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Abstract

Scientific workflows for high-performance computing (HPC) are becoming

increasingly complex. Developing a way to simplify these workflows could save many

hours for both HPC users and developers, potentially eliminating any time spent

managing software dependencies and experiment set-up. To accomplish this, we

propose using two programs together: Docker and Spack. Docker is a container

platform and Spack is a package manager designed specifically for HPC. In this

paper, we show how Docker and Spack can be used to containerize the extreme-scale

Scientific Software Development Kit (xSDK). Doing this makes the xSDK far more

accessible to non-computer scientists and lowers time spent by developers on

dependency management. Implementing a system such as this on a large scale could

change the functioning of the HPC industry.
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1 Introduction

Virtualization is becoming an appealing option for a growing array of computing purposes.

Virtualization, meaning the creation of a virtual version of a device or resource [7], is a

broad term and can apply to a variety of technologies, such as virtual hardware platforms,

storage devices, and network resources. Even a simple partitioning of a hard drive would

be considered a form of virtualization because you take one drive and partition it into

multiple. Today, virtualization usually refers to the first of those possible applications:

a mapping of a virtual guest system to a real host system. An example of this would

be using Virtual Machine (VM) software such as the VMWare Horizon Client to run an

instance of Red Hat Linux on a Windows machine, or vice versa. Due to the different

architectures of the guest and host machines, the virtual machine must translate machine

instructions, causing significant overhead to be associated with its use. [14] This kind of

“traditional” virtualization has been used for years in the realm of personal computing,

where the additional overhead is usually a non-issue, but has been difficult to apply to more

demanding purposes, such as research and software development. Because virtual machines

can provide a standardized environment, they are an attractive technology when it comes

to more demanding research. However, VMs are generally unusable for these tasks because

of their large overhead and how they complicate even further the already-complex series of

software dependency chains required.

The high-performance computing (HPC) industry has been constantly growing and is

projected to grow more than six percent annually over the next five years. [9] However,

as HPC grows, finding a solution to the problem of environment standardization becomes

ever more important. Primary uses of HPC are often scientific analyses of large data sets,

requiring scientific software workflows with complex sets of dependencies. [13] Maintaining

these workflows requires significant time and resources as well as an in-depth knowledge of
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the HPC itself. A new virtualization technology, containerization, has been quickly gaining

attention from HPC researchers as a potential solution to these problems. This thesis aims

to show how a fast-growing container program, Docker, and a specialized software package

management tool, Spack, can be used in tandem to create a container with a clean install

of the extreme-scale Scientific Software Development Kit, solving the issues of environment

standardization and increasingly complex scientific software workflows.

2 Background

2.1 Docker

Docker, and application-level containers in general, are a form of operating system-level

virtualization. This form of virtualization is a server virtualization where the operating

system’s kernel is divided into multiple user space instances, each one separate from the

others. These instances, called containers, are completely isolated from the others and are,

in a way, a form of virtual machine. Users operating within these containers experience

operations as if they are working on their own server. Docker adds a level of abstraction to

this operating system-level virtualization and runs “application-level” containers on top of

these user instances.

With Docker, the abstraction is the application itself. Docker allows for applications to

be run by 1 or many containers, where many small services (provided by each individual

container) combine to create an application. [5] In this way, Docker functions similarly

to server operating system-level virtualization, just at a higher level of abstraction; each

container operates independently of the others in its own standard environment with each

container together forming the application. Isolation features such as Linux cgroups are

what allow Docker to simultaneously run isolated and independent application containers.
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[12] cgroups, or control groups, is a feature of the Linux kernel that allows the user, in this

case Docker, to allocate resources, such as time, memory, or bandwidth, among groups of

tasks running on a system. [6]

Figure 1: This diagram shows the various execution environments compatible with Docker after update

0.9. Also shown are Linux operating system-level container APIs used by Docker containers. [11]

Docker began in France as an internal project of dotCloud, a platform as a service

company. First released to the public in March of 2013, Docker quickly gained traction

and expanded into its own corporation. Docker was originally built using Linux Containers

