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Abstract

The study of social networks has become increasingly important in recent
years. Multi-agent systems research has proven to be an effective way of rep-
resenting both static and dynamic social networks in order to model and ana-
lyze many different situations. Previous implementations of multi-agent sys-
tems have observed a phenomenon called tolerance between agents through
simulation studies, which is defined as an agent maintaining an unrewarding
connection. This concept has also arisen in the social sciences through the
study of networks. We aim to bridge this gap between simulation studies in
multi-agent systems and real-world observations. This project explores how
local interactions of autonomous agents in a network relate to the develop-
ment of tolerance. We have developed a new model for multi-agent system
interactions based on these observations. We also claim that tolerance is
directly observable in real dynamic social networks, and the parameters that
govern tolerance of a system can be estimated using a Hidden Markov Model.
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1 Introduction

1.1 Motivation

A social network is made up of a set of actors as well as the set of ties
between them. Examining the structure of the whole network, as well as in-
dividual patterns that arise, offers valuable insight into many different social
applications. These include

• Studies of Communication, which focuses on the study of the transfer
of information. This can include in-person communication, such as the
spread of a rumor; or public-forum communication, such as informa-
tion conveyed on a blog. (Fleming 2011 [12]; Minsheng, Xinjun and
Guessoum 2013 [30]; and Zhou 2013 [46])

• Community development, including both geographical and online com-
munities. Of particular interest is developing tools to analyze the devel-
opment of social media networks such as facebook, twitter, and word-
press. (Lachapelle 2011 [21]; Zhoua, Dingb and Fininc 2013 [46])

• Diffusion of innovations, or the spread of ideas throughout a commu-
nity. This can include finding the ’opinion leaders’, or the individuals
who are especially influential in the spread of an idea, as well as model-
ing the spread of an innovation through an entire organization. Recent
studies into diffusion have also looked at how diffusion interacts with
network structure. (Stattner, Collard and Vidot 2013 [41])

• Health care analysis, including epidemological studies and studies of
health care organizations and systems. (Levy and Pescosolido 2002 [23];
Christakis and Fowler 2013 [4])

• Language and linguistics, including how different languages evolve through
social interaction. In an increasingly globalized world, this is of particu-
lar interest in studying the decline of native dialects as well as language
maintenance and shift in multi-lingual communities. (Milroy 2008 [29])

• Social Capital, or the resources available to individuals through their
social interactions. For instance, social capital allows certain people
to access opportunities such as job openings. It has also been shown
that there is a correlation between measured social capital and reported
quality of life. (Valenzuela, Park, and Kee 2009 [42])

As social networks can be used to analyze anything from social networking
websites to interactions between animals, being able to effectively study them
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has become increasingly important in recent years. ( Pinter-Wollman, Noa
and Hobson 2013 [34])

We are particularly interested in dynamic social networks, which are net-
works where connections are being continuously made and broken. Dynamic
social networks can include infinitely growing networks, such as the World
Wide Web(Zhoua, Dingb, and Fininc 2013 [46]; Schwanda and Bazarovab
2014 [37]); or networks in which the number of actors remains the same but
the connections between them change over time, such as a trust network
within a class (Genicot 2011 [14]). Additionally, dynamic social networks
may be actor-oriented, in which the actors control both their outgoing ties
and behavior, or the network may be governed by the structure as a whole.
(Snijderes 2005 [39])

We have approached our study of dynamic social networks through both
Multi-Agent systems and Markov Chains. A Markov Chain is a set of ran-
dom variables which change at each time-step according to certain transition
probabilities. A Markov Chain is similar to a Multi-Agent System in the
sense that it evolves over a series of time-steps, but different in that it is
rooted in probability theory. This concept is applicable to the study of dy-
namic social networks because it allows them to change over time, rather
than remaining static. Additionally, Markov chains may be extended to in-
clude multiple states within each chain as well as multiple chains combined
into one model. This makes them particularly useful for modeling attributes
about networks. For instance, having multiple states representing a single
chain can be used to model whether or not a person has an infection based
on their outward symptoms. Additionally, having multiple chains within one
system could model the health of one person based on the health of the other
people that are also represented by Markov chains. (Dong 2011 [8])

Multi-Agent systems is an area of research under the large umbrella of
artificial intelligence. Agents perceive their environment and perform actions
based on those perceptions. A Multi-Agent system is an environment in
which multiple agents interact with each other, as well as the environment.
These agents must be rational, or choose the action that maximizes their
success out of all possible actions. Usually, this measure of success can be
determined through game theory using simulations, or some sort of function
to determine payout from data. (Wooldridge 2009 [43])

Previous research into MultiAgent systems has observed a phenomenon,
named tolerance, through simulations. (Wu 2010 [44]) Tolerance is defined as
agent’s willingness to maintain an unrewarding connection. In other words,
during these simulations, agents would remain connected even though they
should have broken the connection according to the decision-making rule
being tested.
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Intuitively, this agrees with what we observe in the real world. If two
people have a relationship, they are unlikely to completely break off from
one another just because of one disagreement or bad decision by one person.
Instead, they usually remain in the relationship but may distance themselves
and possibly break it off at a later time, depending on the behavior (Milardo
1986 [28], Ojanen and Sijtsema 2010 [32]).

This research attempts to bridge the gap between tolerance observed
in MultiAgent system simulations and sociological ideas about maintaining
relationships. We do this through introducing a new decision-making rule for
a multi-agent system, as well as using a Hidden Markov Model to essentially
measure observed tolerance in a real-world dynamic social network. By using
a Hidden Markov Model to study a dynamic social network, we are able to
estimate the parameters that govern the system. We can then incorporate
these parameters into the multi-agent system to best model the network.

1.2 Background

In multi-agent systems, an agent is defined as an entity that is able to per-
ceive its environment and proceed to act upon that environment. Agents
are assumed to be rational, meaning that they will choose the action that
will cause them to be the most successful. A multi-agent system contains
a number of agents that each have their own goals and are able to interact
with one-another.

Through our study of dynamic social networks, an agent will represent a
person in the network, and the environment is the status of the network at a
given time. (i.e. the state of connections) The agents are given an opportu-
nity to interact with each of their connections at each time step, and are able
to maintain, break, or create a connection based on those interactions. This
choice is the action that they are able to make on the environment. Agents
learn from their interactions with other agents and can change their behavior
based on what they observe. As optimal strategies are determined by agents,
a structure starts to form. This allows us to study how the structure of the
dynamic social network evolves.

Previous research into social networks has delved into interaction rules,
or how agents should behave in a given situation. These studies originated
in static networks, in which only the actions changed from step to step but
connections were never broken (Shoham and Tennenholtz 1997 [38], Delgado
2002 [7]). However, they have also been extended to dynamic social networks,
in which agents not only decide on a given action, but are also given the choice
to make or break a connection given the actions of the other agents in the
system (Leezer and Zhang 2009 [22], Wu and Zhang 2010 [44]).
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In simulation studies, game theory is utilized to determine payout to
model observations about the real world. Most of the research in this area
has been restricted to simulation studies, or synthetic data, as relevant, real
data was unavailable. However, due to recent advances in cell-phone tech-
nology, we have access to a dataset that is very applicable to social network
studies. This dataset includes cell phone statistics from 80 residents in a
single dormitory over a nine month period and includes information about
proximity, location, phone calls, and text messages. Additionally, the par-
ticipants of the study completed periodic surveys regarding friendship with
other participants of the study. (Dong 2011 [8])

When applying the theoretical models developed to actual data, we run
into problems with how to deal with temporal data. A possible solution is to
think of the state of the network as a Markov chain. A Markov chain is a series
of random variables observed at multiple time-steps with the conditional
independence property. That is, the state variable at a given time step is
only dependent on the state variable at the previous time step. They also
rely on a transition probability which gives the probability that a state will
change from one time-step to another. If the transition probabilities are
chosen correctly, the Markov chain will eventually converge.

An extension to the Markov chain, that is more applicable to modeling
an attribute of a dynamic social network, is the Hidden Markov Model. This
involves an underlying Markov chain, which is the ’hidden’ variable, but also
has observation variables. So in addition to the transition probabilities as-
sociated with the underlying Markov chain, the model also needs emission
probabilities that determine what is observed in the chain of observable vari-
ables.

A Hidden Markov Model seems like a natural solution to our problem.
It is intuitive to think of the status of a relationship as a random variable
and also to think of the relationship being able to change at each time-step,
much like a Markov chain. If we treat each possible relationship as a Markov
chain, we can then represent the network as the set of all these possible
relationships. We can also utilize an observable trait of phone calls as the
observable variable. By implementing the use of a hidden Markov model, it is
possible to determine the parameters that govern the status of a relationship.

As previously discussed, the concept of tolerance in relationships has
arisen in recent research. That is, even though the relationship is unreward-
ing and should be broken according to the rule, the agents delay breaking
the relationship for a few time steps (Wu and Zhang 2010 [44]).

The concept of homophily has been well-defined and studied in the social
sciences. This is the tendency of individuals to associate and bond with
others that are similar to themselves. In the context of social networks, it
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has been observed that ties between non-homophilic individuals dissolve at
a higher rate than ties between homophilic individuals (McPherson, Smith-
Lovin, and Cook 2011 [27]). This implies that individuals have a certain
level of tolerance in which they will maintain a connection with qualities or
actions that they disagree with, and will break that connection if the level
of tolerance is breached. (Genicot 2011 [14]) We observe the same trend in
our experiment, with certain connections being maintained for long periods
of time while other connections are created and broken in a small period of
time.

1.3 Research Goal

To our knowledge, we are the first group to observe and study tolerance in
dynamic social networks through the use of a multi-agent system. Although a
similar phenomenon has been observed in studies in sociology and psychology,
a computational model with a statistical analysis has not been proposed. The
aim of this research is to bridge the gap between simulation studies in multi-
agent systems research and sociological observations.

We attempt to model this phenomenon through the use of a Multi-Agent
system as well as a Markov Chain. Both of these approaches give us a
stochastic method to analyze a network. Through the use of a Multi-agent
system, we are able to model tolerance directly and preserve the actor-based
decision making that is found in the real world. By implementing a hidden
markov model, we are able to refine the system through formal parameter
estimation as well as a statistical analysis.

This project explores how local interactions of autonomous agents in a

network relate to collective behaviors. The collective behavior of interest is

tolerance. We claim that tolerance is directly observable in real dynamic

social networks, and the parameters that govern tolerance of a system can

be estimated using a Hidden Markov Model.

1.4 Approach

As previously mentioned, the concept of tolerance was first observed in the
context of a multi-agent system through simulation. For this reason, we have
defined a new decision-making rule that allows for an agent to make the
explicit choice to ’tolerate’ an unrewarding connection with another agent.
This allows us to study tolerance more effectively and efficiently, as it is built
into the system and has become easier to measure. The multi-agent system
has been utilized as a simulation study, attempting to obtain results similar
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to the real dataset being studied. We then use these results to estimate the
underlying parameters that determine the decision-making strategies used in
the real dataset.

Additionally, we have employed a Hidden Markov Model to estimate
the transition and emission probabilities for the dataset chosen. We then
performed a statistical analysis of the estimated probabilities to determine
if there was a significant difference in tolerance between friends and non-
friends. The significant difference in observed tolerance provides quantitative
evidence of tolerance observed in the real-world.
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2 Related Work

2.1 Tolerance and Friendship in Social Sciences

As previously discussed, homophily has been extensively studied and defined
in the social sciences. Homophily can be summarized as ’birds of a feather
flock together’, or that individuals with much in common have a higher rate of
interaction than individuals without common traits. This is especially impor-
tant in the study of social networks, as connections are more likely to occur
between homophilic individuals. There is also a tendency for relationships to
disband when homophily was not observed (McPherson, Smith-Lovin, and
Cook 2001 [27]).

