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Abstract 

 The loss of a limb can be a very traumatic experience for a person. Prosthetics are 

devices that can help restore some of the functionality to the user. However, without insurance, 

prosthetics can be very expensive, creating demand for more efficient and cheaper prosthetics. 

My research uses an Arduino microcontroller to design a myoelectric prosthetic  a prosthetic 

that reads electrical signals from the residual limb and powers motors for movement. 

Introduction 

 Prosthetics are devices that substitute a missing or defective part of the body. Prosthetic 

devices have the ability to restore some, if not all, mobility and functionality to the wearer. These 

can range from oral prostheses to limb prostheses. Limbs are often lost through trauma, disease, 

or a congenital disorder. Once the limb is removed, it can be very hard to resume to a normal 

life. Prosthetic limbs help give the amputee some sort of mobility that they would not have had 

without the device. 

 The cost for a prosthetic leg alone ranges from $5,000 to $50,000. Even though some 

may cost more, they can only withstand about 5 years of wear and tear on average before 

needing a replacement. Thus, having a prosthetic limb is not a one-time cost. Glen Garrison, 

director of prosthetics and orthotics at the Hospital for Special Surgery in New York compared 

2 

 There are various requirements for an efficient prosthetic limb. In an article published by 

Marco Troncossi and Vincenzo Parenti-Castelli about design of prosthetic limbs, they created a 

 

1. The highest possible dexterity 
2. Good performance (in terms of velocity and forces/torques) 
3. Appropriate robustness 
4. Efficient control 
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5. A humanlike appearance 
6. A light weight 
7. Proper size and proportions 
8. Good comfort for the wearer 
9. Easy control for the amputee 
10. Extremely reliable components of the artificial system 
11. A low noise level 
12. Sufficient autonomy of the energy source to allow the prosthesis to work all day.3 

Each prosthetic limb is different, and each amputee can consider each of these twelve factors 

when being fitted for their new limb, however it can be hard to balance all of these factors into 

one device without increasing the complexity and cost. 

 The focus of my research was to design a low-cost upper limb prosthetic capable of 

elbow movement in response to electrical signals from the residual limb. I used an Arduino Uno 

microcontroller in my design, as well as aluminum rods for the basis of the arm. Ideally, anyone 

could learn to code the Arduino programming language, and be able to make the arm functional. 

My Arduino-arm design ended up being very low cost, and the concept can be built upon by 

anybody with an interest in the project. 

I . History 

Prosthetic devices date back to the 

ancient Egyptians. Often times, they used 

these devices for cosmetic appearance, as 

-spiritual sense of 

.1 They believed that amputation 

not only affected your current life, but also 

it affected you in the afterlife. Even after an 

amputee passed away, they buried their 
Figure  1:  The  big  toe  of  a  Mummy  located  in  the  Cairo  

Museum  1  
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amputated limb with them to be whole in their eternal life. In the Cairo Museum, there is a 

mummy on display that is clearly missing the big toe on its right foot, which has been replaced 

with a prosthetic (Figure 1). Although ancient Egyptians were the earliest known prosthetic 

wearers and users, the first written account of a prosthetic was between 3500 and 1800 BC in the 

Rig Veda  an ancient collection of sacred Indian hymns. It told a story of a Warrior-Queen who 

lost her leg and was fitted with a prosthetic so she could return to battle.1 

 Greek and Romans were found to be the next users of prosthetic devices. In 484 BC, a 

Persian soldier cut off his leg to escape imprisonment. He then replaced his leg with a wooden 

prosthesis. In 218 BC, the Roman General Marcus Sergius lost his hand. In order for him to 

return to battle, he fashioned himself an iron prosthesis which allowed him to hold his shield. He 

was able to return to battle and fought four times, even when the horse beneath him was stabbed. 

Later in life, Sergius tried and failed to become a priest because one needed to have two normal 

hands in order to become a priest.1 

 The Dark Ages and Renaissance period continued the use of prosthetics when needed. 