(LXC). Using the LXC led to many issues, such as being far from user friendly and having

major security concerns. Because of these issues, a year after its original release, Docker

updated to version 0.9 and changed changed its entire infrastructure. Instead of relying

exclusively on LXC, Docker developed its own execution environment: libcontainer. The

development of libcontainer meant Docker was now a complete package and did not rely

on outside technology. As seen in Figure 1, although Docker developed libcontainer, it is

still compatible with outside interfaces such as LXC and others, although libcontainer is the

default. [11] This update also cleared the way for Docker to be made available for non-Linux

platforms. [15] Today, Docker releases are available for IaaS Clouds in addition to versions
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for Mac and Windows. In 2015, Docker partnered with large companies such as Microsoft,

Amazon, and Google to begin the Open Container Initiative (OCI). The OCI’s stated goal

is to create “open industry standards around container formats and runtime.” [3] Now an

open source project on GitHub, Docker continues to grow as its product improves.

Figure 2: In this figure, the different layers of a Docker Image are evident. Each top container “Read/Write

layer” represents a running container. The box underneath the running containers represents the Ubuntu

image that is being used to run the containers. Each layer within the image is one command in its Dockerfile.

For example, layer c22013c84729 adds data from the Docker client’s current directory with a Dockerfile COPY

command. [1]

Docker containers are run from files called “images”. A Docker image is an inert file

which represents a container, as if it is a “snapshot” of the container. When run, images

will produce a container, much like how a class produces an object. The relationship from

image to container is very similar to that of class to object; an image is a class and the

container is the object created by that class. An image is a file, usually stored in a registry

like the Docker Hub (registry.hub.docker.com) and built from what is called a Dockerfile. [1]

A Docker image is built in layers, where each layer represents an instruction in its Dockerfile.

Each layer in an image is nothing but the set of differences from the layer before it. When

a container is created, a new writable layer is added on top of the underlying image layers,

called the “container layer”. This system, seen in Figure 2, keeps image files from growing

too large and enables different, simultaneously running, containers which all access the same
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image to maintain their own data state.

2.2 Spack

Spack (Supercomputer Package manager) is a tool that is meant to benefit HPC workflows.

Spack, like Docker, is a very recent technology. Originally developed in 2013 at Lawrence

Livermore National Laboratory (LLNL) by Todd Gamblin, the tool was released publicly in

2015. To manage the needs of a diverse set of applications, system administrators at LLNL

spent “countless hours” dealing with build and deployment issues. [10] Spack helps deal with

a major problem in HPC: managing software dependencies.

Spack is a package management tool designed specifically for large supercomputing cen-

ters. Spack has a variety of unique features intended to make managing scientific applications

simpler and easier. First, Spack is non-destructive. Spack is designed to support multiple

versions and configurations of the same software on a single system. Scientific applications

require specific versions of compilers, MPI, and other dependency libraries, making it infea-

sible to use a single, standard software stack. A second novel feature of Spack is its build

methodology. Given a command to install a package (and it could be any version of that

package), Spack will first recursively install each of the dependencies for that package that

are not already installed on the machine and automatically locate the dependencies which

are already installed. Significantly, Spack does this regardless of its environment. In a case

where custom dependencies are needed, Spack can be easily configured to install custom

builds.

2.3 The xSDK

The Extreme-scale Scientific Software Development Kit (xSDK) is a collection of related

and complementary software elements developed by separate teams throughout the HPC
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community. The stated vision of the xSDK is to provide infrastructure and interoperability

for this collection of software. The collection of software is meant to provide the “building

blocks, tools, models, processes, and related artifacts for rapid and efficient development of

high-quality applications.” [2]

As of xSDK-0.3.0, released in November of 2017, the xSDK contains seven numerical

libraries and two application packages. When it was first released in April 2016, the xSDK

contained only four numerical software libraries and one application component: hypre,

PETSc, SuperLU and Trilinos, and Alquimia.