This tendency to disband brings up the sense of tolerance, although
not explicitly named. It seems that individuals may be more tolerant of
homophilic members of a network, and less tolerant with non-homophilic
members. However, a social network with only ties between completely ho-
mophilic individuals is virtually impossible in the real world. Thus there
exists some sort of equilibrium for making and maintaining connections with
non-homophilic individuals. This implies that, most of the time, a given in-
dividual will have a certain amount of tolerance towards any other individual
in the network. (Currarini, Jackson, and Pin 2007 [5])

It has also been proposed that individuals can be characterized by a level
of tolerance for behaviors that differ from their ideal, and that when tolerance
levels must differ in societies for an equilibrium to occur. We must also make
a distinction between tolerance for other’s types versus tolerance for other’s
behaviors. Types could include characteristics such as religion, ethnicity,
sexual orientation, age, or social status; while behaviors can be expressed
regardless of underlying type. (Genicot 2011 [14])

There has been additional evidence of tolerance through studies of the
formation of friendships and social structure. It has been shown that people
are unlikely to break a relationship based on one disagreement or a bad
decision made. Instead, they maintain the relationship but may distance
themselves and possibly break the connection at a later point in time (Ojanen
and Sijtsema 2010 [32]).

When discussing tolerance and friendship in the context of studying a
social network, we must also take the structure of the network into consid-
eration. One consequence of this is the ’friends of friends’ idea. In a lon-
gitudinal friendship network analysis, it was found that friendships tend to
be transitive, which leads to the formation of triplets. Transitive friendship
triplets link each individual closely to the other members of the triplet, and
eventually to the friends of the others. It was also shown that when belong-
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ing to a triplet, a person is unlikely to change a relationship in this triplet,
even when the relationship is unrewarding, contributing to the evidence for
observed tolerance (Ojanen 2010 [32]; Jackson and Rogers 2007 [16]).

2.2 Dynamic Social Networks

A Social Network can be thought of as a group of agents with connections be-
tween them. In a dynamic social network, these connections can be changed
over time. Much of the research into these networks has focused on the dif-
ferent ways that they can develop. Generally, they have been classified into
three different categories. (Toivonen 2009 [35])

1. Dynamic Network Evolution Models (NEM): These models have a fixed
number of nodes, and create and break connections between the nodes
based on triadic closure and global connections (Davidson 2002 [6];
Marsili 2004 [26]; Kumpula 2007 [20]; Snijders, Lomi, and Torlo 2013
[40]; Krivitsky and Handcock 2014 [19])

2. Growing Network Evolution Models: These models have similar rules as
dynamic NEM’s, but continuously add nodes instead of maintaining a
fixed number. In addition, they do not break connections like dynamic
NEM’s. (Ivanova and Iordanov 2012 [15]; O’Malley and Onella 2014
[33])

3. Nodal Attribute Models (NAM): Unlike the previous two models, a
NAM does not rely on network structure and creates connections based
explicitly on the attributes of two given nodes. (Boguna 2004 [2];
Myunghwan and Jure 2011 [31]; Fosdick and Hoff 2013 [13])

Although all of these rules have provided insight into how social networks
change over time, it has been hard to find examples of theory that has been
applied to real-world situations. One of the problems that arises is how to
use various types of social network data to determine the structure of the
network and how it changes.

2.3 Interaction Rules

In MultiAgent systems, agents will encounter each other, and we need to de-
fine rules for interaction for when these encounters happen. This is especially
important in dynamic social networks, as the agents need to know when they
should make or break a connection. However, it is also important in static
social networks when we want to study the structure of the network or the
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strength of connections.

Existing Rules:

• Highest Current Reward (HCR): Agents keep track of the payoff re-
ceived from the last play of each strategy. Then at each time step,
they select the action that previously earned them the largest reward.
Agents change their strategy in the event that it earns them a pay-
off that is less than the previous reward earned from another strategy.
(Shoham and Tennenholtz 1997 [38])

• Generalized Simple Majority (GSM): Agents will change to an alterna-
tive strategy if they have observed more instances of it on other agents
than their present action. (Delgado 2002 [7])

• Highest Rewarding Neighborhood (HRN): An agent will maintain a
relationship if and only if the average reward earned from that rela-
tionship is no less than a specified percentage of the average reward
earned from every relationship. (Leezer and Zhang 2009 [22])

• Highest Weighted Reward (HWR): An agent will maintain a relation-
ship if and only if the weighted average reward earned from that rela-
tionship is no less than a specified percentage of the weighted average
reward earned from every relationship. (Wu and Zhang 2010 [44])
(Where recent events are weighted more than past events)

• Pay-and-Call (PaC): This method was developed to qualify interactions
between agents based on mobile phone communication. Agents want
to maximize their payoffs, which depend on the friendliness between
agents, the length of communication, as well as cost of initializing and
maintaining the communication. (Joseph 2013 [17])

2.4 Markov Models

Markov Models have been utilized to model a variety of problems. Al-
though much of recent research in the area has focused on extensions of
a simple markov chain, the underlying theory of the model has proven to
be incredibly useful. Hidden Markov Models (HMM) have been especially
useful to researchers in the areas of speech recognition and EEG classifica-
tion (Zhong and Ghosh 2002 [45], Krishnan and Fernandez 2013 [18]). They
have also been used for applications as far reaching as monitoring volcano
activity(Cassisi 2013 [3])Here, the underlying Markov Chain is associated
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with observed variables, and a series of transition and emission probabilities
determine the dynamics of the system.

An increasingly widely used extension of the HMM is the Coupled Hidden
Markov Model (CHMM). Like an HMM, a CHMM contains an underlying
Markov Chain. However, a CHMM is made up of more than one HMM,
whose states depend not only on their previous states, but on all the previous
states of all the HMM’s that are contained in the CHMM. CHMM’s have been
shown to be useful in the areas of multi-channel EEG classification, complex
human action recognition, traffic modeling, and biosignal analysis. (Zhong
and Ghosh 2002 [45])

Due to the sequential nature of Markov Models, they have often been
proposed to model various properties of dynamic social networks. However,
most of these proposals have been extended implementations of the Coupled
Hidden Markov Model, including the Graph-Coupled HMM, where the latent
state of the Markov chain is dependent only on the previous states of the
chains that it has a connection to. (Dong, Pentland, and Heller 2012 [9]).
These models have been applied to modeling the spread of an infection, but
also have the capability to model opinion changing in a community, culture
formation, vocabulary imitation, and dynamics of fads, rumors, emotions,
opinions, etc.

2.5 Social Evolution Data

The Social Evolution Dataset provided by the MIT Human Dynamics Lab
has been used for many different types of research. It was originally used
as an argument that mobile phone data can enhance studies on social as-
pects of communities (Madan 2012 [25]). It was shown that mobile phone
data supported the traditional methods of studying factors such as individ-
ual symptoms, long-term health outcomes, and diffusion of opinions in a
community.

Other studies modeled infection throughout the community using both
MultiAgent systems (Dong 2012 [9]) and graph-coupled hidden markov mod-
els (Dong 2012- SBP [10]). They were able to successfully predict how in-
fection is spread using the Social Evolution dataset. Other health-related
applications include modeling obesity and healthy eating using a social net-
work, which showed that there was a correlation between relationships and
eating and fitness habits. (Madan 2010 [24])

Researchers have also shown that relationships and behavior co-evolve in
this dataset. This means that students in the dormitory changed their behav-
ior as their relationships changed; but also that their relationships changed
based on their behavior. For instance, they showed that individuals were
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more likely to have a friendship if they exercised the same number of times
per week. They also showed that friendships can determine how frequently
an individual visits different places. (Dong 2011 [8])
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3 Highest Tolerated Reward

The Highest Tolerated Reward (HTR) Neighborhood Evaluation Rule builds
off of previously proposed neighbor evaluation rules - namely the Highest
Weighted Reward (HWR) rule. The HTR rule consists of an evaluation
method as well as a connection-forming mechanism. If an agent’s average
reward is between a range of thresholds, they will search for new connections
without breaking any. If they drop below this range, they will begin breaking
connections until their average reward increases.

Definition 1. The Highest Tolerated Reward rule states that an agent will
maintain a relationship if and only if the time-discounted average reward
from that relationship is above a certain maintaining threshold. An agent
will seek new relationships when their average reward is below a certain
seeking threshold. When the agent is between the maintaining threshold
and the seeking threshold, we call the agent tolerant.

3.1 Neighborhood Evaluation

In order to define the HTR rule, we make use of previously defined equa-
tions and procedures to measure rewards from each neighbor (Wu and Zhang
2010 [44]) . However, since the nature of previous papers has been focused
on coding a simulation, we have redefined some equations and changed ter-
minology to maintain mathematical rigor.

Definition 2. The Payoff Function, pij(t), is defined as the payoff between
agents i and j at time t.

Definition 3. The Reward Function, rij(t) is the cumulative reward between
agents i and j at time t.

Definition 4. The time-discount factor, w, is a proportion between 0.5 and
1.0 and allows recent rewards to carry a heavier weight than earlier rewards.

For each neighbor j that agent i has, the cumulative reward rij(t) is the
time-discounted reward from agent j.

rij(t) = rij(t− 1) ∗ w + pij(t) (1)

Note that

rij(t) =
t�

k=1

p(k) ∗ wt−k (2)
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Proof.

rij(t) = rij(t− 1) ∗ w + pij(t)

= [rij(t− 2) ∗ w + pij(t− 1)] ∗ w + pij(t)

= rij(t− 2) ∗ w2 + pij(t− 1) ∗ w + pij(t)

= [rij(t− 3) ∗ w + pij(t− 2)] ∗ w2 + pij(t− 1) ∗ w + pij(t)

= rij(t− 3) ∗ w3 + pij(t− 2) ∗ w2 + pij(t− 1) ∗ w + pij(t)
...

= pij(1) ∗ wt−1 + pij(2) ∗ wt−2 + . . .+ pij(t− 1) ∗ w + pij(t)

=
t�

k=1

pij(k) ∗ wt−k

Definition 5. The Reward Average Function, Ri(t) is the cumulative weighted
reward average agent i has received from all connections at time t.

Ri(t) = Ri(t− 1) ∗ w +

�n
j=1 pij(t)

n
(3)

Note that instead of defining the Reward Average Function recursively, we
can equivalently use

Ri(t) =
1

n

n�

j=1

rij(t) (4)
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Proof.

Ri(t) = Ri(t− 1) ∗ w +

�n
j=1 pij(t)

n

= [Ri(t− 2) ∗ w +

�n
j=1 pij(t− 1)

n
] ∗ w +

�n
j=1 pij(t)

n

= Ri(t− 2) ∗ w2 +

�n
j=1 pij(t− 1)

n
∗ w +

�n
j=1 pij(t)

n
...

