eulerian circuit of Figure 13

Theorem 7: For a cycle of order 2t2 or 2t2 + t, βPRT (C2t2) = t and βPRT (C2t2+t) = t.

Proof. From the previous two results, we know there are partitions Φ and Γ such

that β(C2t2 ; Φ) = t and β(C2t2+t; Γ) = t. Note that βPRT (C2t2) ≤ β(C2t2 ; Φ) = t and

βPRT (C2t2+t) ≤ β(C2t2+t; Γ) = t. So, we need to show βPRT (C2t2) ≥ t and βPRT (C2t2+t) ≥ t.
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First, let us consider C2t2 . Let Φ = {S1, S2, ..., Sr} be a partition of V (C2t2). Let

J = max1≤i≤r|Si|. If J ≥ t, then it follows that β(C2t2 ; Φ) ≥ t. If, J < t, β(C2t2 ; Φ) ≥

βPRT (J)(C2t2) ≥ 2t2−J

2J >
2t2−t

2t = t − 1
2 . Since β(G) must be a whole number, we can

say β(C2t2 ; Φ) ≥ t. Since Φ was an arbitrary partition of C2t2 , βPRT (C2t2) ≥ t. Thus,

βPRT (C2t2) = t.

Now, we want to show the same thing for C2t2+t, namely that βPRT (C2t2+t) ≥ t. Let

Γ = {S1, S2, ..., Sr} be a partition of V (C2t2+t). Let Z = max1≤i≤r|Si|. If Z ≥ t, then

β(C2t2+t; Γ) ≥ t. If, Z < t, β(C2t2+t; Γ) ≥ βPRT (Z)(C2t2+t) ≥ 2t2+t−Z

2Z >
2t2+t−t

2t = t. Since Γ

was an arbitrary partition of C2t2+t, βPRT (C2t2+t) ≥ t. Thus βPRT (C2t2+t) = t.

In order to complete our description of the independence partition number on cycle

graphs, we must prove the following lemma.

Lemma 2: For any cycle Cn of order n where n > 2(t− 1)2 + (t− 1), βPRT (Cn) ≥ t.

Proof. Let Φ = {S1, S2, ..., Sr} be a partition of V (Cn) such that β(Cn; Φ) = βPRT (Cn).

Let J = max1≤i≤r|Si|. If J ≥ t, then it follows that β(Cn; Φ) ≥ t. If J < t, β(Cn; Φ) ≥

βPRT (J)(Cn) ≥ n−J

2J ≥ n−(t−1)
2(t−1) >

2(t−1)2+(t−1)−(t−1)
2(t−1) = t− 1. It follows that βPRT (Cn) ≥ t.

Now that we have the framework in place, we can prove the following formula describing

the independence partition number on cycle graphs of order n.
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Theorem 8: For t ≥ 3, t, b ∈ Z, and a cycle Cn of order n = 2(t− 1)2 + b, we have

βPRT (C2(t−1)2+b) =






t− 1 if b = 0 or b = t− 1

t if 1 ≤ b ≤ t− 2 or t ≤ b ≤ 3t− 2

t+ 1 if 3t− 1 ≤ b ≤ 4t− 3

.

Proof.

Case 1. Notice that this has already been proven in Theorem 7 for the cases when

b = 0 and when b = t− 1.

Case 2. 1 ≤ b ≤ t− 2

First, we must show βPRT (C2(t−1)2+b) ≥ t. We can assume that for each color class Si,

there exist vertices vi ∈ Si and vj ∈ Sj such that vivj ∈ E(C2(t−1)2+b) for 1 ≤ i < j ≤ r

where r is the total number of color classes. If not, there exist independent color classes

which can be combined into a single color class.

Suppose there exists a partition Φ such that β(Cn; Φ) = t− 1 where 2t2 − 4t+ 3 ≤ n ≤

2t2 − 3t. Then, there must be at least 2t− 1 color classes. Otherwise, n ≤ (2t− 2)(t− 1) =

2t2 − 4t+ 2 where t− 1 is the maximum size of a color class. If the number of color classes

is greater than 2t − 1, then n ≥
�
2t
2

�
= 2t2 − t > 2t2 − 3t. Thus, if such a partition exists,

it must contain exactly 2t − 1 color classes. In order to prove βPRT (C2(t−1)2+b) ≥ t, it will

suffice to show that no partition with exactly 2t− 1 color classes exists.