• Hypre provides high-performance preconditioners and solvers for the solution of large,

sparse linear systems on massively parallel computers.

• PETSc is a suite of data structures with routines for the scalable solutions of applica-

tions modeled by partial differential equations.

• SuperLU is a more general-purpose library, meant for the solution of large, sparse,

nonsymmetric systems of linear equations.

• The Trilinos Project is organized into 66 separate packages, each with a different focus.

Overall, it is an effort to develop algorithms and technologies within an object-oriented

framework for the solution of large-scale and complex multiphysics problems. Some

of the packages within Trilinos include linear and nonlinear solvers, eigensolvers, and

graph partitioners, among others.

• Alquimia is a biogeochemistry API and wrapper library that aims to provide a unified

interface to existing geochemsitry engines such as CrunchFlow or PFLOTRAN. [4]

Beginning with xSDK-0.2.0, released in February of 2017, a version of the xSDK was made

compatible with the Spack installer. With the 0.3.0 update, Spack has been made the default

way to download and install the xSDK.
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3 General Benefits of Using Docker and Spack

3.1 Benefits of Docker and Container Technology

Benefits of Docker can be seen mainly in two areas: development and distribution.

• Benefits of Docker for development

– Standard execution environment

When developing scientific applications, the execution environment can sometimes

have a large effect on the results of a program. For this case, Docker containers are

the perfect test environment. As Docker is a complete environment, applications

will always run the same way regardless of the container’s host environment. A

developer can test code inside a container, and when it completes successfully,

be confident that pushing their code will not break the application. Testing code

in a native environment carries many risks; it is not uncommon for new code to

work perfectly on a personal system but bring a whole system down when pushed

to the master branch. Docker containers solve this problem.

– Bug reproduction

In addition, containers are useful for bug reproduction. By maintaining a number

of standardized images for issue handling, bugs can be easily reproduced in a

variety of different environments. You could say that VMs can be used for the

same purpose: a clean install of a VM will also function as a standard environment

for either testing or bug reproduction. However, containers are much smaller in

size than VMs and, because of how images are made of layers, can come with

software such as the xSDK pre-installed.

– Image size

When comparing to a VM, Docker containers are able to have smaller size because
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of how they (a) are built of layers, and (b) do not require a guest operating system.

Both VMs and Docker containers include the application (i.e., the xSDK), the

libraries, and other required files. The difference is that VMs require a guest

operating system (and the space and cost that comes with it), whereas containers

do not. [16]

• Benefits of Docker for distribution

– Simpler and easier distribution

Docker provides much easier distribution of software due to simplified access on

the user’s end. HPC end-users are oftentimes not computer scientists and get-

ting software installed correctly so that their experiment will run correctly is a

big concern. Accessing software using Docker makes the process straightforward

thanks to the ease with which image registries such as Docker Hub or Quay.io

can be used. There is no need for downloading, building, and installing software

if a developer’s image has been shared to the registry; a user can pull any Docker

images and have near-instant access to the software enclosed.

– Distribution of software and environment

By using Docker to distribute their software, a developer not only distributes their

software, but it distributes the entire environment as well. This lets users avoid

any and all environment-related issues such as what environment settings this

specific HPC might have that would break their program. These environment-

related issues are problems that any non-computer scientist would have a lot of

trouble in resolving. However, if a developer distributes their software through

Docker, users can avoid this problem.

– Minimal effects on performance

Running a container on any machine has been shown to have little to no effect on
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performance, strengthening the case for using containerized software. [8]

3.2 Benefits of Spack

There are five main features of Spack that set it apart from other modern HPC package

managers. Each one contributes to making package management a simpler, more automatic

process for users. Written in pure Python, each of these unique features are meant to help

meet this goal. The first of these features is the ability to easily compose packages that are

explicitly parameterized by version, platform, compiler, options, and dependencies. Spack

packages, which function as Python scripts, are a class which extends a generic Package base

class. Package implements most of the build process, leaving just an install method to user

implementation to handle specifics of particular packages.