=

�n
j=1 pij(1)

n
∗ wt−1 +

�n
j=1 pij(2)

n
∗ wt−2 + . . .+

�n
j=1 pij(t− 1)

n
∗ w +

�n
j=1 pij(t)

n

=
1

n
[pi1(1) ∗ wt−1 + . . .+ pin(1) ∗ wt−1 + . . .+ pi1(t) + . . .+ pin(t)]

=
1

n
[pi1(1) ∗ wt−1 + . . .+ pi1(t) + . . .+ pin(1) ∗ wt−1 + . . .+ pin(t)]

=
1

n
[ri1(t) + ri2(t) + . . .+ rij(t) + . . .+ rin(t)]

=
1

n

n�

j=1

rij(t)

According to the HTR rule, an agent has an upper threshold, θ, as well as a
lower threshold, φ, and calculates the cumulative reward received from each
neighbor as well as their weighted reward average from all connections. Then,
the agent evaluates neighbors according to the two thresholds. Finally, the
agent decides on a course of action based on the following rule:






rij
Ri

> θ Keep the Connection
α < rij

Ri
< θ Make a new Connection

rij
Ri

< α Break the Connection and Replace it
(5)

3.2 Connection Formation

In addition to adding another threshold for evaluating the neighborhood,
this rule also involves a mechanism for choosing new connections. We use a
modified version of a dynamic network evolution model (Marsili 2004 [26]).
The connection formation rule depends solely on the network structure rather
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than attributes of the nodes in the network.





Connect i to a random node with probability γ
Connect i to a friend of a friend by uniformly random search with probability δ
Where γ + δ = 1

(6)
By using this connection formation algorithm, it will naturally arise that the
network will contain more triangles than in a network where new connections
are chosen randomly (Newman 2003).

Definition 6. Three agents in a network, a,b,c form a triangle if there is a
connection from a to b, b to c, and c to a.

We can then measure how many ’friends of friends’ connections exist in a
social network using the number of triangles in a network.

Definition 7. The Clustering Coefficient (C) of a given network is the mean
probability that two vertices that are network neighbors of the same other
vertex will themselves be neighbors.

C =
6 ∗ Number of Triangles

Number of Paths of Length 2
(7)

Note that the Clustering Coefficient is used interchangeably with transi-
tivity of a network.
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4 Tolerance

An observed consequence of using a model of this design is agents remaining
in a relationship for a number of time steps even though the relationship is
unrewarding (Wu and Zhang 2010 [44]). We call this phenomenon tolerance.

Definition 8. Tolerance is an agent’s willingness to maintain an unrewarding
connection. An agent that chooses to maintain an unrewarding connection
for n turns is n-tolerant.

Suppose two agents (i and j) have been good neighbors for k turns but agent
j has changed to an unfair strategy. This means that up until that turn, the
agents have been cooperating but now agent j is no longer cooperating. Thus
the relationship has become unrewarding to agent i. We want to determine
how long agent i will tolerate the relationship with agent j before breaking
the connection. We assume that after the switch made by agent j, neither
agent changes behavior until the connection is broken. For simplicity, we
define pij(k + 1) = Q, i.e. Q represents the reward gained at the first non-
cooperative turn. For any c-turns after the k-cooperative turns, we have
that

rij(k + c) = wc
k�

m=1

pij(m)wk−m +Q× (
1− wc

1− w
) (8)

provided that w �= 1. where

• rij(k + c) is the reward obtained at the current turn by agent i from
agent j

• w is the time-discount factor

• k is the number of cooperative turns that have already happened

• c is the number of turns since agent j has switched to an uncooperative
strategy

• pij is the payout at a given turn by agent i from agent j

• Q is the reward gained from a non-cooperative turn

Then equation 8 gives a definition for the total cumulative reward after c
turns of an non-cooperative partnership (rij(k + c)) in terms of only the
individual payoffs (pij) and the time-discount factor (w). Additionally, the
right-hand side of the equation is split up into two parts - the first being
the reward from the cooperative period of the relationship, and the second
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being the reward from the non-cooperative period of the connection. We
assume that pij may vary while the agents are cooperating. We make this
assumption because certain behaviors may be less rewarding than others,
but still be considered a cooperative behavior. We also make the assumption
that the non-cooperative reward, Q, remains constant until the relationship
is broken.

Proof.

rij(k + 1) = rij(k)w +Q

rij(k + 2) = (rij(k)w +Q)w +Q

= rij(k)w
2 +Qw +Q

rij(k + 3) = rij(k)w
3 +Qw2 +Qw +Q

...

rij(k + c) = rij(k)w
c +Q

c−1�

m=0

wm

=
k�

m=1

pij(m)wn−kwc +Q
c−1�

m=0

wm

= wc
k�

m=1

pij(m)wk−m +Q(
1− wc

1− w
)

By defining the total cumulative reward (rij) in terms of previous payoffs
( pij) rather than recursively, it is possible to determine the n-tolerance of
an agent by using c from equation (8). Once a connection has been broken,
the n-tolerance for that pair is c.
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5 Markov Model

An alternative approach to modeling dynamic social networks, outside of a
multi-agent system, is to think of the status of the network as a random
variable that changes over a series of timesteps. In this scenario, using a
Markov Chain to model the state of the network seems like an intuitive
approach to take.

A Markov Chain is a series of random variables observed at multiple time
steps with the conditional independence property. That is, the observation at
a given time step is only dependent on the observation at the previous time
step. They also rely on a transition probability which gives the probability
that a state will change from one time step to another. If the transition
probabilities are chosen correctly, the Markov chain will eventually converge
to the actual distribution of the Markov model.

While looking at real-world data, it is often found that the state of interest
is latent and not directly observable. Hence the concept of a Hidden-Markov
Model (HMM) was developed. Rather than a single state with a single tran-
sition probability, there is a random variable state as well as observable vari-
ables that are assumed to be dependent on the states. In addition to the
state transition probabilities, there are also emission probabilities associated
with each output.

A Markov Chain seems like a natural solution to modeling a dynamic social
network. It’s intuitive to think of the status of each member of a social
network as a random variable and also to think of the network changing in
a series of time steps, like a Markov Chain.

In the following, we introduce the theory behind the Markov Model as well
as how it will be applied to the Social Evolution dataset in order to obtain
evidence of tolerance. We will be using two of the Social Evolution datasets,
one with observed phone calls over the 298-day time period, and one with
periodic survey data over the same time period. The data will be discussed
in more detail in the following section.

5.1 Markov Chains

The underlying principle of Markov Models essentially depends on the prod-
uct rule for probability when looking at the joint probability for a sequence
of observations (Bishop 2006 [1]). That is,

p(x1,x2, ...,xN) =
N�

n=1

(p(xn|x1, ...,xN−1)) (9)
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Where x1,x2, ...xn are matrices of size M × M , where M is the number of
nodes in the network and each (i, j) entry represents whether there is a con-
nection between nodes i and j at t = 1, 2, ..., n, ..., N Where N is the total
number of timesteps. By making the assumption that each of the conditional
distributions p(xi|x1, ...,xi−1) is independent of all previous observations ex-
cept the most recent, we obtain a first-order Markov chain.

p(x1,x2, ...,xN) = p(x1)
N�

n=2

p(xn|xn−1)) (10)

This process can be expanded to include more observations in predicting the
next value through higher-order Markov chains. For instance, if we allow the
values to depend on the previous two observations, we obtain a second-order
Markov chain.

p(x1,x2, ...,xN) = p(x1)p(x2|x1)
N�

n=3

p(xn|xn−1,xn−2) (11)

Similarly, we can extend to an Kth order Markov chain, which each observa-
tion depending on the previous K values of that observation. However, this
comes at the cost of more parameters in the model, which becomes imprac-
tical for large K.

By modeling the network in this way, we are able to retain a very large
amount of information about the network. However, when we approach
the tolerance problem, a Markov chain is no longer sufficient. Tolerance
happens when nodes maintain a connection even when the relationship is
unrewarding. To model this using a Markov chain, we would essentially
need two different chains to represent two different networks. We have the
underlying ’friendship’ network, which is the network of interest, but we also
have a network made up of phone call data. To measure tolerance, we would
want to examine the relationship between the two networks, which a single
Markov chain cannot handle.

5.2 Hidden Markov Models

To address the issue, we turn to an extension of a Markov chain, the Hidden
Markov Model. In an HMM, in addition to the observed variables, latent
variables are also introduced. These latent variables are the ones of inter-
est, and each latent state has a probability associated with observing each
state.(Bishop 2006 [1]) Thus we have a set of observations of a variable Y in
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addition to the latent variables X. Here, we assume that the state of xn de-
pends on xn−1. In the tolerance case, X would be the underlying ’friendship
state’ of the network, while Y would be the observed network constructed
from phone calls. Thus we have that xn represents if there is an underlying
friendship between two given nodes at time n, while yn represents whether
or not a phone call was observed between the same two nodes at time n.

To find the conditional probability distribution p(xn|xn−1), we must first
define the transition probabilities, which we represent in a matrix, A. The
(i, j) entry of A represents the probability that an observation in state i
will transition to state j at any given time. So we have that A(0,0) is the
probability that non-friends remain non-friends, A(0,1) is the probability that
non-friends become friends, A(1,0) is the probability that friends break the
friendship, and A(1,1) is the probability that friends remain friends. Since
they are probabilities, we have that 0 ≤ Aij ≤ 1 with the sum of each row
being equal to one. However, since x1 does not have a previous time step
to depend on, we must define a vector of probabilities, π, to determine the
initial state of x1.

In addition to the transition probabilities, we must also define the conditional
probabilities for the observed variables, p(Y|X). In order to do this, we define
φ, a set of parameters governing the conditional probability distribution. We
then define p(yn|xn,φ) as the emission probabilities. However, since yn is an
observed variable, for a given value of φ we have a vector of 2 numbers
corresponding to the two possible states of the binary variable xn.

The emission probabilities can then be written in the form:

p(yn|xn,φ) =
2�

k=1

p(yn|φk)
xnk (12)

We can now give the joint probability distribution over both latent and ob-
served variables:

p(Y,X|θ) = p(x1|π)[
N�

n=2

p(xn|xn−1,A)]
N�

m=1

p(ym|xm,φ) (13)

Where:

• Y = {y1, y2, ..., yN} are binary variables representing whether a call or
not was observed for a given pair of agents over t= {1,2,...,N} days.

• X = {x1, x2, ..., xN} are binary variables representing the underlying
friendship between each pair of nodes over t= {1,2,...,N} days.
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• β = {π,A,φ} are the parameters that determine the model. (The
initial state probability vector, the state transition probability matrix,
and the emission probability vector, respectively)

Since we are already working with an established dataset, we are provided
with values for X and Y. The goal for implementing a HMM in this project
is to estimate the parameters that are governing the system. This will allow
us to better understand the relationship between phone calls and friendship,
and how often connections are broken. Having these estimates will allow us
to better understand observed tolerance in a system.