Note that only one color class can be in a Φ-independent set. In order to construct a

cycle with such a partition, consider a complete graph H on 2t−1 vertices. There must exist

an Eulerian circuit on H because all the vertices of H have degree 2t − 2 which is even. It

follows that
�

v∈V (H) deg(vi) = (2t− 1)(2t− 2) = 4t2 − 6t+ 2. From this fact and Theorem

1, we conclude that |E(H)| = 2t2 − 3t+1. Moreover, the cycle that is constructed from this

graph will have 2t2 − 3t+ 1 edges, but 2t2 − 3t+ 1 > 2t2 − 3t which implies b > t− 2. Since

b ≤ t− 2, no such partition Φ exists, showing that βPRT (C2(t−1)2+b) ≥ t.
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Now, all that is left to do for this case is to show βPRT (C2(t−1)2+b) ≤ t. From Theorem 2,

we know there exists a path Pn of order n = 2(t− 1)2+ b, 1 ≤ b ≤ t− 2 where βPRT (Pn) = t.

The way in which we color paths, outlined in the proof of Theorem 2 [1], ensures that the

first and last vertices of the path are in independent color classes. So the same coloring

found on a path yielding an independence partition number t will work for partitioning

the vericies of cycles of the same order. Therefore, we know βPRT (C2(t−1)2+b) ≤ t showing

βPRT (C2(t−1)2+b) = t for this case.

Case 3. t ≤ b ≤ 3t− 2

From Theorem 7, we know βPRT (C2(t−1)2+b) ≥ t. So all we must show for this case is

that βPRT (C2(t−1)2+b) ≤ t.

We know from Theorem 2 there is a path, Pn of order n = 2(t− 1)2 + b, t ≤ b ≤ 3t− 2

where βPRT (Pn) = t. Using the same reasoning as in Case 2, the coloring found on paths of

order n will work for cycles of the same order. Note, we can do this since the way in which

we color the vertices of the path, outlined in the proof of Theorem 2 [1], ensures the first and

last vertices will not be in the same color class. From this we get βPRT (C2(t−1)2+b) ≤ t which

leads to the same conclusion as Case 2, namely, that βPRT (C2(t−1)2+b) = t for this case.

Case 4. 3t− 1 ≤ b ≤ 4t− 3

As in the previous two cases, we know from paths that there exists a path Pn of order

n = 2(t − 1)2 + b, 3t − 1 ≤ b ≤ 4t − 3 where βPRT (Pn) = t + 1. It follows that a cycle Cn

of order n = 2(t− 1)2 + b, 3t− 1 ≤ b ≤ 4t− 3 will have βPRT (C2(t−1)2+b) ≤ t + 1. Now, we

must show that βPRT (C2(t−1)2+b) ≥ t + 1. Note that from Lemma 2, βPRT (C2(t−1)2+b) ≥ t.

So, it will suffice to show that it is impossible to have a partition on cycles of this order in

which βPRT (C2(t−1)2+b) = t.

We can assume that for each color class, Si, there are vertices vi ∈ Si and vj ∈ Sj such

that vivj ∈ E(C2(t−1)2+b) for 1 ≤ i < j ≤ r where r is the total number of color classes. If

not, there exist independent color classes which can be combined into a single color class. If
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there exists a partition Φ such that β(Cn; Φ) = t where 2t2 − t+1 ≤ n ≤ 2t2 − 1, then there

must be at least 2t color classes. Otherwise, n ≤ 2t2 − t < 2t2 − t + 1. If the number of

color classes is greater than 2t, then n ≥
�
2t+1
2

�
= 2t2 + t > 2t2 − 1. Thus, if such a partition

exists, it must have exactly 2t color classes.

Note that only one color class can be in a Φ-independent set. In order to construct

a cycle with such a partition, consider a multigraph H constructed by adding t edges to

a complete graph with 2t vertices. The t edges to be added to the complete graph are

u1u2, u3u4, ..., u2t−1u2t. By adding t edges in this way, note that all the vertices of H are

of degree 2t which is even. So, an Eulerian circuit must exist on H. We can derive that

|E(H)| = 2t(2t−1)
2 +t = 2t2 from Theorem 1. Moreover, the cycle that is constructed from this

graph will have 2t2 edges, but 2t2 ≥ 2t2−1 which implies that b > 4t−3. Since b ≤ 4t−3, no

such partition Φ exists. Thus, βPRT (C2(t−1)2+b) ≥ t+1 showing that βPRT (C2(t−1)2+b) = t+1.

Therefore, the theorem is proven.
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Section 4: Colored Independence on 2 by n grids.

Colored independence can be studied on other types of graphs besides cycle graphs and

paths. In this section, we will look at colored independence on a type of graph called a

grid. More specifically, we will be looking at grids with dimensions 2 by n. Unlike cycles,

the conjecture for a formula that describes the independence partition number on 2 by n

grids has not been proven, but in this section, we will state the conjecture, understand

the reasoning behind the conjecture, and identify reasons why proving the conjecture of the

independence partition number on 2 by n grids has posed problems. Let us first define a grid.