Figure 3: A diagram that shows the Spack spec syntax dependency directed acyclic graphs for different

mpileaks installs. [10]

A second important feature of Spack is its novel and recursive spec syntax for dependency

graphs and constraints. In Spack, spec refers to a single build configuration. Spack’s specs

recursively inspect the class definitions for each dependency of a package and construct a

graph of their relationships, resulting in a directed, acyclic graph (DAG) as in Figure 3. This
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is how Spack maintains many configurations of the same package: no two configurations

would ever have the same build DAG. At the same time, a user can specify versions for

dependencies in addition to the package itself, such as in Figure 3c, because of how the spec

syntax is recursively defined. [10]

The three other central, unique, features of Spack are virtual dependencies, a new con-

cretization process, and a new installation environment that uses compiler wrappers. The

virtual dependency feature works around the common issue of there being multiple libraries

that share a common interface and which can be interchanged within a build. An example of

this would be the many implementatins of MPI, including MPICH and OpenMPI. Spack’s

virtual dependencies represent a library interface instead of an actual implementation. This

allows users to select the implementation that they desire at build time. Spack’s concretiza-

tion process takes the abstract spec DAG of a package, and follows a process to ensure that

three conditions are met: 1) no package in the DAG has missing dependencies, 2) no pack-

ages are virtual, and 3) all parameters are set for each package in the DAG. The unique

installation environment of Spack is meant to build a consistent HPC stack and achieve

reproducible builds across machines. [10]

4 The xSDK Docker Container

The appeal of Docker and other application container technologies, such as Singularity, an

HPC-specialized container technology, have been expanding rapidly. This appeal extends to

scientific software development and computational research. The xSDK, while not being an

application itself, is meant for the creation of scientific packages. Containerizing a Spack

installation of the xSDK takes full advantage of the benefits that both Docker and Spack

have to offer.
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4.1 The Dockerfile

Creating this Docker container involves building from a straightforward Dockerfile (Appendix

A.1). The xSDK container is built from a base CentOS image, which contains nothing except

a very bare-bones version of the CentOS. The Dockerfile then specifies which dependency

packages need to be installed separately from the xSDK both so Spack can be installed and

so Spack can install the xSDK. These packages include git, gcc, make, and patch. Spack

is supposed to be able to install all missing dependencies for a package automatically, but

these packages that need to be installed separately are so essential to all systems that Spack

assumes they are always present and does not account for them when building the DAG for

a package. These separate installations are done using the default CentOS installer yum.

The next step is to clone Spack from its git repository and install its environment modules.

Once Docker has done this, it uses bash to complete the xSDK installation, invoking the

“spack install xsdk” command to install the xSDK and its dependencies and then loading

the installed xSDK. This build process has now created a Docker image that can be run as

a container with the xSDK installed.

4.2 Accessing the xSDK Container

Accessing and running the xSDK Container is a simple process if Docker has already been

installed on your machine. First, use the docker pull command to pull the xsdk/xsdk

image from the Docker registry. With the image downloaded, it is easy to run the container

with a simple command: docker run -it (--name=xSDK) xsdk/xsdk /bin/bash. The

--name tag is optional and only provides a name for the container created. The run command

is a docker command which takes the image listed (in this case xsdk/xsdk) and executes

it to create a running container. The -it options together allocate a tty for the container

process. This is necessary to create an interactive shell such as bash. The final /bin/bash
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command is a default command that is executed when the container is created. With these

two simple steps of pulling the image and running it, any user has full access to the full

contents of the xSDK.

4.3 Specific Advantages of a Containerized xSDK

As discussed above, containerizing applications and software like the xSDK has benefits

for both development and distribution. The first and main advantage of having the xSDK

available from a Docker container is the much greater portability that the software has

when it is packaged this way. Advantages for the distribution of the xSDK are generally

abstraction-related: potential users of the xSDK do not need to worry about their native

environments and obtaining the xSDK becomes simpler. The native environment of an

xSDK user no longer matters; the only requirement is that it can run a version of Docker.