5.3 Expectation-Maximization Algorithm

In order to estimate the parameters of the system, we will utilize the well-
established Expectation-Maximization Algorithm (EM Algorithm). This al-
gorithm is used generally to solve maximum likelihood estimation problems
without closed-form solutions, meaning the solution cannot be represented
in terms of functions and mathematical operations from a generally accepted
set. (Bishop 2006 [1], Roche 2012 [36])

Each iteration in the algorithm goes through two steps - the approxima-
tion step and the maximization step. What makes the algorithm different
from other two-step maximum likelihood algorithms is that it is not depen-
dent on the probability distribution of either variable. The only assumption
that must be made when using the EM algorithm is that X is a Markov
chain, which we have already defined as such.
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6 Data Analysis

All following experiments were performed using the Social Evolution Dataset
provided by the MIT Human Dynamics Lab1. The experiment involved
monitoring the phone records of 84 participants over a 9-month period. The
participants all lived in the same dormitory, and also participated in six
surveys regarding friendship over the nine-month period. (Survey dates:
09/09/08; 10/19/08; 12/13/08; 03/05/09; 04/17/09; 05/18/09)

Before proceeding with modeling the underlying ”friendship” dynamic
social network using the phone call observations, it is necessary to confirm a
correlation between friendship and phone calls. Previous analysis using the
Social Evolution dataset has utilized proximity data, SMS records, as well
as a call log to analyze phone use. For simplicity, we restrict to using only
the call log. (Eagle, Pentland, and Lazer 2009 [11])The survey data collected
from participants includes five different levels of relationship:

• Close Friend

• Socialize at least twice per week

• Discussed politics since the last survey

• Shared all tagged facebook photos

• Shared blog/live journal/Twitter activities

The call dataset provided the following information about every phone call
recorded for every participant in the study over the time period:

• User ID

• Destination Phone Hash

• Duration

• Destination User ID (if destination user was also participant in the
study)

• Time Stamp of the form Month/Day/Year Hour/Minute/Second

From the call log, Destination Phone Hash was removed, as well as any
observations where the User ID or Destination User ID was unknown. From
there, the following information was extracted:

1http://realitycommons.media.mit.edu/socialevolution.html
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• Frequency: The number of times UserID called Destination UserID

• Total Duration: The total duration of phone calls between UserID and
Destination User ID

• Frequency Received: The number of times Destination UserID called
UserID

The survey and call data was then combined. For each UserID and Desti-
nation UserID, in addition to the Frequency, Total Duration, and Frequency
Received, we also have whether or not UserID classified Destination User
ID as a Close Friend, Political Discussant, etc. Then, a logistic regression
was applied to each of the friendship classifiers, using Frequency, Total Du-
ration, and Frequency Received as the predictors. The following results were
obtained

Response N Dev. N DF Res. Dev. Res. DF G G DF P
Blog 614.62 466 462.82 463 151.80 3 0
Facebook 616.74 466 462.16 463 154.58 3 0
Politics 627.94 466 479.97 463 147.97 3 0
Socialize 580.19 466 416.23 463 163.96 3 0
CloseFriend 647.29 466 526.33 463 120.96 3 0
Table 6.1: Logistic Regression Results. Note that N Dev. = Null Deviance;

N DF = Null Degrees of Freedom; Res. Dev = Residual Deviance; Res. DF =
Residual Degrees of Freedom; G = Chi-Square value from the test; G DF =

Degrees of Freedom of G; and P= p-value

Here, we have performed a likelihood ratio test (G-test). The Null Deviance
represents how well the response is predicted by a model with nothing but
an intercept. We use this value as a chi-square value on 466 degrees of
freedom. The residual deviance represents how well the response is pre-
dicted with the new variables introduced, on 463 degrees of freedom. Then
G = Null Deviance−Residual Deviance ∼ χ2 Thus G follows a Chi-Squared
distribution with 3 degrees of freedom (for the 3 added predictors- Frequency,
Total Duration, and Frequency Received). Therefore, we conclude that each
of the P-values is significant, and the predictors are meaningful to the re-
sponse. For simplicity, we will restrict to one of the friendship classifiers.
Since G represents the difference between the null model and the new model,
it makes sense to choose the response that gives the largest G value. Thus
we will restrict to the Socialize Twice Per Week relationship.
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7 Results

All experiments were performed in R. R is a free, open-source software envi-
ronment developed for statistical computing and graphics. Since we have a
strong need to use statistical methods as well as visualize results, this was a
natural choice. We have made extensive use of the HiddenMarkov, plyr, and
chron packages in the following sections.

7.1 Algorithm Settings

To use the Expectation-Maximization algorithm to estimate the parameters
for the Hidden Markov Model, we must first set the parameters with initial
conditions. Although they can be set randomly, we can also use prior infor-
mation known about the data to optimize our results. The three parameters
that need to be estimated are π, the intial state probability vector, A, state
transition probability matrix, and φ, the emission probability vector.

Recall that:

• X represents the latent state of friendship between two nodes. i.e. if
Xn = 0 the pair are not friends at day n and if Xn = 1 the pair are
friends at day n.

• Y represents the observed state of phone calls between two nodes. i.e.
if Yn = 0 there was not a phone call between the pair on day n and if
Yn = 1 there was a phone call between the pair on day n

• π0 is the probability that a given pair of nodes are not friends on the
first day

• π1 is the probability that a given pair of nodes are friends on the first
day

• A(0,0) is the probability that a pair who were not friends at time t are
still not friends at time t+ 1

• A(0,1) is the probability that a pair who were not friends at time t
become friends at time t+ 1

• A(1,0) is the probability that a pair who were friends at time t stop
being friends at time t+ 1

• A(1,1) is the probability that a pair who were friends at time t continue
being friends at time t+ 1
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• φ0 is the probability that non-friends call eachother at a given t

• φ1 is the probability that friends call eachother at a given t

To estimate π, which determines the beginning state of friendship for each
pair, we turn to the survey data. Since π0 = P (X1 = 0) and π1 = P (X1 = 1),
we simply compute the observed frequencies of each state for the first survey
and then divide by the total number of responses. We obtain

π = (π0, π1) = (
6181

7056
,
875

7056
) = (0.876, 0.124)

We also use the survey data to estimate A. By counting the number of
times Xi = 0 and Xi+1 = 0, Xi = 0 and Xi+1 = 1, Xi = 1 and Xi+1 = 0,
Xi = 1 and Xi+1 = 1, we obtain the following transition probability matrix.

A =
Xt+1 = 0 Xt+1 = 1

Xt = 0 0.942 0.058
Xt = 1 0.339 0.661

Thus we have that
A(0,0) = 0.942,A(0,1) = 0.058,A(1,0) = 0.339,A(1,1) = 0.661

Since our observed variables follow a binomial distribution,

φ = {P (Yi = 1|Xi = 0), P (Yi = 1|Xi = 1)}

To begin with, we’ll assume that each of the emission probabilities are the
same. Thus we are assuming that friends and non-friends have equal proba-
bility of making a phone call to each other. Since the algorithm will adjust
the estimates based on the data, we can then see if the estimates are changed.
If they are significantly changed, we will conclude that friends are more likely
to make a phone call at any given time than non-friends, or potentially vice-
versa. The estimates were found by computing the observed number of days
with a call divided by the total number of entries.

φ = (φ0, φ1) = (.00176, .00176)

Each pair was treated as an individual HMM, and the resulting param-
eter estimates for each observation were stored, in addition to the final log-
likelihood value and the number of iterations.

7.2 Parameter Estimates

The following results were obtained.
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Figure 7.1: Distribution of φ final estimates

It is clear that the majority of HMM’s produced a final estimate of φ near
zero. Upon closer inspection, for each of the 6,674 pairs that never had a
phone call observed between them, the estimates of φ = (0, 0). This should
come as no surprise, since φ is the emission probability, and if there is never
a call observed, the probability of observing a call will naturally be estimated
at zero.

However, due to the large size of the estimates with a value of zero, we
cannot say much about the other 400 samples in the study without removing
those estimates and observing.
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Figure 7.2: Distribution of φ final estimates (At least 1 call observed)

Here, we see a lot more information about how the estimates for φ change
for the pairs where there is a call observed. We continue to observe that φ0,
although not exactly zero, remains less than 0.1 for the majority of samples.
This is what would be expected, since φ0 = P (Yt = 1|Xt = 0), or the
probability that a call is observed given the pair are not friends.

As we are focusing on tolerance, the φ1 estimate is of real importance.
Recall that φ1 = P (Yt = 1|Xt = 1), or the probability that a call is observed
given the pair are friends. Since we define tolerance as maintaining an un-
rewarding friendship, we are interested in the probability that a call is not
observed given the pair are friends. (P (Yt = 0|Xt = 1)) Note that:

P (Yt = 0|Xt = 1) = 1− P (Yt = 1|Xt = 1) = 1− φ1

The distribution is presented below.
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Figure 7.3: Distribution of P(Tolerance)

We see that among current friends, the probability of tolerance is concen-
trated at values at or near 1. In fact, 75 percent of the estimates are greater
than 0.9764. The boxplot of the estimates is shown below. (Note that the
dotted lines are all below the 25th percentile)
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Figure 7.4: P(Tolerance) Boxplot
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We now move to looking at the estimates for the transition probability
matrix, A. The following are the estimates for all of the 7,074 samples.
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Figure 7.5: Distribution of A final estimates

As seen in figure 7.5, in the overwhelming majority of the HMM’s, A
did not change. This is because of the 7074 possible pairs of callers, only
400 pairs had an observed call over the 298-day time period. If there are no
observed phone calls, as previously discussed, φ naturally gets estimates of
0, and the algorithm has no information available to change the estimates of
A.

Thus, we again want to observe only the results where the estimates had
the possibility of being changed - the 400 samples with an observed phone
call over the time period. These results were pulled out of the total resulting
data and are shown below.
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Figure 7.6: Distribution of A final estimates (At least 1 call observed)

We observe similar results as we did when we pulled out the samples with
an observed phone call for φ. Most of the estimates remain nearly the same
as our starting values, but we observe more of a spread in the estimates.
With respect to tolerance, we are more interested in how people act when
they are friends (Xt = 1) than when they are not (Xt = 0). We see estimates
for A(1,0) move towards 0, and estimates for A(1,1) move towards one. This is
more evidence for tolerance being observed. When people are already friends,
they become more likely to stay friends and less likely to break friendships.
Although this only holds for the pairs where at least one call was observed,
121
400 of these pairs only had one observed phone call over the 280-day period,
which means there could have been 279 days where a pair remained friends
without a phone call - supporting the idea of tolerance.

Recall that the definition of tolerance also included the notion of an agent
being N-tolerant. This stated that ”An agent that chooses to maintain an
unrewarding connection for n turns is n − tolerant”. We can also measure
the estimated n-tolerance of each pair using the geometric distribution. We
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are interested in finding the number of days that a pair of friends will remain
friends before breaking the friendship.

Here, we consider each time-step between each pair of agents that are cur-
rently friends as a Bernoulli trial. We can make the independence assumption
since we are only utilizing the resulting value of the algorithm. Thus instead
of looking at the state of the Markov chain that have already been observed,
we are using the estimates of A(1,0) to predict behavior in the future, hence
we have Bernoulli trials. We define the possible outcomes are either maintain
the friendship or break the friendship, with P (Friendship Broken = A(1,0)).
In the context of the geometric distribution, a ’success’ is the friendship be-
ing broken, and p = A(1,0). X is defined as the number of trials before a
success occurs. To estimate n-tolerance, we will compute E(X) = 1

p = 1
A(1,0)

for each pair of individuals that had at least one call made. The results for
the 400 samples are shown below:
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Figure 7.7: Distribution of N-Tolerance represented as a histogram and boxplot

Since E(X) = 1
p , and p ∈ [0.1], we have E(X) ∈ (0,∞). Therefore the

outliers make the rest of the data much harder to observe. If we remove the
farthest outlier (one pair of nodes), with an n-tolerance of 557,890 days, we
obtain the following plots, which contain data from 399/400 pairs of nodes.
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Figure 7.8: Distribution of N-Tolerance (1 outlier removed)

Again, we observe one more significant outlier (one pair of nodes), with
an n-tolerance of 26,884 days, that we remove to observe the rest of the data,
which contains 398/400 pairs of nodes.
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Distribution of N−Tolerance
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Figure 7.9: Distribution of N-Tolerance (2 outliers removed)

Now we can see that 398
400 samples have estimated N-tolerance between 0

and 150 days, with the majority of these samples having an N-tolerance of
less than 10. We now have evidence of the existence of N-tolerance, with
the exception of two outliers, observed in the range (0, 150) days. Note that
by removing two outliers, we have removed two pairs of nodes. However, we
have left 398 pairs of nodes intact so we have not eliminated a significant
amount of data.

