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Abstract

The three-player game of GEN involves taking turns selecting elements of
a group to add to a common pool of elements. Each element can only be
selected once, and all players share the pool of elements. The object of
the game is to be the player that adds the final element to the pool that
will generate the entire group. We will identify and develop the strategies
players must follow in order to win the game when playing with cyclic groups,
dihedral groups, and nilpotent groups.



Chapter 1

Introduction

The games of Do Generate (GEN) and Do Not Generate were first discussed
by Anderson and Harary[1]. They examined both of the games as two-player
scenarios in which players would either attempt to generate, or not generate,
a group G by adding elements of G to a common set S. The game would
end when 〈S〉 = G. In GEN, the winner of the game is the player that
adds the final element to S so that 〈S〉 = G. In Do Not Generate, the loser
of the game is the one that selects an element to add to S such that 〈S〉 = G.

Variations of Do Not Generate have been examined further by Benesh, Ernst,
and Sieben[2], and also by Benesh and Gaetz[3]. In particular, Benesh and
Gaetz examined the three-player avoidance game of Do Not Generate. The
extra player within Anderson and Harary’s original game led to some inter-
esting differences in the winning strategies of the two-player and three-player
games.

While Benesh and Gaetz examined three-player Do Not Generate, there has
not been any research done on the three-player game of GEN. In this paper,
we will attempt to try identifying the winning scenarios on different groups
for each player in the game.

Before we dive into the different scenarios that the game of Three-Player
GEN can take on, it is important that we brush up on a few definitions that
are essential for understanding the game. These terms and definitions will
be referenced throughout the entire paper.
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1.1 Definitions

Groups

In mathematics, a group (G, ∗) is a set of elements paired with a binary
operation ∗ that satisfies the following requirements:

1. For all a, b, c ∈ G, the operation ∗ is associative. That is:

(a ∗ b) ∗ c = a ∗ (b ∗ c)

2. There exists a special element e ∈ G, called the identity, that follows
the property:

a ∗ e = a = e ∗ a

3. For every element a ∈ G, there exists an inverse a−1 ∈ G such that:

a ∗ a−1 = e = a−1 ∗ a

4. Finally, elements of G will be closed under the operation. That is, for
any a, b ∈ G:

a ∗ b ∈ G

These requirements form the definition of a group, as described by Jud-
son[6,40]. The integers under addition, real numbers under addition, and
symmetries of a triangle under composition are all examples of groups. For
the following few definitions, think of our group G as Z12, the integers (mod
12) under addition.

Subsets

The three-player game of GEN involves taking turns selecting elements of
a group to add to a common pool of elements. Each element can only be
selected once, and all players share the pool of elements. The object of the
game is to be the player who adds an element to the pool so that the elements
in the pool will generate the entire group.
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This “pool” of elements is mathematically known as a subset of the group
that we are using for the game. A subset S is a collection of any number of
elements from our group G. For example, S could be {2, 5, 6} with G = Z12.
A subset may or may not have the same properties as a group. This depends
on which elements are contained within the subset. If the elements within the
subset satisfy all of the requirements of a group, then it is called a subgroup.

Subgroups

A set of elements S is called a subgroup of a group G, S ⊆ G, if it is the case
that for every x ∈ S, we have that x ∈ G, and S has all four of the properties
that a group has. That is, S is a group when examined independently from
G. A subgroup of our group G = Z12 is {0, 3, 6, 9}. The subgroup has all of
the properties that are required in order to be a group. Clearly, all of the
elements in the subgroup belong to the larger group, G.

For the three-player game of GEN, we will need to consider what the el-
ements in our subset S can generate. In order to be generated, an element
must be produced by the finite composition of elements that are already
contained in S under the binary operation of G.