During the Dark Ages, prosthetics were made from various materials, such as wood, metal, and 

leather. The peg leg and hook hand were also introduced in the Dark Ages. These devices 

provided more motility to the amputee. Unfortunately, during the Renaissance period, barbaric 

amputations without anesthesia were still taking place. These amputations often led to 

hemorrhage, and infections were likely. The only people who could afford prosthetic devices 

were the rich.1 

Ambriose Paré, born in 1510, revolutionized the treatment and management of wounds. He 

was a barber-surgeon in the French Army. He aided in various wars, including the campaign of 

Piédmont from 1537 to 1538, as well as the 
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dressed him, and God healed him,

his methods. During the siege of Turin, he made his 

first real discovery. Instead of using cauterization and 

boiling oil to treat the wounds, he used dressings and 

soothing ointments. He noticed a significant difference 

in the conditions of these patients. He included this 

discovery in his Method of treating wounds in 1545 

(Figure 2).1 

New amputation techniques formed during the 

mid-nineteenth century, when doctors began using 

anesthetics such as chloroform or other ethers.4 Along 

with this, various refinements, medicine, and prosthetic 

science greatly improved surgery and the functional 

prosthetic device. The Veterans Administration 

managed amputation centers, including the 

construction of the artificial limb lab at the Walter Reed Hospital, located in Washington D.C., 

after World War I in 1918.4 During World War II, research on body powered prosthetics became 

popular. Such devices included a system in which a shoulder harness delivers movement through 

a cable mechanism upon movement of the back. After World War II, most of the research went 

towards creating myoelectric prosthetics  devices which use the muscle impulses from residual 

limbs to power their movement. Myoelectric prosthetics are still being researched today, and 

new ways are being found to read signals from the residual limbs, as well as increase the clarity 

of the myoelectric signal.4 

Figure  2:  The  Method  of  Curing  Wounds  by  
Ambriose  Paré     1545  

  
(http://parthenissa.wordpress.com/2013/08/18/bedside-‐

manners-‐surgeons-‐and-‐the-‐wounded-‐romance-‐hero/)  
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I I . Types of Prosthetics 

Every amputation is different, and each upper limb prosthetic can be categorized by 

degree of amputation. For instance, in the upper limb a transhumeral amputation refers to a 

severing of the arm above the elbow, distal to the shoulder, while a transradial amputation refers 

to a severing below the elbow. Similarly, the transfemoral and transtibial amputation sever the 

leg above and below the knee, respectively.  Figure 3 illustrates this concept. 

  

Figure  3:  Levels  of  Amputation.  The  image  on  the  left  shows  the  levels  of  arm  amputation,  while  the  right  shows  
the  levels  of  leg  amputation.  

  
(Arm:  http://www.labour.gc.ca/eng/health_safety/pubs_hs/images/forearm-‐palm-‐turned-‐up.jpg)  

(Leg:  http://www.myaamiacenter.org/MCResources/modules/cse/bodyparts2012/leg/leg_images/empty.png)  

 The previous categories of amputations set the stages for the types of systems that 

physicians can use when fitting a prosthetic device. One type of system is an osseointegrated 

implant for the prosthesis. This means that the prosthesis is in direct contact with the bone. This 

technique has been in clinical use since 1965. Osseointegration assures a stable, long-term 

attachment for external prostheses.5 These types of prostheses help to improve the control of the 

limb, as well as eliminating several socket-caused skin disorders. Most of these implants are 

made from titanium because of its durability and the lack of infections that occur with them. 

Osseointegration, however, is not the only system for prosthetics. 

http://www.labour.gc.ca/eng/health_safety/pubs_hs/images/forearm-palm-turned-up.jpg
http://www.myaamiacenter.org/MCResources/modules/cse/bodyparts2012/leg/leg_images/empty.png
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 One of the most common systems for prosthetics is the suspension system. These often 

residual limb. More modern suspension systems have what is known as a suction socket. The 

Open Prosthetics Project describes the suction socket as follows: 

A suction socket attaches by creating a vacuum between the stump and the prosthesis. As 

the patient dons the prosthesis, air is expelled from the socket through a one-way valve. 

The negative pressure around the stump holds the prosthesis in place until the user 

releases it by opening the valve. 6 

Each of these three systems can be used when trying to design a functional prosthetic device. 

 There are three types of upper limb prosthetics. The first is a cosmetic prosthetic. This 

often has little to no functional use. It is often used for cosmetic use, hence its name. It takes on 

the appearance of whatever part of the arm or hand is missing.7 Body powered prosthetics are 

operated by multiple cables and are connected to the residual portion of the body. The advantage 

of these is that they do not require any electrical power supply. The main disadvantage to these 

type of prosthetics is that they require an unnatural movement in order to operate them to 

perform a task. 7 The third type is myoelectric prosthetics. This will be the main focus of my 

research. 