After examining the parameter estimates for the hidden Markov model,
we conclude that there was some sort of change in the samples from their
initial estimates to the final estimate observed. We also conclude that N-
tolerance is a measurable attribute and was observed in our system. A natural
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next step to take is determining if the change in the estimates was significant.
This will tell us if, when there was enough evidence to make a change to the
estimates, the change was big enough to matter.

7.3 Significance Tests

Since we have a large sample size (n=400) we can use a t-procedure to test
for significance.

A paired t-test as well as a Wilcoxon signed-rank test was performed
between the starting values for each of the HMM’s and the ending values.
Thus the first sample had the following form, which are the initial estimates
for each of the parameters at the beginning of procedure:

φ0 φ1 A(0,0) A(0,1) A(1,0) A(1,1)

1 0.00176 0.00176 0.942 0.058 0.339 0.661
2 0.00176 0.00176 0.942 0.058 0.339 0.661
...

...
...

...
...

...
...

399 0.00176 0.00176 0.942 0.058 0.339 0.661
400 0.00176 0.00176 0.942 0.058 0.339 0.661

Table 7.1: Starting Values (First set of samples)

While the second sample consisted of the ending estimates for each of
the 400 pairs with an observed phone call. Thus the second sample has the
following form:

φ0 φ1 A(0,0) A(0,1) A(1,0) A(1,1)

1 0.01006 0.01009 0.942 0.058 0.3389 0.6610
2 8.37× 10−10 0.76387 0.98931 0.01069 0.02037 0.97962
...

...
...

...
...

...
...

399 6.707× 10−3 0.00673 0.942 0.058 0.33899 0.66100
400 6.708× 10−3 0.00672 0.942 0.058 0.33899 0.66100

Table 7.2: Ending Values (Second set of samples)

Therefore, 6 paired t-tests were performed, treating each column in the
matrices as a sample for the test. The following results were obtained.

t df P-value xdifference

φ0 15.2 399 < 2.20× 10−16 -0.01004
φ1 7.92 399 2.41× 10−14 0.0776
A(0,0) 4.46 399 1.06× 10−5 -0.00391
A(0,1) 4.46 399 1.06× 10−5 0.00391
A(1,0) 6.62 399 1.12× 10−10 -0.0315
A(1,1) 6.62 399 1.12× 10−10 0.0315
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Table 7.3: Paired T-test results

For this test, the null hypothesis is that there is no difference in the means
of the two samples. In Table 8.4, t is the studentized t ratio obtained, df is
the degrees of freedom of the test, the P-value is the probability of obtaining
a test statistic at least as extreme as the one observed, and xdifference is the
estimated change in mean from the starting sample to the ending sample.

These tests confirmed that the change in estimates for the samples with
call observations was significant for all estimated parameters. However, we
see that φ as well as A(1,0) and A(1,1) are the most significant according to the
p-value, which is what we hypothesized during our discussion of tolerance.
Recall that A(1,0) and A(1,1) govern the state of friendship at t+ 1 when the
pair are friends at time t. Since we have defined tolerance as maintaining
an unrewarding connection, these are the two parameters that control the
tolerance for a given pair.

This confirms what was expected. If a phone call is observed between
two nodes, it is intuitive to think that their emission probabilities would be
significantly different than the starting values, which are heavily weighted
towards the pairs without any calls observed between them.

The Wilcoxon signed-rank test yielded the following results, which con-
firm the t-test results above.

V P-value
φ0 3,376 < 2.20× 10−16

φ1 122 < 2.20× 10−16

A(0,0) 62,949 < 2.20× 10−16

A(0,1) 17,251 < 2.20× 10−16

A(1,0) 78,082 < 2.20× 10−16

A(1,1) 2,118 < 2.20× 10−16

Table 7.4: Wilcoxon Sign-Rank test

Finally, we turn to testing the significance of our N-tolerance results.
For this t-test, we used the null hypothesis that the N-tolerance observed is
equal to what the N-tolerance would be for our initial estimates, E(X) =

1
0.339 = 2.949853. To mirror the process we used for visualizing the data, we
performed three different t-tests on all of the results, the results with one
outlier removed, and the results with two outliers removed. The following
results were obtained.

t df p-value Observed Mean
All Data 1.0496 399 0.2947 557,890.6

1 Outlier Removed 1.0002 398 0.3178 26,884.58
2 Outliers Removed 7.591 397 2.28E-13 8.594
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Table 7.5: N-Tolerance t-test results

Thus we see that in the first two cases, we do not obtain statistically
significant results. However, we also see that the outliers were so large that
they brought the sample mean of the group up to a number that really doesn’t
make sense. To put it in perspective, an n-tolerance of 26,884 corresponds to
over 73 years; while 557,890 corresponds to over 1,528 years. In the context
of friendships, these n-tolerances do not make sense.

Once we remove the outliers, however, we obtain very significant results
as well as an n-tolerance that we can make sense of. We then conclude
that the n-tolerance of this group is significantly different than the estimated
n-tolerance that we started with.

7.4 Preliminary Implementation of HTR

We are now able to use these estimates in the implementation of the Highest
Tolerated Reward rule. By integrating the estimated probabilities of certain
actions, we are able to better simulate a real-world network such as the Social
Evolution data studied.

We ran into issues when trying to integrate the two different systems due
to their fundamental differences. The Hidden Markov Model uses real data,
which consisted of two totally separate networks (friendship and phone calls).
The Highest Tolerated Reward MAS is a simulation for the real data, but is
implemented as one network and using phone calls as a reward.

Due to time constraints, we were unable to obtain full results for the HTR
simulation. Currently, the output for the HTR simulation consists only of
network attributes such as the clustering coefficient, and a table representing
both connections and phone calls. Due to the differences between the repre-
sentation of the real data and the representation of the simulation, we were
unable to determine a plan of action for analysis of the simulation results
against the real data within the time allotted for the project, and leave it as
future work. We believe that with the proper formatting of either or both of
the datasets, complete analysis will yield successful results.

However, we were still able to obtain positive preliminary results. By
only implementing the estimate for φ1, we were able to obtain simulated
results with clustering coefficients very near to the observed clustering co-
efficient for the Social Evolution data. The clustering coefficient for the
SocializeTwicePerWeek relationship over the entire time period was 0.6148,
and over a preliminary simulation study of 30 trials, we obtained a range
of clustering coefficients from .57 to .62, with an mean of 0.5863. For per-
spective, before adding the estimate of φ, the clustering coefficient for the
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simulations was consistently less than 0.2. This leads us to believe that our
results are promising in further adapting the HTR rule.
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8 Conclusions

We are positive about the preliminary results from our initial Multi Agent
System simulations. Achieving observed clustering coefficients so similar to
the real data with only one adjustment leads us to believe there is a promising
future in making our implementation of the Multi Agent System as realistic
as possible. We continue to adjust inputs and procedure to achieve more
desirable results.

Through the Hidden Markov Model results, we have successfully shown
a viable way of observing tolerance in a dynamic social network. Through
the combined results of the estimates of A(1,0), A(1,1) and φ, we conclude
that tolerance has been observed in a real dataset. This is not only valuable
for this paper, but for previous work in MultiAgent systems which have
observed tolerance in simulations. This work has shown that tolerance is
not just a side-effect of the decision rule chosen for the system, nor is it a
purely sociological theory, but an observable trait of dynamic social networks
in real-world situations.

9 Future Work and Limitations

9.1 Limitations of the Data

The nature of the data that we have used has caused some limitations within
the project. The survey data used had only 5 observations over a nine-month
period. Daily survey data would have been better suited for the model. The
study was also done from 2008-2009, but was not made available until 2012.
Since the study was performed, cell phone technology has made incredible
advances and is more prolific now than it was when the data was published.
The same study, if performed today, could likely yield more results with the
utilization of social media applications and text messaging in addition to
phone calls.

9.2 Statistical Assumptions

In our implementation of the HMM, we defined both X and Y as binomial
variables. Making this assumption has caused us to lose some of the data,
and thus is a limitation of the project. For instance, defining Y as a discrete
variable representing the number of calls in a given day, rather than as a
Bernoulli trial and definingX as a categorical variable representing the ’type’
of friendship reported allows more of the data to be represented in the model.

41



Additionally, we have assumed independence between all samples. Since
each sample represents a possible connection between any two agents, there
is bound to be some sort of correlation between the samples. For instance,
two possible connections that share a third are likely to have some sort of
dependence.

A further limitation of the project is the Markov assumption. We have
made the assumption that friendship at time t is only dependent on time
t− 1, when in reality, friendship is a much longer-term attribute. By finding
a way to address this limitation, our results could be strengthened.

9.3 Continuation of Computational Model

A natural next step of this project is finishing the implementation of the HTR
Neighborhood Evaluation Rule. Although we have seen positive preliminary
results, we have yet to fully integrate the estimated parameters from the
HMM into the system. We have also explored the idea of a theoretical value
for optimal tolerance, but have yet to formalize the definition and proof.

Additionally, we have viewed tolerance in the simplest of ways - either
tolerant or non-tolerant. In the real world, we would expect different levels
of tolerance, which has also been introduced in a preliminary paper (Genicot
2011). Allowing agents to fall somewhere on a spectrum of tolerance would
further enhance the real-world applicability of the model.
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10 Appendices

10.1 Table of Variables

Variable Name Meaning Value Page Reference
pij(t) Payoff Function 0-1 14
rij(t) Reward Function 0-1 14
w Time-Discount Factor 0.5-1.0 14

Rij(t) Reward Average Function 0-1 14
θ Seeking Threshold 0.5-0.9 16
α Maintaining Threshold 0.1-0.9
γ Random Connection Probability 0-1 17
δ Friend of a Friend Probability 0-1 17
X Friendship Binomial 21
Y Phone Call Binomial 21
A Transition Probability Matrix 0-1 21
π Initial State Probability Vector 0-1 21
φ Emission Probability Vector 0-1 21

Number of Nodes 84 24
Number of Calls 3700 27

Number of Directed Connections 400 27
Number of Time-Steps 298 27

43



10.2 Data Formatting

The following steps were taken to clean the data:

1. Count number of calls, duration for each caller/receiver pair

2. Order by userID then by destID

3. Compute Average Duration (Total Duration/Frequency)

4. Compute Frequency Received (Number of times Receiver called Caller)

5. Create Factors for survey relationships

6. Combine call and survey data into one data frame

7. Remove entries where destID and userID match

8. Remove any entries with a negative value

9. Remove outlier entries determined by the following:

• Frequency ≥ 75 per month with less than 3 days with a recorded
phone call

• TotDuration≥5000 per month with less than 3 days with a recorded
phone call

setwd ( ”Thes i s ” )
getwd ( )

l ibrary ( p ly r )
#Firs t , we w i l l c r ea t e a t a b l e wi th a l l o f the c a l l data
#in a g iven survey per iod . We w i l l then c l ean the survey data
#and f i n a l l y combine the two .