Proper Subgroup

A proper subgroup of a group, denoted P ⊂ G is a subgroup that contains
strictly fewer elements than are found in G. That is, all x ∈ P are such that
x ∈ G, but there is at least one element y ∈ G such that y 6∈ P . {0, 3, 6, 9}
is an example of a proper subgroup. Technically, G is a subgroup of itself,
but it is not a proper subgroup of itself.

Cyclic Subgroups

For the purposes of our game (especially for one of the groups we will exam-
ine), it is important to understand cyclic subgroups. The following excerpt
from Judson[6,56] provides us with a great definition of cyclic subgroups.
While this definition will be essential in understanding the rather simple
game of Three-Player GEN on cyclic groups, it also helps us begin to grasp
the idea of subgroup generation for the later families of groups.
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Definition 1.1 (Judson). Let G be a group and a be any element in G. Then
the set

〈a〉 = {ak : k ∈ Z}

is a subgroup of G.

Judson goes on to prove that 〈a〉 is the smallest subgroup of G that
contains a. For our group G, we can take an element like {9} and produce
a cyclic subgroup of 〈{9}〉 = {0, 3, 6, 9}. Some elements generate the entire
group G, for some groups. Take 〈{5}〉 for example. We have that
〈{5}〉 = G, the entire group. So 〈{5}〉 is not a proper subgroup.

As was similarly explained by Judson, we have that for any set of elements
X = {x1, x2, ...xm} ⊂ G, 〈X〉 is the smallest subgroup of G containing X.

Maximal Subgroups

A maximal subgroup M is a proper subgroup of a group G such that M
is not contained in any other proper subgroup of G. That is, there does
not exist a proper subgroup N ⊂ G that contains all elements of M and
additional elements. For example, S = {0, 4, 8} is a subgroup of G, but it
is not maximal. We have a subgroup M = {0, 2, 4, 6, 8, 10} that contains all
of the elements of S and more. However, there is no proper subgroup that
contains M and additional elements of G. So M is maximal.

Frattini Subgroups

The Frattini subgroup of a group G, denoted Φ(G), is the subgroup com-
posed of the elements found in the intersection of all maximal subgroups.
That is, for an element x to be in the Frattini subgroup, it must be the case
that for any maximal subgroup M , x ∈ M . The maximal subgroups for
G = Z12 are M1 = {0, 2, 4, 6, 8, 10} and M2 = {0, 3, 6, 9}. Thus, we have that
Φ(G) = M1 ∩M2 = {0, 6}.

While not honed in on right away, Frattini subgroups will be essential in
the development of winning strategies for the game on nilpotent groups.
From Theorem 2 of Dlab[4], we have that for groups A and B, it is the case
that Φ(A) × Φ(B) = Φ(A × B). That is, the direct product of two Frattini
subgroups is equal to the Frattini of the direct product of the two groups.
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Safe Set

For the purposes of the game of Three-Player GEN, we will often talk about
the “safe” elements of a group. This set of “safe” elements, denoted as H, is
a set H ⊆ G such that for all x ∈ G, 〈H, x〉 < G.

1.2 Basic Rules of the Game

To begin a game of Three-Player GEN, we first need to determine which
group G will be used. Once G has been identified, players will begin to add
elements of G to a shared set of elements. To begin, let this set S0 = ∅.
Once the elements in Sn are able to generate all of G, the game is over.
Three-Player GEN is played by the following rules:

1. Player 1 begins by selecting an element g1 from G and adding it to S0.
Now, we have S1 = 〈g1〉.

2. If 〈S1〉 generates G, Player 1 wins.

3. If 〈S1〉 is unable to generate G, Player 2 selects a new element g2 from
G to add to S1. Now, we have S2 = 〈g1, g2〉.

4. If 〈S2〉 generates G, Player 2 wins.

5. If 〈S2〉 is unable to generate G, Player 3 selects a new element g3 from
G to add to S2. We then have S3 = 〈g1, g2, g3〉.