 Myoelectric prosthetics are controlled by muscle signals that are given off by the residual 

limb. Often times, these signals are recorded by using electromyography, or EMG. Surface 

electrodes are placed on the skin of the residual limb to pick up the signals that are transmitted 

down the nerves to this limb. This type of prosthetic can often allow the user multiple degrees of 

freedom, DOF, meaning multiple movements can often be made simultaneously and within a 

smooth succession.7 As myoelectric prosthetics have become more and more advanced, they 

have provided some of the most life-like movements of any prosthetics out there. 
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I I I . Prosthetic Movement 

 Prosthetics have often been used for cosmetic purposes and have had minimal 

functionality in the past. However, as we continued to modernize, prosthetics began becoming 

more and more functional. These modernizations have allowed prosthetics to provide several 

degrees of freedom. 

 The overall goal of an effective prosthetic is to provide little fatigue, as well as supply the 

amputee the ability to perform more tasks than it would have previously been able to, with or 

without an old prosthetic. Some tasks can be more demanding than others. For example, an 

elbow flexing is pretty simple. It only has two degrees of movement. However, the wrist has at 

least four degrees of freedom, flexion, extension, adduction, and abduction. 

Another way to determine an effective prosthetic is how often the prosthetic is able to repeat a 

given task. For instance, the waving of a hand is not exactly the same each time, even if it is 

coming from the same person. There will be slight deviations in how the wrist moves with each 

wrist movement. An efficient prosthetic wrist will imitate this movement, with only slight 

 

I V . How Muscles Contract 
  
A. Action Potentials 

The central nervous system in the 

brain generates what is known as an 

action potential. This action potential is 

what stimulates a particular function 

within the body. In our case, we are 

picking up action potentials that signal 

the muscles to move. These action Figure  4:  The  stages  of  an  action  potential  
  

(http://psychlopedia.wikispaces.com/file/view/0199210896.action-‐

potential.1.jpg/324833618/0199210896.action-‐potential.1.jpg)  



12 
  

potentials travel down axons. The terminal buttons of these axons release a neurotransmitter that 

initiates a response in the target cell. 8 

 These action potentials consist of a variety of steps within the cell membrane of the axon. 

A summary of the steps are diagramed in Figure 4.  

1. Resting membrane potential occurs when all voltage-gated ion channels are closed.  

2. When a stimulus is received, the sodium activation gate opens and the permeability to 

sodium in the cell increases. Sodium floods into the cell. This causes an explosive 

depolarization of the cell. This is the rising phase of an action potential. 

3. At the peak of an action potential, the sod

permeability to sodium falls. This causes movement of sodium into the cell to decease. At 

potassium increases. Potassium floods out of the cell. 

4. As potassium leaves the cell, the cell begins to repolarize towards resting potential. This 

is the falling phase of an action potential. 

5. When the cell returns to resting membrane potential, the sodium activation gate closes, 

while the inactivation gate opens. This allows the cell to be ready for another 

depolarizing event.  

6. During this time, there is still outward movement of potassium, causing a 

hyperpolarization of the cell.  

7. The potassium activation gate then closes and the membrane is able to fully return to 

resting membrane potential. 8 
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 A muscle contraction is performed by using the above mechanism. The EMG signal is 

then based on reading the depolarization and repolarization events of these action potentials of a 

muscle fiber. 

B. Neuromuscular Junction 

Skeletal muscle is composed of many components. A muscle is composed of a collection of 

muscle fibers, which contain myofibrils. Within these myofibrils are sarcomeres that contain the 

thick and thin filaments, 

myosin and actin 

respectively. Surrounding 

these muscle fibers is the 

sarcoplasmic reticulum, 

which contains an 

abundance of calcium. Each 

of these components work 

in synchrony when a signal 

is sent to the muscle cell. 8 

An axon of the nervous 

system is synapsed with the 

muscle cells. The synapse is 

known as the neuromuscular junction. When an action potential arrives at the terminal button of 

the neuromuscular junction, acetylcholine release is stimulated. The binding of acetylcholine on 

the motor end plate of the muscle cell triggers an action potential in the muscle fiber. This action 

potential moves across the surface of the membrane to structures known as T-tubules. These T-

Figure  5:  The  neuromuscular  junction.  The  green  molecules  represent  
Calcium  ions.  These  are  released  from  the  Sarcoplasmic  reticulum  (blue)  

when  the  action  potential  travels  down  the  T-‐tubule.  Calcium  interacts  with  
the  myofibrils  and  promote  muscle  contraction.  

  
(http://classconnection.s3.amazonaws.com/548/flashcards/1531548/jpg/eccicm133660314844

8.jpg)  
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tubules run inside the muscle fiber. They carry the action potential down into the muscle fiber 

and stimulate release of calcium from the sarcoplasmic reticulum. 8 

When the released calcium binds to troponin on the thin filaments, the troponin changes 

shape to expose the myosin binding site on the actin of the thin filaments. Myosin cross bridges 

are then able to attach to these myosin binding sites. Binding of the myosin heads triggers the 

cross bridges to bend, pulling the thick filament towards the center of the sarcomere. The energy 

used to power this movement is provided by ATP (Adenosine Triphosphate). After the 

movement of the myosin, the cross bridge detaches from the actin binding sites. If the calcium 

still remains present due to action potential, this process is repeated. Figure 6 shows the process 

of the calcium being released from the sarcoplasmic reticulum and binding to the troponin to 

change the shape, and myosin heads performing their ratcheting effect.8 

Once action potentials stop, calcium is taken back up by the sarcoplasmic reticulum. Since 

there is no longer any calcium on the troponin, it reforms its original shape and covers up the 

myosin binding sites on the actin. This blocks any myosin from binding. Contraction stops and 

the thin filaments slide back to their original relaxed positions.8 

V . E lectromyography 

Electromyography is a technique used to pick up signals produced by the nerves in target 

skeletal muscles. These signals are captured by electrodes and sensors and then converted into a 

digital signal by an encoder. This signal is then processed and displayed by a computer program 

(Figure 6). 

Muscle  
Fiber  Nerves

Electrodes  
and  Sensors

Encoder
Processing  
and  Display

Figure  6:  The  process  of  electromyography 
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The electrodes and sensors are what make 

electrical contact with the skin. These electrodes are 

often times directly connected to the sensor. Many 

-

mechanism that allows an easy connection between 

the two. Two of these electrodes are often placed on 

the target muscle, while the third is meant to ground 

the signal and is often attached on or near a bone. 

For example, if we are to pick up signals from the 

biceps brachii muscle group, two electrodes would 

be placed on the upper and lower portions of the 

muscle, while one electrode is placed near the elbow to ground the electrodes. When action 

potentials occur in the muscle fibers, the electrodes receive this spiking activity. The EMG is an 

electrical recording, not mechanical. The strength of muscle contraction corresponds to the size 

of the signal strength, which in this case corresponds to the amount of voltage output. 

The processing software often times converts the raw EMG information into a smooth 

curve. To do this, the software often uses what is called the Root Mean Square, or RMS.9 The 

RMS coincides with the mean power of the signal. This now smooth graph of the EMG signal 

can now be analyzed. An example of the RMS method is shown in Figure 8. 

Figure  7:  EMG  electrode  placement  
  

(http://www.orthopaedicsone.com/download/attachments/4

030731/biceps.jpg) 
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Figure  8:  Example  of  raw  EMG  conversion  to  its  root  mean  square  (RMS)  equivalent  

  
(http://1.bp.blogspot.com/-‐podnGYNuTaY/T8WR-‐XK7ASI/AAAAAAAAAD8/76dr0fxpDGw/s1600/ideal1.jpg)  

V I . Myoelectric Prosthetics 

A. Non-Pattern Control 

As stated before, myoelectric prosthetics use EMGs in order to turn nerve signals into a 

desired movement. Non-pattern control myoelectric prostheses use only the nerve signals to 

generate movement. These prostheses use electrical motors, often powered by a rechargeable 

battery, in order to power the desired movements.10 Myoelectric prosthetics have several 

advantages, including the relative ease of use, comfort, and an incredible promotion of building 

muscle tone.11 The residual limb tissue affecting the amount of noise on the EMG signal is 

among the disadvantages of myoelectric prosthetics.11 Regardless of disadvantages, myoelectric 

prosthetics are some of the most researched prosthetic devices in the world today. 

Myoelectric prosthetics have various types of functions. One type uses EMG signals to 

estimate the amount of force an intact limb would have produced, and in turn, allows the 

prosthetic to move with a similar force. Even though movement like this is ideal, it also has some 

limitations. An electrode placed on a particular area might not target one specific muscle. 12 



17 
  

However, there may be other muscles conducting signals that can be picked up by that electrode 

and create an alteration from the ideal response from the muscle. Along with this, in order to 

measure an average power signal of a muscle, several electrodes must be placed to measure an 

average.12 However, having several electrodes runs counter to the purpose of creating a 

simplistic model for force output.  

B. Pattern Control 

Another form of myoelectric prosthesis is created by using pattern recognition. This often 

requires rigorous training and a multitude of electrodes in order to get the desired motions, 

however, pattern recognition prosthetics often provide the user the ability to perform multiple 

motions in one smooth succession.13 

In order to use one type of pattern recognition to control the prosthetic device, a 

procedure called target muscle reinneravtion (TMR) is often performed. This procedure often 

transfers selective nerves of the brachial plexus to new muscle sites (Figure 9). Relocation of 

Figure  9:  Target  Muscle  Reinnervation  14  
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these nerves depends on the type of amputation, however, it has been found that this type of 

procedure and prosthetic device works best with patients with a shoulder disarticulation or 

transhumeral amputation. With a shoulder disarticulation, the median, radial, musculotaneous, 

and ulnar nerves are transferred to the pectoral muscles.14 In a transhumeral amputation, the 

median nerve is transferred to the medial biceps, and the distal radial nerve is moved to either the 

brachialis or lateral triceps.14 From here, pattern recognition is used to move the prosthetic. The 

patient must go through a vigorous training regimen in order to train themselves to flex particular 

muscles, of which they are not used to flexing, in order to move their new prosthetic. A newly 

developed program to help the training process is called The Acquisition and Control 

Environment (ACE). This program is a flexible MATLAB-based environment that among many 

features, allows for configuration of the prosthetic device.14 With some training and practice on 

this system, the patient would ideally be able to move their new prosthetic in a fluid like 

movement, almost as if they had not lost the limb to begin with.14 

Materials and Methods 
I . Materials 

An Arduino Uno 

microprocessor was the basis of the 

materials for this design. The Uno is 

relatively small and quite functional. 

Attached to the Arduino is an 

Adafruit Motor Shield  (v2). The 

motor shield is able to drive DC and 

stepper motors much more 

efficiently than using Arduino alone. 

Figure  10:  Arduino  Uno  Motor  Party  Pack  (v2)  
  

(http://www.adafruit.com/product/1438) 
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The shield has the ability to drive up to 4 DC motors or 2 stepper motors at one time, along with 

an ability to stack if multiple motors are required. If you were looking for a more functional 

prosthetic with more motors, the Adafruit Motor Shield would be able to provide this. 

 In addition to the motors supplied in the Adafruit Motor Party Pack (6 volt DC hobby 

motor, small stepper motor, standard size servo motor, and micro-size servo motor), a 68oz and 

125oz stepper motors were purchased from SparkFun, an online retail store that specializes in 

the one supplied in the party pack would not have been able to support the arm. Stepper motors 

t of torque 

and are able to move heavier objects than a servo motor. One downside with the stepper motor is 

the fact that it does not detect if the object does not move; it just keeps going until the Arduino 

program tells it to stop moving. However, this type of motor seemed reasonable for purposes of 

the project. 

 The metals used in the construction of the arm are a 1-inch and ½-inch diameter 

aluminum rod. I went with aluminum since it is extremely malleable, flexible, and lightweight. 

For prosthetics, being lightweight is a key component, or at least life-like. The elbow was chosen 

because it was the simplest of movements, flexion and extension, compared to the wrist or 

fingers, which have a vast amount of movements. The elbow joint created the ½-inch aluminum 

rod and specially designed hinges created out of a thin sheet of aluminum. 

In order to read the electric potential from the muscles of the arm (EMG), a Muscle 

Sensor Kit was purchased from SparkFun. This kit includes a special microcontroller, with 

electrode hook-ups. The electrodes are place in the same location as described previously. 

Ideally, the microcontroller would pick up the electrical signals from the arm and relay the 
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signals to the motors for movement. The 

Muscle Sensor, however, does not send 

the raw signals from the muscles to the 

motors. The sensor converts the signal into 

a rectified and smoothed wave as 

described previously with RMS, such that 

Analog-to-Digital Converter (ADC).15 

This is conversion is illustrated in Figure 

11. The ADC converts the analog voltage 

into a digital signal to be processed. 

I I . Design 

 The design of the arm is very basic. It consisted of a nine-inch section of the 1-inch 

aluminum rod, while the forearm was a twelve-inch section of the ½-inch aluminum rod. The 

lengths of the rods were estimated by measuring my own upper arm and forearm lengths. The 

elbow was specially designed since I had a 

hard time finding the kind of elbow joints 

that I was looking for. Using the thin sheet 

of aluminum, I cut out a special design 

shown in Figure 12. This design was placed 

on both the upper arm portion, and the 

lower arm portion in the orientation shown 

Figure  11:  Conversion  of  Raw  Sine  Waves  to  the  Rectified  and  
Smoothed  Sine  Wave  by  the  Muscle  Sensor  15  

Figure  12:  Elbow  hinge 
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in Figure 13. When the ½-inch aluminum bar is placed in the holes created by this piece, a hinge 

joint is created, much like that of the elbow in the arm.  

 A wire would be connected to the stepper motor and then connected to a position on the 

forearm. Once a signal for contraction was received, the stepper motor would begin rotating, thus 

pulling the forearm upwards, creating a smaller angle and simulating flexion. When relaxation 

begins, the motor would move in reverse, thus returning the arm to its original position. The 

initial algorithm can be found in Appendix 5. 

I I I . Why Use A rduino? 

-source electronics prototyping 

platform based on flexible, easy-to- 16 Arduino can be used to make 

interactive objects or environments. Often times, the Arduino microprocessor is connected to a 

breadboard which houses the various components of the circuit, such as resistors and capacitors. 

The Arduino can read input from a variety of sensors, such as touch, and can control various 

outputs, such as sound, light, and motors.  

Figure  13:  Final  elbow  hinge 
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The Arduino programming language is loosely based on the C programming language. 

There are four basic elements to the language: expressions, statements, statement blocks, and 

function blocks. Expressions combine operands and operators. This can be used to set variables, 

add to functions, etc. Statements complete an instruction desired by the programmer. Statement 

blocks consist of one or more statements grouped together so they are viewed by the compiler as 

though they are a single statement. Often times, these are also known as loops (if, else if, for, 

while, etc.). The function block, also known as a method, is a block of code designed to 

accomplish a single task.17 What sets Arduino apart from various other microcontroller boards is 

its ease of use, rather cheap cost, and extreme functionality. This is why I went with using 

Arduino. Plus, I had a small background in the programming language and its multiple uses. 

Results and Discussion 

 Upon starting this project, I was very ambitious. My initial idea before proposing the 

project was to work with creating a hand. However, with as many special movements the hand 

and wrist does, the elbow was more simplistic. Even then, the elbow proved to have some 

difficulty when it came to the coding aspect.  

 I first began by wiring up the Motor Shield in order to get the stepper motors moving. I 

ran into some problems with this because the stepper motors just seemed to vibrate instead of 

actually rotate. This problem was easy to fix, though. Stepper motors have two coils inside them 

which help 

the stepper motor itself. In the motor I was using, there are 6 wires, 2 for each of the coils, and 

the other two could be ignored at the time. The wiring I had was incorrect in that I had the one 

wire from each of the coils wired together, instead of each individual coil wired together. Once 

this problem was fixed, the motors were able to move without any problems. 
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    The Muscle Sensor proved to have some difficulty. Initially, the wiring was the 

problem. Appendix 1 shows how the Muscle Sensor microcontroller should be wired to the arm, 

as well as to the Arduino Uno microcontroller. Upon hooking up the batteries to the 

microcontroller, as shown in the image in Appendix 1, the microcontroller got very hot, to the 

point of not being able to touch it anymore, and a burning odor came from it. This was only one 

of the many complications with the microcontroller. 

 In the proces

data. However, when trying to compile the program, there was a processing.serial error, 

specifically, it was not allowing me to import the processing.serial library into the Arduino 

program. Without this library, I would have no way to visualize the results of the muscle 

contractions. After extensive troubleshooting, I was not able to resolve this probem.  

 Since the Muscle Sensor was not working very well, I focused more on the motor 

movement itself. Ideally, I wanted to have the motor  arm a certain degree, and then 

move back to its original position after a certain amount of time. There are various example 

codes in the Arduino library that assisted me in working with this undertaking. By using the 

Adafruit Stepper Library (<AFMotor.h>), I was able to set the number of steps in order to 

achieve the desired distance that the arm would move, as well as be able to release it back to its 

original position after a given time.    

 Had time permitted, I would have run an experiment using a number of subjects to 

measure the EMG activity from their biceps brachii muscle. Each subject would be hooked up to 

a LabPro EMG sensor. This is completely non-invasive. Surface skin electrodes would be placed 

on the biceps brachii muscle group of each of the subjects. These electrodes are then connected 
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to the LabPro interface, which is connected to the computer. The subjects would then have been 

asked to relax their arm with a 5 to 15 pound weight in their hand. When prompted, the subjects 

would then count to three as they curl the weight up towards their shoulder and hold it for a few 

seconds, before curling down for three seconds. These steps would be repeated about ten times 

per subject.  

 Once all the data was collected, the EMG would be converted to relative force output. I 

would have found an average amplitude for contraction force and checked for statistical 

significance. This information would have been imputed into the Arduino Processing code 

provided by the Muscle Sensor microcontroller. This information would then have been read by 

the Arduino, and once the muscle contraction exceeded that average amplitude, the motor would 

move until contraction stopped. Upon relaxation of the muscle, the motor would have moved in 

reverse and the arm would have moved back to its original position. However, since the Muscle 

Sensor microcontroller did not work out as planned in the time I had for the project, this part of 

the project became unnecessary, but the data could be collected for future research with the 

Arduino microcontroller and Muscle Sensor.  

 In the end, upon completion of my project, I was able to come up with a design, and 

beginnings of an Arduino code that could be easily adapted once the Muscle Sensor is in 

working order. I also was able to cut out various pieces of the arm, but time permitting, was not 

able to put it all together.  

Conclusion 

 Overall, the project shows how versatile Arduino can be. The concept behind the project 

holds, in that using Arduino provides a cheap and effective way to create or tweak a myoelectric 
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prosthetic. The current design I created for the elbow right now is basic and can be upgraded 

with a little imagination and hard work. 

 The background research that I did with Arduino proved that the concept and idea was 

possible. Several people have used the Muscle Sensor Kit in order to use their muscles to control 

a device. For example, a young gentleman was able to code the Muscle Sensor into reading the 

contraction of his bicep muscle in order to move the character Mario in Super Mario Bros. 

AdvancerTechnologies, the developers of the Muscle Sensor, posted a video on how to create a 

sensor picked up the contractions of the muscles and displayed lights and played sound with each 

contraction, making it seem like you were Iron Man himself.15 

  The metals that were used were relatively cheap, roughly $25 and $10 for 4 feet each of 

the 1-inch and ½-inch diameter aluminum rods, respectively. From the metal purchased, about 4 

arms could have been made if I so chose to. The Arduino itself, along with the motors, shield, 

and sensors, total roughly $200. As long as a computer is available, and battery power for the 

Arduino and the Muscle Sensor, a myoelectric arm can be built and created for under $300. This 

is an amazing reduction in cost compared to the $5,000 to $50,000 for a prosthetic that lasts five 

years, at most. The Arduino arm may not be as sturdy or versatile as these more advanced 

prosthetics, but if you are on a budget, or health insurance does not cover enough of an advanced 

prosthetic, and you are looking for something more life-like than having the residual limb, then 

mb. The Arduino software is 

very open, and anyone with a creative mind can put to great use. There can be a huge field of 

work out there where people can tweak how their arm works by a simple tweak in the Arduino 

code.  
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Future Work 

 There are several modifications to improve the design that I created for the myoelectric 

prosthetic arm. First, a more secure elbow joint could be created. There are various metal pieces 

can be found in hardware stores, or even designed, to create a more functional elbow. Recall that 

my elbow only consisted of cutting a special design out of a thin sheet of aluminum and 

attaching it to the sides of the aluminum rods (see Figures 12 and 13). 

 Second, a further understanding of the Muscle Sensor should be had in order to create the 

myoelectric aspect of the prosthetic. The idea is out there, and it is possible to do so, however, I 

was not able to get this to work. For this to work, a threshold should be set on contraction so 

when that threshold is reached, the myoelectric arm will move. 

 Along with an understanding of the Muscle Sensor, there are different ways that one 

could read the input signals. For example, you could translate strength of contraction into how 

far the arm moves, or is able to hold its position with resistance pressing against it. Another 

example is designing pattern recognition software for Arduino, to make the arm more state of the 

art and functioning better.  

 Finally, besides reducing the cost of the arm, even though it is low cost as is, more 

research can be done on increasing the amount of functionality in the arm. For instance, creating 

a hand or a hook that works in synchronous with the arm. Since Arduino is so versatile, many 

projects can be deduced from this one idea. This research project is very open ended, and with 

the right imagination, can be taken anywhere. 
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Appendix I : Muscle Sensor Setup 
 

  

Figure  A1:  Muscle  Sensor  hookup  diagram  for  Arduino  Uno.  Two  9-‐volt  batteries  are  connected  together  and  
grounded  on  the  sensor.  The  positive  and  negative  ends  of  the  batteries  are  wired  to  +Vs  and   Vs,  respectively.  
The  sensor  is  also  grounded  on  the  GND  pin  on  the  Arduino  Uno,  and  the  SIG  hookup  gets  connected  to  ANALOG  
IN  1.  There  is  a  hookup  on  the  Muscle  Sensor  microcontroller  that  allows  the  electrodes  connected  to  the  bicep  to  

be  connected  to  the  sensor  itself.14 
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Appendix 2: Muscle Sensor Schematic 
  

  

Figure  A2:  Muscle  Sensor  Schematic  from  AdvancerTechnologies.  This  schematic  provides  a  working  
understanding  of  how  the  muscle  sensor  works.  It  uses  various  sets  of  comparator  in  order  read  electrical  signals  

from  the  muscle  and  relay  the  information  to  the  Arduino  Uno.14  
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Appendix 3: A rm Schematic 

  

Figure  A3:  A  final  schematic  for  the  myoelectric  arm  with  moving  elbow.  This  was  produced  using  Autodesk  
Inventor  software.  Each  piece  was  created  in  Inventor,  and  then  built  in  an  assembly  file  to  create  the  final  

design.  
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Appendix 4: E lbow H inge Schematic 
  

  

Figure  A4:  A  final  schematic  for  the  elbow  hinge  design.  This  was  produced  using  Autodesk  Inventor  software.  It  
is  cut  out  of  a  thin  sheet  of  aluminum  and  attached  to  both  sides  of  each  aluminum  rod.    
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Appendix 5: Initial A lgorithm 
  

stepper(400, 1)      // sets up the stepper motor 
minForce = X       // minimum force for contraction 
maxForce = Y       // maximum force for relaxation 
 
setup()  
 stepper.setSpeed(500)     // sets speed to 500 rpm 
 set-up Muscle sensor 
end setup 
 
loop() 
 if (sensor.force > minForce)    //when sensor force exceeds minForce 
  stepper.step(100,FORWARD)  // steps forward 100 steps 
  delay(1000) 
  if (sensor.force < maxForce)   // if sensor force goes below maxForce 
   stepper.step(100,BACKWARD) // step backward 100 steps 
   delay(1000) 
 release()      // release coils 
end loop 
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Appendix 6: A rduino Code 
 

// Arduino Arm Sketch 
// 
//  Sets up the Arduino Stepper Motor and calls 
//  it to rotate forward 400 steps, hold, and then 
//  move backwards 400 steps. 
// 
//  By Kate Talbot  
 
#include <AccelStepper.h>    // includes the AccelStepper library 
#include <AFMotor.h>         // includes the Adafruit Motor library 
 
AF_Stepper stepper(400, 1); 
 
void setup() 
{ 
   Serial.begin(9600);             // set up Serial library at 9600 bps 
   Serial.println("Stepper test!");        // prints to make sure stepper is ready 
   
   stepper.setSpeed(50);   // sets the speed to 50 revolutions per minute 
}     // end of setup 
 
void loop() 
{ 
  stepper.step(400, FORWARD, DOUBLE);   //moves the motor forward 400 steps 
  delay(3000);  
     
  stepper.step(400,BACKWARD, DOUBLE);      //moves the motor backwards 400 steps 
  delay(3000); 
  stepper.release();      // releases motors coils 
} 
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