#Read c a l l s data ( s p l i t by survey date ) & Survey data
c a l l s=read . csv ( ”Thes i s/ c a l l s . csv ” , header=TRUE)
survey=read . csv ( ”Thes i s/Surveydata . csv ” , header=TRUE)
#Order by user ID and then by d e s t i n a t i on user ID
c a l l s<−c a l l s [ order ( c a l l s $user id , c a l l s $dest user id ) , ]
#Create data frame tha t w i l l be f i l l e d in con ta in ing condensed
#Informat ion f o r a l l p a i r s
connec t i ons = data . frame ( UserID=numeric (0 ) , DestID=character ( ) ,

NumOfDays=character ( )
, Frequency=character ( ) , TotDuration=

character ( ) )
userID=c a l l s $user id [ 1 ]
destID=c a l l s $dest user id [ 1 ]
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numOfDays=298
ca l l sCount=0
totDurat ion=0

#For each c a l l
for ( i in 1 : length ( c a l l s $user id ) ) {

#Check i f there ’ s another c a l l wi th same user/de s t pa i r
#and increment c a l l s count and durat ion

i f ( isTRUE( a l l . equal (c ( userID , destID ) ,c ( c a l l s $user id [ i ] ,
c a l l s $dest user id [ i ] ) ) ) ) {

ca l l sCount=ca l l sCount+1
totDurat ion = totDurat ion+c a l l s $durat ion [ i ]

}
#Otherwise , append new entry to connect ions frame
else {

i f ( ca l l sCount !=0) {
connec t i ons=rbind ( connect ions , c ( userID , destID , numOfDays

, ca l l sCount , totDurat ion ) )
totDurat ion=c a l l s $durat ion [ i ]

}
#Move to next c a l l in f i l e & repea t
userID=c a l l s $user id [ i ]
destID=c a l l s $dest user id [ i ]
ca l l sCount=1

}
}
#append f i n a l en try to connect ions
connec t i ons=rbind ( connect ions , c ( userID , destID , numOfDays ,

ca l l sCount , totDurat ion ) )
#order by userID and then by destID
connec t i ons<−connec t i ons [ order ( connect i ons [ , 1 ] , connec t i ons [ , 2 ] )

, ]
#remove f i r s t entry ( because i t ’ s nonsense )
connec t i ons<−connec t i ons [ 2 : length ( connect i ons [ , 1 ] ) −1 ,]
#Compute average durat ion by t o t a l dura t ion/ f r equency
#round to one decimal p l ace
AvgDuration<−connec t i ons [ , 5 ] / connec t i ons [ , 4 ]
AvgDuration<−round( AvgDuration , 1 )
connec t i ons<−cbind ( connect ions , AvgDuration )
#compute the f requency r e c e i v ed f o r each grouping
#i . e . number o f t imes destID c a l l e d userID
f requencyRec<−c ( rep (0 , length ( connect i ons [ , 1 ] ) ) )
for ( i in 1 : length ( connect i ons [ , 1 ] ) ) {

c a l l e r<− connec t i ons [ i , 1 ]
r e c e i v e r<− connec t i ons [ i , 2 ]
r e c e i v e rCa l l e d<−which ( connect i ons [ ,1]== r e c e i v e r )
rec Index = which ( connect i ons [ r e c e i v e rCa l l ed ,2]== c a l l e r )
i f ( length ( rec Index ) !=0) {

f requencyRec [ i ]= connec t i ons [ r e c e i v e rCa l l e d [ rec Index ] , 4 ]
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}
}
connec t i ons<−cbind ( connect ions , frequencyRec )
#to l e r anc e − number o f t imes userID c a l l e d destID minus
#number o f t imes destID c a l l e d userID
t o l e r an c e<−connec t i ons [ , 4 ] − connec t i ons [ , 7 ]
#compute t o l e r anc e ’ l e v e l ’ − e i t h e r 1 ,−1 , or 0
t o l e r an c eLeve l<−t o l e r an c e
for ( i in 1 : length ( t o l e r an c eLev e l ) ) {

i f ( t o l e r an c eLev e l [ i ]==0){
t o l e r an c eLeve l [ i ]=0

}
else i f ( t o l e r an c eLev e l [ i ]<0){

t o l e r an c eLeve l [ i ]=−1
}
else {

t o l e r an c eLeve l [ i ]=1
}

}
connec t i ons<−cbind ( connect ions , t o l e rance , t o l e r an c eLeve l )
#de f i n e column names f o r data frame
colnames ( connect i ons )<−c ( ”UserID” , ”DestID” , ”NumOfDays” , ”

Frequency” , ”TotDuration” , ”AvgDuration” , ”FrequencyRec” , ”
t o l e r an c e ” , ” t o l e r an c eLeve l ” )

#We are now done wi th c l ean ing and format t ing the c a l l s data

#Now we w i l l beg in c l ean ing and format t ing the survey data
#Order by idA then by idB
survey<−survey [ order ( survey$ id .A, survey$ id .B) , ]
#crea t e f a c t o r s f o r the d i f f e r e n t op t i ons f o r r e l a t i o n s h i p
f r e l<−factor ( survey$ r e l a t i o n s h i p )
f r e l<−factor ( f r e l , levels ( f r e l ) [ c ( 1 , 3 , 4 , 5 , 2 ) ] )
#co l l a p s e survey data f o r each pa i r in t o one entry wi th b inary
#columns i f they answered f o r t ha t r e l a t i o n s h i p or not
survey1<− ddply ( survey , c ( ’ id .A ’ , ’ id .B ’ ) , function ( x ) c (count=

nrow( x ) , b log=levels ( f r e l ) [ 1 ] %in% x$ r e l a t i o n s h i p , facebook=
levels ( f r e l ) [ 2 ] %in% x$ r e l a t i o n s h i p , p o l i t i c s=levels ( f r e l ) [ 3 ]
%in% x$ r e l a t i o n sh i p , s o c i a l i z e=levels ( f r e l ) [ 4 ] %in% x$
r e l a t i o n s h i p , c l o s e f r i e n d=levels ( f r e l ) [ 5 ] %in% x$ r e l a t i o n s h i p )
)

#We are now done wi th c l ean ing and format t ing the survey data
# and can move on to combining the survey and c a l l s

#Merges c a l l s and survey in t o one t a b l e by CALLS
# won ’ t i n c l ude survey data from peop l e who did not c a l l
# each o ther
table<−merge( connect ions , survey1 , by . x=c ( ’ UserID ’ , ’ DestID ’ ) ,

by . y=c ( ’ id .A ’ , ’ id .B ’ ) , a l l . x=TRUE)
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#rep l a c e s NA’ s wi th ze ros
table [ i s .na( table ) ]<−0
#removes any survey data in which the destID and userID match
s e l f<−table$UserID==table$DestID
table<−table [ s e l f==FALSE , ]
#removes c a l l s wi th nega t i v e e n t r i e s
negCa l l s<−table$TotDuration<0
table<−table [ negCa l l s==FALSE , ]

#Done .

# op t i ona l : wr i t e t a b l e to f i l e
# wr i t e . csv ( t a b l e , ”Survey5Table . csv ” , row . names=FALSE, na=””)
#Log i s t i c r e g r e s s i on
blog<−glm( formula=table$blog˜table$Frequency + table$TotDuration

+ table$FrequencyRec , family=”binomial ” , data=table )
facebook<−glm( formula=table$ facebook˜table$Frequency + table$

TotDuration + table$FrequencyRec , family=”binomial ” , data=
table )

p o l i t i c s<−glm( formula=table$ p o l i t i c s ˜table$Frequency + table$
TotDuration + table$FrequencyRec , family=”binomial ” , data=
table )

s o c i a l i z e<−glm( formula=table$ s o c i a l i z e ˜table$Frequency + table$
TotDuration + table$FrequencyRec , family=”binomial ” , data=
table )

c l o s e f r i e n d<−glm( formula=table$ c l o s e f r i e n d ˜table$Frequency +
table$TotDuration + table$FrequencyRec , family=”binomial ” ,
data=table )

summary( b log )
summary( facebook )
summary( p o l i t i c s )
summary( s o c i a l i z e )
summary( c l o s e f r i e n d )
#CHI SQUARE P VALUES
#1−pch i s q (614.62 ,466)
#[ 1 ] 4.272671 e−06
#> 1−pch i s q (616.74 ,466)
#[ 1 ] 3.259215 e−06
#> 1−pch i s q (627.94 ,466)
#[ 1 ] 7.470636 e−07
#> 1−pch i s q (580.19 ,466)
#[ 1 ] 0.0002381774
#> 1−pch i s q (647.29 ,466)
#[ 1 ] 4.974709 e−08
#> 1−pch i s q (462.92 ,463)
#[ 1 ] 0.4923083
#> 1−pch i s q (462.16 ,463)
#[ 1 ] 0.5022768
#> 1−pch i s q (479.97 ,463)
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#[ 1 ] 0.2833759
#> 1−pch i s q (416.23 ,463)
#[ 1 ] 0.9417797
#> 1−pch i s q (526.33 ,463)
#[ 1 ] 0.02195997
#nul lDev<−c (614 .62 , 616.74 , 627.94 , 580.19 , 647.29)
#> resDev<−c (462 .82 , 462.16 , 479.97 , 416.23 , 526.33)
#> g<−nul lDev−resDev

#Creates a t a b l e merging the o ther way around −− i n c l u d e s
# survey data f o r which the r e are no c a l l s as w e l l as
# survey data which i n c l u d e s c a l l s
surveyTab<−merge( survey1 , connect ions , by . x=c ( ’ id .A ’ , ’ id .B ’ ) ,

by . y=c ( ’ UserID ’ , ’ DestID ’ ) , a l l . x=TRUE)
surveyTab<−surveyTab [ surveyTab$ s o c i a l i z e ==1,]
#Removes e n t r i e s where id .A = id .B
surveyTab<−surveyTab [ surveyTab$ id .A!=surveyTab$ id .B , ]
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10.3 Compute days without a call

c a l l s=read . csv ( ” c a l l s . csv ” , header=TRUE)
c a l l s<−c a l l s [ order ( c a l l s $user id , c a l l s $dest user id ) , ]
l ibrary ( chron )
dates<−c a l l s [ , 2 ]
dates [ 1 : 1 0 ]
d i f f t im e ( dates [ 1 ] , dates [ 3 0 0 0 ] , un i t s=’ days ’ )
as . POSIXct ( dates )
mydate = st rpt ime ( dates [ 1 ] , format=’%d/%b/%Y:%H:%M’ )
mydate
mydate<−as . character ( dates [ 1 ] )
mydate1 = st rpt ime (mydate , format=’%m/%d/%Y %H:%M’ )
mydate1
as . POSIXct (mydate1 )

smal lDates<−dates [ 5 0 : 1 0 0 ]
myDates<−s t rpt ime ( smallDates , format=’%m/%d/%Y %H:%M’ )
as . POSIXct (myDates )
max(myDates )
min(myDates )
d i f f t im e (max(myDates ) , min(myDates ) , un i t s=’ days ’ )

c a l l s=read . csv ( ” c a l l s . csv ” , header=TRUE)
c a l l s<−c a l l s [ order ( c a l l s $user id , c a l l s $dest user id ) , ]
c a l l s<−c a l l s [ c a l l s $user id !=c a l l s $dest user id , ]
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10.4 Create Visual Data

survey2<−read . csv ( ”Survey2Table . csv ” , header=TRUE)
survey3<−read . csv ( ”Survey3Table . csv ” , header=TRUE)
survey4<−read . csv ( ”Survey4Table . csv ” , header=TRUE)
survey5<−read . csv ( ”Survey5Table . csv ” , header=TRUE)
survey6<−read . csv ( ”Survey6Table . csv ” , header=TRUE)
totSurvey<−rbind ( survey2 , survey3 , survey4 , survey5 , survey6 )

totSurvey<−totSurvey [ totSurvey$TotDuration <5000 ,]
totSurvey<−totSurvey [ totSurvey$Frequency <75 ,]
totSurvey<−totSurvey [ totSurvey$AvgDuration<150 ,]
totSurvey<−totSurvey [ totSurvey$FrequencyRec <75 ,]

survey2<−survey2 [ survey2$TotDuration <5000 ,]
survey2<−survey2 [ survey2$Frequency <75 ,]
survey2<−survey2 [ survey2$AvgDuration<150 ,]
survey2<−survey2 [ survey2$FrequencyRec <75 ,]
p l o tD i s t ( survey2 )

survey3<−survey3 [ survey3$TotDuration <5000 ,]
survey3<−survey3 [ survey3$Frequency <75 ,]
survey3<−survey3 [ survey3$AvgDuration<150 ,]
survey3<−survey3 [ survey3$FrequencyRec <75 ,]
p l o tD i s t ( survey3 )

survey6<−survey6 [ survey6$TotDuration <5000 ,]
survey6<−survey6 [ survey6$Frequency <75 ,]
survey6<−survey6 [ survey6$AvgDuration<150 ,]
survey6<−survey6 [ survey6$FrequencyRec <75 ,]
p l o tD i s t ( survey6 )

model<−glm( formula = c l o s e f r i e n d ˜ TotDuration + Frequency +
FrequencyRec , family = ”binomial ” , data = totSurvey )

p l o tD i s t<− function ( totSurvey ) {
#FREQUENCY: Friends vs . Non Histogram
a<−totSurvey$Frequency [ totSurvey$count==0]
b<−totSurvey$Frequency [ totSurvey$count !=0 ]
par (mfrow=c ( 3 , 2 ) )
hist ( a , xl im=c (0 , 60 ) , yl im=c (0 ,400) , x lab=” ” , col=”blue ” , main=”

Frequency − Non−Friends ” )
hist (b , col=rgb (0 , 1 , 0 , 0 . 5 ) , x lab=”” , main=”Frequency −

Friends ” )

#TOTAL DURATION: Friends vs . Non Histogram
a<−totSurvey$TotDuration [ totSurvey$count==0]
b<−totSurvey$TotDuration [ totSurvey$count !=0 ]

50



hist ( a , xl im=c (0 ,4000) , yl im=c (0 ,500) , x lab=” ” , col=”blue ” , main
=”Tot Duration − Non−Friends ” )

hist (b , col=rgb (0 , 1 , 0 , 0 . 5 ) , x lab=”” , main=”Tot Duration −
Friends ” )

#FREQUENCY RECEIVED: Friends vs . Non Histogram
a<−totSurvey$FrequencyRec [ totSurvey$count==0]
b<−totSurvey$FrequencyRec [ totSurvey$count !=0 ]
hist ( a , xl im=c (0 , 60 ) , yl im=c (0 ,500) , x lab=” ” , col=”blue ” , main=”

Freq . Rec − Non−Friends ” )
hist (b , col=rgb (0 , 1 , 0 , 0 . 5 ) , x lab=”” , main=”Freq . Rec −

Friends ” )
return
}
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10.5 Network Visualization

#Read in SURVEY DATA
surveyTab<−read . csv ( ”Thes i s/Survey1 . csv ” )
surveyTab<−surveyTab [ surveyTab$ r e l a t i o n s h i p==”

Social izeTwicePerWeek ” , ]
f r iendGraph<−graph . data . frame ( surveyTab )
#Read in CALL DATA
ca l lTab<−read . csv ( ”Thes i s/Survey1Table . csv ” )
ca l lGraph<−graph . data . frame ( ca l lTab )
#Plot Direc ted Networks
plot ( fr iendGraph )
plot ( ca l lGraph )
#Plot Undirected Networks
f r iendGraph sym<−as . und i r ec ted ( fr iendGraph , mode=’ c o l l a p s e ’ )
plot ( fr iendGraph sym)
fr iendGraph sym layout <− layout . f ruchterman . r e i n go l d (

fr iendGraph sym)
plot ( fr iendGraph sym , layout=friendGraph sym layout )
ca l lGraph sym<−as . und i r ec ted ( cal lGraph , mode=’ c o l l a p s e ’ )
plot ( ca l lGraph sym)
cal lGraph sym layout <− layout . f ruchterman . r e i n go l d ( ca l lGraph

sym)
plot ( ca l lGraph sym , layout=cal lGraph sym layout )
#degree d i s t r i b u t i o n
deg Friend in <− degree ( fr iendGraph , mode=” in ” )
hist ( deg Friend in )
deg Friend out <− degree ( fr iendGraph , mode=”out” )
hist ( deg Friend out )

deg ca l l in <− degree ( cal lGraph , mode=” in ” )
hist ( deg ca l l in )
deg ca l l out <− degree ( cal lGraph , mode=”out” )
hist ( deg ca l l out )
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10.6 Create Time Series

setwd ( ”Thes i s ” )
c a l l s=read . csv ( ” c a l l s . csv ” , header=TRUE)
c a l l s<−c a l l s [ order ( c a l l s $user id , c a l l s $dest user id ) , ]
l ibrary ( chron )
#Formates da te s in t o a POSIX ob j e c t t h a t R recogn i z e s as da te s
c a l l s [ , 2 ]<−as . POSIXct ( s t rpt ime ( c a l l s [ , 2 ] , format=’%m/%d/%Y %H:%M

’ ) )
#conver t s days to i n t e g e r r e p r e s en t a t i on s based on s t a r t o f

experiment
c a l l s [ , 2 ]<−cut ( c a l l s [ , 2 ] , breaks=”day” , labels=FALSE)
c a l l s<−data . frame ( c a l l s )
#removes unkown user IDs and de s t user IDs
c a l l s<−c a l l s [ i s .na( c a l l s $dest user id i f known)==FALSE , ]
c a l l s<−c a l l s [ i s .na( c a l l s $user id )==FALSE , ]
#removes durat ion and phone hash
c a l l s<−c a l l s [ , c ( 1 , 2 , 4 ) ]
#Removes e n t r i e s where user id = des t id
s e l f<−c a l l s $user id == c a l l s $dest user id i f known
c a l l s<−c a l l s [ s e l f==FALSE , ]
c a l l s<−c a l l s [ order ( c a l l s $user id , c a l l s $dest user id i f known ,

c a l l s $time stamp ) , ]
#crea t e empty matrix to f i l l in time s e r i e s
user<−sort (c ( rep ( seq ( 1 : 8 4 ) ,84) ) )
des t<−c ( rep ( seq ( 1 : 8 4 ) ,84) )
edges<−cbind ( user , des t )
lab<−colnames ( edges )
empty<−c ( rep (0 ,7056) )
for ( i in 1 : 298 ) {

edges<−cbind ( edges , empty )
lab<−c ( lab , i )

}
colnames ( edges )<−l ab

for ( i in 1 : length ( c a l l s $user id ) ) {
userID<−c a l l s $user id [ i ]
destID<−c a l l s $dest user id i f known [ i ]
date<−c a l l s $time stamp [ i ]
edges [ 84∗ ( userID−1)+destID , date ]<−1

}

#Find i n i t i a l p r o b a b i l i t i e s
numCalls<−apply ( edges [ , 3 : 3 0 0 ] , 1 ,sum)
sum( numCalls )/(7056∗298)
write . csv ( edges , ” ca l l sTS . csv ” , row .names=FALSE)
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10.7 Compute Transition Probability Matrix

l ibrary ( p ly r )
survey<−read . csv ( ”Thes i s/Surveydata . csv ” )
#Res t r i c t r e l a t i o n s h i p to on ly c l o s e f r i e nd
survey<−survey [ survey$ r e l a t i o n s h i p==”Social izeTwicePerWeek ” , ]
#Factor the survey da te s
f da t e<−factor ( survey$ survey . date )
#Order survey data
survey<−survey [ order ( survey$ id .A, survey$ id .B, survey$ survey .

date ) , ]
#Remove en t r i e s where id .A=id .B
s e l f<−survey$ id .A==survey$ id .B
survey<−survey [ s e l f==FALSE , ]
#crea t e empty t a b l e o f edges to be f i l l e d in
a<−sort (c ( rep ( seq ( 1 : 8 4 ) ,84) ) )
b<−c ( rep ( seq ( 1 : 8 4 ) ,84) )
edgesSur<−cbind ( a , b )
lab<−colnames ( edgesSur )
empty<−c ( rep (0 ,7056) )
for ( i in 1 : 6 ) {

edgesSur<−cbind ( edgesSur , empty )
}
dim( edgesSur )
colnames ( edgesSur )<−c ( ” id .A” , ” id .B” , levels ( fda t e ) )
levels ( fda t e )
#F i l l in f r i e n d s h i p s
for ( i in 1 : length ( survey$ id .A) ) {

id . a<−survey$ id .A[ i ]
id . b<−survey$ id .B[ i ]
date<−which ( levels ( fda t e )==survey$ survey . date [ i ] )
edgesSur [ 84∗ ( id . a−1)+id . b , date+2]<−1

}
dim( edgesSur )
#Compute t r a n s i t i o n p r o b a b i l i t i e s
z e r z e r<−0
zerone<−0
onezer<−0
oneone<−0
#Compute top row of matrix
for ( i in 3 : 7 ) {

plus<−edgesSur [ edgesSur [ , i ]==0, i +1]
z e r z e r<−z e r z e r+count ( p lus ) [ 1 , 2 ]
zerone<−zerone+count ( p lus ) [ 2 , 2 ]

}
#compute second row o f matrix
for ( i in 3 : 7 ) {

plus<−edgesSur [ edgesSur [ , i ]==1, i +1]
onezer<−onezer+count ( p lus ) [ 1 , 2 ]
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oneone<−oneone+count ( p lus ) [ 2 , 2 ]
}
ze r<−sum( z e r ze r , zerone )
one<−sum( onezer , oneone )
p i<−matrix (c ( z e r z e r/zer , zerone/zer , onezer/one , oneone/one ) ,nrow

=2,byrow=TRUE)
pi

d e l t a<−c (count ( edgesSur [ , 3 ] ) [ 1 , 2 ] /length ( edgesSur [ , 3 ] ) , count (
edgesSur [ , 3 ] ) [ 2 , 2 ] /length ( edgesSur [ , 3 ] ) )

d e l t a
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10.8 Run Expectation-Maximization Algorithm

l ibrary (HiddenMarkov )
# ca l l sTS : Time−s e r i e s f o r b inomia l c a l l s ( whether c a l l happened

on day or not ) rows=pa i r s o f user s
# and columns are number o f days in the s tudy
ca l l sTS<−read . csv ( ”Thes i s/ ca l l sTS . csv ” , header=TRUE)
ca l l sTS<−data .matrix ( ca l l sTS )
# pi : Trans i t ion P r o b a b i l i t y Matrix f o r l a t e n t s t a t e ( f r i e n d s h i p

)
# Dataset inc luded s i x surveys spread over the s tudy where

p a r t i c i p a n t s responded
# about t h e i r f r i e n d s h i p wi th o the r s in the s tudy . The e s t ima t e s

f o r p i were found by
# count ing the observed p r o b a b i l i t y a no s tayed a no f o r the

next survey ( . 942)
# a no turned in to a yes ( . 058) , a yes turned in t o a no ( . 339)

and a yes s tayed a yes ( . 661)
pi<−matrix (c ( . 9 4 2 , . 0 5 8 , . 3 3 9 , . 6 6 1 ) , nrow=2, byrow=TRUE)
# de l t a : marginal p r o b a b i l i t y d i s t r i b u t i o n o f hidden s t a t e s at

f i r s t time po in t
# es t ima t e s taken from o r i g i n a l data (# of pa i r s t ha t sa id yes/

t o t a l # o f pa i r s )
de l t a<−c ( . 8 7 6 , . 1 2 4 )
# obs : observed b inomia l o f time s e r i e s r ep r e s en t i n g whether or

not t he r e was a c a l l
# between two p a r t i c i p a n t s
obs<−ca l l sTS [ 7 0 0 0 , 3 : 3 0 0 ]
# pn : vec to r t ha t r ep r e s en t s n in the b inomia l d i s t r i b u t i o n (n=

number o f days )
pn<−l i s t ( s i z e=rep (1 , length ( obs ) ) )
# x : d i s c r e t e time hidden markov model o b j e c t (dthmm)
# pm: l i s t ( prob=c ( .00176 , .00176) ) ( p f o r b inomia l d i s t r i b u t i o n

in each o f the l a t e n t s t a t e s )
# Making assumption they are equa l to beg in wi th
# Estimated by # of 1 ’ s in ca l l sTS/ t o t a l e n t r i e s in ca l l sTS
sum( ca l l sTS [ 3 , 3 : 3 0 0 ] )
#Go through and perform BaumWelch a l gor i thm on every pa i r and

record r e s u l t s
EMres<−matrix (ncol = 11 , nrow = 0)
for ( i in 1 : length ( ca l l sTS [ , 1 ] ) ) {

obs<−ca l l sTS [ i , 3 : 3 0 0 ]
x<−dthmm( obs , pi , de l ta , ”binom” , l i s t ( prob=c ( . 00176 , . 00176) ) ,

pn , d i s c r e t e=TRUE)
x .EM<−BaumWelch(x )
EMres<−rbind (EMres , c ( ca l l sTS [ i , 1 : 2 ] , x .EM$pm$prob , x .EM$Pi

[ 1 , ] , x .EM$Pi [ 2 , ] , x .EM$ i t e r , x .EM$LL , ) )
}
sums<−apply ( ca l l sTS [ , 3 : 3 0 0 ] , 1 ,sum)
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EMres<−cbind (EMres , sums )
EMres<−EMres [ , 1 : 1 1 ]
write . csv (EMres , ”Thes i s/BaumWelchResults . csv ” , row .names=FALSE)
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10.9 Significance Tests

e s t imate s<−read . csv ( ”Thes i s/BaumWelchResults . csv ” )
#∗∗∗∗EMISSION PROBABILITY GRAPHS∗∗∗∗∗∗
par (mfrow=c ( 1 , 2 ) )
hist ( e s t imate s [ , 3 ] , main=”Al l phi [ 0 ] ” , x lab=”phi [ 0 ] ” , xl im=c

( 0 , 1 ) )
hist ( e s t imate s [ , 4 ] , main=”Al l phi [ 1 ] ” , x lab=”phi [ 1 ] ” , xl im=c

( 0 , 1 ) )
#∗∗∗∗EMISSION PROBABILITy GRAPHS NONZERO CALLS∗∗∗∗
par (mfrow=c ( 1 , 2 ) )
hist ( e s t imate s [ e s t imate s [ , 11 ] >0 , 3 ] , xl im=c ( 0 , 1 ) , yl im=c (0 ,350) ,

main = ”Nonzero c a l l s phi 0” , xlab=”phi 0” )
t . t e s t ( e s t imate s [ , 3 ] , e s t imate s [ e s t imate s [ , 11 ] >0 , 3 ] )
wi l cox . t e s t ( e s t imate s [ , 3 ] , e s t imate s [ e s t imate s [ , 1 1 ] >0 , 3 ] )
hist ( e s t imate s [ e s t imate s [ , 11 ] >0 , 4 ] , xl im=c ( 0 , 1 ) , main=”Nonzero

c a l l s phi [ 1 ] ” , x lab=”phi [ i ] ” )
t . t e s t ( e s t imate s [ , 4 ] , e s t imate s [ e s t imate s [ , 11 ] >0 , 4 ] )
wi l cox . t e s t ( e s t imate s [ , 4 ] , e s t imate s [ e s t imate s [ , 1 1 ] >0 , 4 ] )
par (mfrow=c ( 1 , 1 ) )
hist (1− e s t imate s [ e s t imate s [ , 11 ] >0 , 4 ] , xl im=c ( 0 , 1 ) , main=”

Probab i l i t y o f Tolerance ” , xlab=”1−phi [ 1 ] ” )
boxplot(1− e s t imate s [ e s t imate s [ , 11 ] >0 , 4 ] , range=0, main = ”

Probab i l i t y o f Tolerance ” )
#∗∗∗∗TRANSITION PROBABILITY GRAPHS∗∗∗∗∗∗
par (mfrow=c ( 2 , 2 ) )
hist ( e s t imate s [ , 5 ] , main=” (0 , 0 ) entry ” , xlab=” P r o b a b i l i t i e s ” )
hist ( e s t imate s [ , 6 ] , main=” (0 , 1 ) entry ” , xlab=” P r o b a b i l i t i e s ” )
hist ( e s t imate s [ , 7 ] , main=” (1 , 0 ) entry ” , xlab=” P r o b a b i l i t i e s ” )
hist ( e s t imate s [ , 8 ] , main=” (1 , 1 ) entry ” , xlab=” P r o b a b i l i t i e s ” )
#∗∗∗∗TRANSITION PROBABILITY GRAPHS NONZERO PAIRS∗∗∗∗∗
s i g<−e s t imate s [ e s t imate s [ , 1 1 ] >0 , 3 : 8 ]
t . t e s t ( s i g [ , 3 ] , e s t imate s [ , 5 ] )
wi l cox . t e s t ( s i g [ , 3 ] , e s t imate s [ , 5 ] )
hist ( s i g [ , 3 ] , main=”A[ 0 , 0 ] Nonzero c a l l s ” , x lab=”A[ 0 , 0 ] ” , breaks

=10, xl im=c ( 0 , 1 ) )
t . t e s t ( s i g [ , 4 ] , e s t imate s [ , 6 ] )
wi l cox . t e s t ( s i g [ , 4 ] , e s t imate s [ , 6 ] )
hist ( s i g [ , 4 ] , main=”A[ 0 , 1 ] Nonzero c a l l s ” , x lab=”A[ 0 , 1 ] ” , breaks

=10, xl im=c ( 0 , 1 ) )
t . t e s t ( s i g [ , 5 ] , e s t imate s [ , 7 ] )
wi l cox . t e s t ( s i g [ , 5 ] , e s t imate s [ , 7 ] )
hist ( s i g [ , 5 ] , main=”A[ 1 , 0 ] Nonzero c a l l s ” , x lab=”A[ 1 , 0 ] ” , breaks

=10, xl im=c ( 0 , 1 ) )
t . t e s t ( s i g [ , 6 ] , e s t imate s [ , 8 ] )
wi l cox . t e s t ( s i g [ , 6 ] , e s t imate s [ , 8 ] )
hist ( s i g [ , 6 ] , main=”A[ 1 , 1 ] Nonzero c a l l s ” , x lab=”A[ 1 , 1 ] ” , breaks

=10, xl im=c ( 0 , 1 ) )
count ( e s t imate s [ ,11]==1)
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start<−data . frame (matrix ( rep (c ( . 00176 , . 00176 , e s t imate s [ 1 , 5 : 8 ] ) ,
length ( s i g [ , 1 ] ) ) , byrow=TRUE, ncol=6) )

#∗∗∗∗ TEST IF VALUES SIGNIFICANTLY CHANGED FROM STARTING VALUES∗
∗∗∗

t . t e s t ( as .numeric ( start [ , 1 ] ) , as .numeric ( s i g [ , 1 ] ) , pa i r ed=TRUE)
wi l cox . t e s t (as .numeric ( start [ , 1 ] ) , as .numeric ( s i g [ , 1 ] ) , pa i r ed=

TRUE)
t . t e s t ( as .numeric ( start [ , 2 ] ) , as .numeric ( s i g [ , 2 ] ) , pa i r ed=TRUE)
wi l cox . t e s t (as .numeric ( start [ , 2 ] ) , as .numeric ( s i g [ , 2 ] ) , pa i r ed=

TRUE)
t . t e s t ( as .numeric ( start [ , 3 ] ) , as .numeric ( s i g [ , 3 ] ) , pa i r ed=TRUE)
wi l cox . t e s t (as .numeric ( start [ , 3 ] ) , as .numeric ( s i g [ , 3 ] ) , pa i r ed=

TRUE)
t . t e s t ( as .numeric ( start [ , 4 ] ) , as .numeric ( s i g [ , 4 ] ) , pa i r ed=TRUE)
wi l cox . t e s t (as .numeric ( start [ , 4 ] ) , as .numeric ( s i g [ , 4 ] ) , pa i r ed=

TRUE)
t . t e s t ( as .numeric ( start [ , 5 ] ) , as .numeric ( s i g [ , 5 ] ) , pa i r ed=TRUE)
wi l cox . t e s t (as .numeric ( start [ , 5 ] ) , as .numeric ( s i g [ , 5 ] ) , pa i r ed=

TRUE)
t . t e s t ( as .numeric ( start [ , 6 ] ) , as .numeric ( s i g [ , 6 ] ) , pa i r ed=TRUE)
wi l cox . t e s t (as .numeric ( start [ , 6 ] ) , as .numeric ( s i g [ , 6 ] ) , pa i r ed=

TRUE)
#∗∗∗∗∗∗∗∗ N −TOLERANCE USING GEOMETRIC DISTRIBUTION∗∗∗∗∗∗∗∗∗∗∗∗∗

∗∗
expected<−1/ s i g [ , 5 ]
par (mfrow=c ( 2 , 1 ) )
hist ( expected , breaks=50, main=”D i s t r i bu t i on o f N−Tolerance ” ,

xlab=”N−Tolerance ” )
summary( expected )
boxplot ( expected , ylab=”N−Tolerance ” )
t . t e s t ( expected , mu=(1/ . 3 39 ) )
max( expected )
exp2<−expected [ expected <100000000]
hist ( exp2 , breaks=50, main=”D i s t r i bu t i on o f N−Tolerance ” , xlab=”

N−Tolerance ” )
summary( exp2 )
boxplot ( exp2 , ylab=”N−Tolerance ” )
t . t e s t ( exp2 , mu=(1/ . 3 39 ) )
exp3<−expected [ expected <10000000]
hist ( exp3 , breaks=50, main=”D i s t r i bu t i on o f N−Tolerance ” , xlab=”

N−Tolerance ” )
summary( exp3 )
boxplot ( exp3 , ylab=”N−Tolerance ” )
t . t e s t ( exp3 ,mu=(1/ . 3 39 ) )
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