Additionally, when using the xSDK to develop their own applications, users do not need to

concern themselves that errors might be unique to their machine. The other main benefit

is that obtaining this version of the xSDK is far more straightforward. Users do not need

to have any part in the installation of the xSDK. With Docker installed, users can pull

the 2.22GB xSDK image from the Docker Hub and have immediate access to the software

enclosed. The benefits for development are similar to those for distribution and center mainly

on portability and simplified debugging. Similar to its users, developers of the xSDK do not

need to think that errors may be specific to their machine and can be confident that pushing

changes to the master branch will not break the software.

4.4 Specific Advantages to using Spack

Using Docker and Spack together greatly increases the accessibility and ease of use of the

complex scientific packages which make up the xSDK. Each one of these packages has their
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own complex set of dependencies that would be very difficult to manage and maintain on

their own, so the xSDK is installed inside the container using Spack. Installing the xSDK

using Spack has made the installation process extremely straightforward. In addition to

installing the xSDK, Spack first installs all necessary dependencies of the xSDK. Spack can

analyze the environment it is working in and recognize what lower-level packages are needed

before installing the xSDK – removing any dependency maintenance within the container

that would otherwise be required.

5 Conclusion

Docker and other container technologies continue to grow at a rapid rate. A very recent

technology, the future potential of containers continues to increase. The variety of purposes

a container can fulfill while having little to no effect on performance shows that it is a tech-

nology that will continue to have a growing impact on both the general world of computers

and on HPC. Containers, especially when coupled with a smart package management tool

such as Spack, have the potential to reshape how the HPC industry functions, adding mul-

tiple levels of abstraction and making the process much more straightforward to obtain and

use the xSDK. Using such a portable and accessible tool will allow a much larger consumer

base to access high-level scientific software such as the xSDK.

Barriers remain to widespread adoption of containers. The largest is the steep learning

curve associated with learning Docker. Obtaining and running a existing image, such as

the xSDK, is straightforward if Docker is already installed on the machine. But learning

the subtleties of how to create, operate and maintain your own containers is a long process.

There is no doubt that becoming comfortable deploying applications using Docker requires

significant time and effort.
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5.1 Future Research

The first, clear next step with this research is to run comprehensive tests on the container-

ized xSDK. These tests would make sure all functionalities of each package are working as

intended. They should also be compared to tests run natively to evaluate performance. If

performance is significantly worse for the xSDK when running inside a container, its benefits

would be reduced to only error testing and increased accessibility. Another step that could

be taken would be to produce a collection of xSDK containers, each containing a different

build version of the xSDK. This would make the xSDK available to more users who might

not necessarily want the default xSDK installation.
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A Appendix

A.1 The xSDK Dockerfile

##################################################

# Dockerfile containing required packages for building Spack and xSDK using Spack

# Based on CentOS image

##################################################

FROM centos

MAINTAINER ccnoecker

# Installing base packages which Spack assumes to be installed on any machine but that the

# very simple CentOS image does not contain.

RUN yum install -y \

git \

gcc \

make \

cmake \

gcc-c++ \

patch \

gcc-gfortran; \

# Cloning Spack from Github and using it to install environment modules and bzip2.

git clone https://github.com/llnl/spack.git /usr/spack; \

./usr/spack/bin/spack install environment-modules \

./usr/spack/bin/spack install bzip2

# Using Spack to setup environment and install and load the xSDK.

RUN /bin/bash -c ‘source ‘./usr/spack/bin/spack location -i environment-modules‘/Modules/init/bash;\

. /usr/spack/share/spack/setup-env.sh; \
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spack load bzip2; \

spack install xsdk; \

spack load -r xsdk’

EXPOSE 80

CMD [“/usr/sbin/init”]
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