6. If 〈S3〉 generates G, Player 3 wins.

7. If 〈S3〉 is unable to generate G, the game continues.

8. Players take turns adding elements to Sn until there is a winner.

For our rendition of the game, it will be the case that if a player does not
have a path to victory, they will attempt to help the person before them win.
For instance, Player 2 would rather have Player 1 win than Player 3. The
game is over when the elements within S are able to completely generate G.
The player who is the last one to add an element to S is pronounced the
winner.

5



Note: For the purposes of this paper, our clarification following the rules
states that a player would rather have the person before them win than the
person after. This is an alteration to our rendition of the three-player game
that can be different elsewhere. For instance, players could play the game
with the rule that they would rather have the following person win that the
preceding person. They could also play a game in which there are six pos-
sible outcomes. Either Player 1, 2, or 3 wins outright, or one of the players
determines which of the other two will win. These are variations of the game
that can be studied in the future.
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Chapter 2

Cyclic Groups

2.1 Introduction

As has been defined earlier, a cyclic subgroup, 〈a〉, is the subgroup of ele-
ments that are generated solely by the element a. In order for a group G
to be cyclic, it must be the case that 〈g〉 = G for at least one g ∈ G. Any
element g that has this property is known as a generator of the group.

Example of cyclic groups include the integers modulo n under addition, such
as Z2 or Z10. Clearly, we can have multiple elements of each group that,
when composed with themselves repeatedly, generate the entire group. For
Z2, the generator is 1 and for Z10, the generators are 1, 3, 7, 9.

2.2 Three-Player GEN with Cyclic Groups

As outlined in Section 2.1, cyclic groups contain one or more elements that
are defined as generators. These generators prove to be quite the unfair
advantage for Player 1 during a game of Three-Player GEN.

Theorem 2.1. Player 1 has the winning strategy of Three-Player GEN with
a cyclic group.

Proof. By the definition of a cyclic group, there exists at least one generator
g ∈ G such that 〈g〉 = G. Thus, when Player 1 begins the game, they will
select one of these generators to add to S. Hence, S = {g}, so 〈S〉 = 〈g〉 = G.
All of G has been generated. Player 1 has won the game.

7



Chapter 3

Dihedral Groups

3.1 Introduction

Dihedral groups are often thought of as the symmetries of regular polygons.
Imagine assigning a distinct number 1, 2, ..., n to each vertex of an n-gon.
When we think of these symmetries, we are thinking of all of the possible
rigid motions of these verticies that can be obtained, begining at a fixed
vertex moving clockwise around the n-gon. The most basic dihedral group,
D3, is composed of reflections and rotations on an equilateral triangle.

3 2

1

Let’s consider the triangle above to be our starting point. Now, consider the
rotating the triangle 120 degrees:

2 1

3
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By using only rotations and reflections, we can come up with five other sym-
metries of this triangle. We will denote this 120 degree rotational symmetry
as r.

The elements of any dihedral group are various rotations and flips. A ro-
tation, rk moves each vertex clockwise to the next vertex k times. Each flip
is a different reflection upon an axis of symmetry of the n-gon. By definition,
each n-gon will have n lines of symmetry, and n possible rotations. Thus, a
dihedral group Dn = {r, r2, ..., rn−1, rn = e, f1, f2, ..., fn}, where each rk is a
rotation and each fl is a flip. So for the symmetries of an equilateral triangle,
we have D3 = {e, r, r2, f1, f2, f3}.

3.2 Three-Player GEN with Dihedral Groups

Fortunately, dihedral groups prove to be a bit more interesting in a game
of Three-Player GEN than cyclic groups are. As described in Section 3.1,
dihedral groups are composed of two essential components: the rotations and
the flips. Before developing a strategy for winning Three-Player GEN with
dihedral groups, we must first determine what is needed in order to generate
a dihedral group.

For a clearer picture, let’s divide the dihedral group, Dn, that has been
selected into the subgroup of rotations Rn = {r, r2, r3, ..., rn}, and the set
of rotations carried out on a flipped dihedral. (Note: we are thinking of the
flips in this way because of the nature of the game.) To generate Rn, we can
pick the smallest rotation r, a single rotation rk where k is relatively prime
to n, or a combination of rotations rm1 , rm2 , ..., rmx where there exists a pair
of m1,m2, ...,mx that are relatively prime. When any of these are obtained,
Rn is generated.

To generate the remaining portion of the dihedral group, we simply need
to add any one of the flips to the set of elements that generated Rn. Because
the elements within our set are able to generate Rn, they will be able to ro-
tate the flipped dihedral to each required position as well. While flips alone
can generate dihedral groups, the nature of the game allows us to ignore
these cases. After taking any flip, the next player would just need to select
r to win. Thus, the set that generates Dn will contain the following:

9



1. A single rotation rk where k is relatively prime to n, or a combination
of rotations rm1 , rm2 , ..., rmx where there exists a pair of m1,m2, ...,mx

that are relatively prime We will call this set a Relatively Prime Rota-
tion Set, RPRS, for future reference. Since a RPRS can be composed
of many different elements, we only care about it when it has been
generated. Reminder: It is possible for this set to contain only one
element.

2. Any one flip from Dn.

Lemma 3.1. The game of Three-Player GEN on a dihedral group Dn will
end on the turn that follows a player selecting either any flip or the rotation
that causes a RPRS to be in the set of selected elements.

Proof. First, consider the case when a player selects a flip. Then, the next
player can simply pick the smallest rotation r, and the set is generated. Thus,
the game ends.

Now, suppose this is the first time a RPRS is in the set of selected ele-
ments. Then Rn is contained in the set of generated elements So, the next
player just needs to select any of the flips to generate the entire set. Thus,
the game ends.

Therefore, the game of Three-Player GEN on a dihedral group Dn will end
on the turn that follows a player selecting either any flip or the rotation that
causes a RPRS to be in the set of selected elements.

3.3 Strategy

In the outline of the rules of the game in Section 1.2, we decided that a player
would rather make a play to have the player before them win than the player
after them. For dihedral groups, this preference is essential to the strategy
that players will follow.

Since players do not want the player immediately following them to win,
they will do everything in their power to avoid selecting an element that will
set up the next player for victory. As outlined in Section 3.2, the two things
required to generate a dihedral group Dn are:

10



1. A set of rotations rm1 , rm2 , ..., rmk where any two of m1,m2, ...,mk and
n are relatively prime—a RPRS.

2. Any one flip from Dn.

Due to these requirements and what we defined by Lemma 3.1, we can draw
a few conclusions about the strategy that players will follow while playing
Three-Player GEN with dihedral groups.

1. Players will avoid selecting an element that completes a RPRS.

2. Players will avoid selecting a flip.

These two strategic rules leave us with only a few viable elements for selection
to begin a game, no matter which dihedral group is being used for the game.
Obviously, the identity e would be a safe pick for Player 1. In fact, if Dn is a
dihedral group in which n is prime, the identity is the only pick that allows
Player 1 to avoid completing a RPRS or selecting a flip.

3.3.1 Three-Player GEN with Dn where n is Prime

When n is prime, we will find that the game of Three-Player GEN on Dn

does not last for many turns. In fact, the game will always be over after
exactly three turns under optimal play. Player 1 will always begin the game
by selecting the identity e, and Player 3 will always be the victor.

Theorem 3.1. When playing Three-Player GEN with a dihedral group Dn

in which n is prime, Player 3 has the winning strategy.

Proof. Let Dn be the group used for a game of Three-Player GEN, and let n
be prime. By the outline of our strategy, Player 1 will do everything in their
power to avoid setting up Player 2 for a win.

By contradiction, we will show that Player 1 must pick the identity e in
order to avoid Player 2 winning. Assume that Player 1 does not select the
identity e to start the game. Thus, Player 1 will have decided to take either
a flip or a non-identity rotation.

By selecting a flip, