4-25-2019

Measuring Physiological Changes in Response to a Division III Collegiate Cross-Country Season

Rachel Nelson
College of Saint Benedict/Saint John's University, r2nelson@csbsju.edu

Follow this and additional works at: https://digitalcommons.csbsju.edu/ur_cscday

Recommended Citation
https://digitalcommons.csbsju.edu/ur_cscday/49

This Poster is brought to you for free and open access by DigitalCommons@CSB/SJU. It has been accepted for inclusion in Celebrating Scholarship and Creativity Day by an authorized administrator of DigitalCommons@CSB/SJU. For more information, please contact digitalcommons@csbsju.edu.
The goal of cross-country training regimens is to maximize oxygen consumption, increase metabolic efficiency of skeletal muscle, and delay the onset of fatigue. 1
Performance can be predicted from variables such as maximal oxygen uptake (VO2 Max), lactate threshold (LT), and running economy (RE). 3,4
VO2 Max measures oxygen consumption and it represents a maximal aerobic capacity. 3,4
LT is the point at which blood lactate accumulates. 3,4,5
RE reflects the energy demand for a given velocity of running and reflects overall running efficiency. 3
After a cross-country season, we expect to see an increase in VO2 Max, improved LT, and an improved RE to indicate efficacy of a training program. 2
Ideally, successful training programs include high mileage with a variation of long runs, interval training at or below race pace, and moderate sprint work. 1

Purpose
To assess how physiological variables change over a competitive cross-country season in Division III female athletes.

Materials and Methods

Subjects
- 11 female Division III cross-country athletes (20.18 ± 2.5 years, 162.89 ± 7.46 cm, 58.22 ± 8.91 kg, 21.5 ± 1.65 % body fat) were recruited to participate.

Procedure
- Subjects came to the lab on two occasions 10-12 weeks apart, pre and post season, and followed an identical procedure:
 - Height, weight, and body composition measurements were taken.
 - Three trials of a maximal vertical jump were performed.
 - A 3 minute treadmill warm up was completed.
 - A staged VO2 Max treadmill test was performed, with the grade increasing 2% every three minutes at a steady pace between 6.5-7.5 mph.
 - Blood lactate, VO2 heart rate, and RPE readings were taken every 3 minutes.
 - After a rest period, a RE treadmill test was completed by measuring oxygen consumption while running 4 minutes at a 'steady' pace and 4 minutes at a 'race' pace.
 - Performance was analyzed by comparing average seconds per mile in the first and last race of the season.

Data Analysis
- Paired-samples t-tests were used to compare the pre and post season physiological data.

Results

Figure 1. Mean vertical jump (cm) pre and post season.

Figure 2. Mean VO2 Max (ml/kg/min) pre and post season.

Figure 3. Mean lactate threshold (mmol/L) pre and post season.

Figure 4. Mean lactate threshold as a percentage of VO2 Max pre and post season. *indicates p < 0.05

Figure 5. Mean running economy (ml/kg/min) at a slow, steady pace and a faster, race pace pre and post season.

Figure 6. Mean race pace (seconds/mile) pre and post season.

Discussion
- The principle of Specific Adaptations to Imposed Demands (SAID) indicates a training program which transitions from high mileage and moderate intensity to lower mileage and high intensity is designed to increase the demand placed on the anaerobic system. 1,3
- An increase in anaerobic capacity is consistent with a decrease in LT along with a significant decrease in LT as a percentage of VO2 Max. 3
- No significant changes observed in vertical jump, VO2 Max, or RE are consistent with previous research among trained distance runners over the course of a cross-country season. 2,6
- Despite a lack of a statistically significant difference in average seconds per mile, an increase of 10 seconds per mile is considerable across a 3.75 mile race. 3
- At the start of the competitive season, athletes were already well trained, likely accounting for the lack of significant changes. 3,4
- Beneficial future research could include a variable of anaerobic capacity such as a Wingate test. 2,4

Conclusion
A 10-12 week collegiate cross-country season does not significantly influence physiological variables likely due to the training demands which stressed the anaerobic system and therefore lead to specific adaptations in the anaerobic system.

Literature Cited