Definition 25: A grid, Gm,n is a graph with vertex set V = {v1,1, v1,2, ..., v1,n, v2,1,

v2,2, ..., v2,n, ..., vm,n} and edge set E = {v1,1v1,2, v1,2v1,3, ..., v1,n−1v1,n, v2,1v2,2, ..., v2,n−1

v2,n, ..., vm,n−1vm,n} ∪ {v1,1v2,1, v2,1v3,1, ..., vm−1,1vm,1, v1,2v2,2, ..., vm−1,2vm,2, ..., vm−1,nvm,n}.

We denote an m by n grid with subscripts m and n.

Figure 15 below gives an example of a 2 by 6 grid.

Figure 15: G2,6

The following is the conjecture that we will be considering in this section.

Conjecture 1. For t ≥ 4, t, b ∈ Z, and a grid G2,n of order n = 3t2−7t+4
2 + b, we have
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βPRT (G2, 3t
2−7t+4

2 +b
) =






t− 1 if b = 0 or b = t− 1

t if 1 ≤ b ≤ 5
2t− 2 and t is even

t if 1 ≤ b ≤ 5
2t−

5
2 and t is odd

t+ 1 if 5
2t− 1 ≤ b ≤ 3t− 3 and tis even

t+ 1 if 5
2t−

3
2 ≤ b ≤ 3t− 3 and t is odd

.

Much like the idea of the proof of Theorem 8, the first step in proving this claim is to

determine some type of lower bound for 2 by n grids with varying sizes of n and varying

sizes of color classes k.

Lemma 3: For a grid G2,n with order n, βPRT (k)(G2,n) ≥ 2n
3k .

Proof. Consider any grid G2,n, and let Φ = {S1, S2, S3, ..., St} be a partition of V (G2,n)

where max1≤i≤t|Si| ≤ k. We construct an independent set A = SI ⊆ V (G2,n) where SI

signifies one color class or the union of several color classes.

Pick any vertex, v, in G2,n with the stipulation that deg(v) = 2. The vertex, v, must

be in some color class Si. Put the vertices of Si in A. Next, delete from G2,n all vertices of

the set Si ∪ {Sj : u ∈ Sj, v ∈ Si, and uv ∈ E(G2,n)}. In other words delete every vertex in

Si and every vertex in a color class adjacent to Si. So, at this point, we will have deleted,

at most, 3k(|Si| − 1) + 2k + |Si| since deg(v) = 2. The term |Si| accounts for the vertices

in color class Si, 2k accounts for the vertices in color classes adjacent to v, and 3k(|Si| − 1)

accounts for the vertices of color classes adjacent to the vertices in Si not including v. So,

we have the ratio |Si|
3k(|Si|−1)+2k+|Si| =

|Si|
3k|Si|+|Si|−k

≥ 1
3k .

Assuming there are vertices that have not been deleted, pick another vertex q with

deg(q) ≤ 2. The vertex q must be in some color class Sm. Add the vertices of Sm to A and

delete vertices from remaining vertices as above. Continue this process until no more ver-

26



tices are remaining in G2,n. Since we have the ratio
|Si|

3k|Si|+|Si|−k
≥ 1

3k , at most 3k vertices are

deleted from G2,n for every vertex in G2,n. So, for the given partition Φ, βPRT (G2,n; Φ) ≥ 2n
3k .

This holds for any partition in which max1≤i≤t|Si| ≤ k. Therefore, βPRT (k)(G2,n) ≥ 2n
3k .

1 4 2 3 5 1 4 2

2 3 5 1 4 5 3 6

A = ∅

Figure 16: Coloring of G2,8

6 A = S1

Figure 17: G2,8 after removing S1 and all color class neighbors of S1

Figure 16 and Figure 17 above show the idea behind Lemma 3. Figure 16 is a colored

2 by 8 grid with 18 vertices and 6 color classes partitioning those vertices. Suppose we first

pick a vertex v in S1. By putting the color class S1 into A, the resulting graph after the

deletion steps found in Lemma 3 is shown in Figure 17. Thus far, A = S1. Following Lemma

3, we include S6 in A. So, A = S1 ∪ S6. Therefore, |A| = 4 since S1 has 3 vertices and S6

has 1 vertex. And, indeed, 4 ≥ 2n
3k = 2(8)

3(3) =
16
9 .

From Lemma 3, we have the following corollary.

Corollary 1: For a grid G2,n with order n = 3t2−7t+4
2 , βPRT (t−1)(G2, 3t

2−7t+4
2

) ≥ t− 1.

Proof. From Lemma 3, we know βPRT (k)(G2,n) ≥ 2n
3k . Using the fact that n = 3t2−7t+4

2
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and k = t − 1, we have βPRT (t−1)(G2, 3t
2−7t+4

2
) ≥ 2 3t2−7t+4

2
3(t−1) = t − 4

3 . Since the k-independence

partition number of a graph G must be a whole number, βPRT (t−1)(G2, 3t
2−7t+4

2
) ≥ t − 1 as

desired.

The fact that we have a lower bound for grids of order n = 3t2−7t+4
2 when all color

classes are less than t − 1 is reassuring, but even more reassuring is the fact that we can

construct grids at certain values of t that fit this lower bound. In fact, these graphs fit into

the statement of Conjecture 1. The following graphs depicted below in Figure 18, Figure 19,

and Figure 20 show a partition of vertices in each graph which produces the desired value

for an upper bound of the independence partition number for the specified value of n. We

will be looking at the specific values of n using values t = 4, 5, and 6. In other words, we

will be looking at colorings of G2,12, G2,22, and G2,35. In G2,12, all color classes will be of

size 3 or less; in G2,22, all color classes will be of size 4 or less; and in G2,35, all color classes

will be of size 5 or less following the rule that all color classes have size no larger than t− 1.

Note, from Lemma 3, we have βPRT (3)(G2,12) ≥ 2(12)
3(3) = 8

3 , so βPRT (3)(G2,12) ≥ 3. Similarly,

βPRT (4)(G2,22) ≥ 4 and βPRT (5)(G2,35) ≥ 5. So, if we can show there are graphs that produce

maximum independent vertex sets with sizes that match the lower bound for βPRT (k)(G2,n)

when n = 12, 22, and 35, this will give some credence to our conjecture. For the following

figures, we will denote different color classes using numbers only.
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1 4 2 6 3 8 1 4

2 3 5 1 7 2 3 5

7 5 7 8

6 8 4 6

Figure 18: Coloring of G2,12 showing βPRT (3)(G2,12) ≤ 3

1 4 2 6 3 8 1 10

2 3 5 1 7 2 9 3

2 3 4 7 5 9 6 11

11 1 5 6 8 4 10 5

4 8 9 7 11 8

6 7 10 11 9 10

Figure 19: Coloring of G2,22 showing βPRT (4)(G2,22) ≤ 4
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1 4 2 6 3 8 1 10

2 3 5 1 7 2 9 3

2 12 3 14 1 5 6 8

11 1 13 2 3 4 7 5

4 10 5 12 6 14 4 8

9 6 11 4 13 5 6 7

9 11 7 13 8 9 10 12

10 8 12 9 14 7 11 13

14 11 13

10 12 14

Figure 20: Coloring of G2,35 showing βPRT (5)(G2,35) ≤ 5

The fact that we can construct graphs to show βPRT (t−1)(G2, 3t
2−7t+4

2
) = t − 1 for t =

4, 5, and 6 gives reason to believe that the order chosen for n in the conjecture is correct.
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Although it is a little much to say these graphs give reason to believe the complete conjecture

for 2 by n grids to be true, it is encouraging to see a pattern hold for several examples.

With cycles, we had a way to construct the partition of the vertices of the graphs using

Eulerian circuits. The real challenge in proving the conjecture for 2 by n grids is to find a

method of constructing partitions for the vertices of grids which yield the smallest maximum

independent set. If we can find this construct, we are one step closer to describing the

independence partition number on 2 by n grids.
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Section 5: Conclusion and Further Direction in Research

Ideally, with further research, colored independence can be described on types of graphs

beyond paths, cycles, and grids. Theoretically, we should be able to expand the idea of

colored independence to any type of graph. In order to get to this point, several things have

to be studied.

First and foremost, the conjecture stated in this paper regarding the description of the

independence partition number for 2 by n grids needs to be proven. As was said in Section

4, we need a way to construct the coloring of the vertices in these types of grids. Once the

independence partition number has been established for 2 by n grids, the next logical step

would be to generalize to m by n grids. Once we have a firm grasp on the finite dimensional

grid, one could look at infinite grids, and the implications of colored independence on them.

In the first paragraph of this section, I mentioned that colored independence could

theoretically be studied on all types of graphs. This is not something that can be understood

without first understanding colored independence on many more types of graphs, but there

is a real chance that more research in this subject could reveal a more general idea of colored

independence. Although I have only studied this subject specifically on cycle graphs and 2

by n grids, I believe understanding colored independence on a more general level on any type

of graph must consider the degrees of vertices. Further research on colored independence

and its relation to the degree of vertices of a graph could give further insight into colored

independence on any type of graph.

Colored independence is a relatively new subject to study in the area of graph theory.

In Section 1, we discussed how the Konigsberg Bridge Problem was the tip of the iceberg

in terms of different problems in graph theory. It just took that one result from Euler to

spark the interest we have today in the field of graph theory. It is my hope that this paper

on colored independence on cycle graphs and finite 2 by n grids creates that same sort of

spark in this area of graph theory and prompts researchers to make further strides in this
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relatively new area of mathematics. With continued research and findings, we can better

understand colored independence and recognize how it can be helpful in solving problems in

the future.
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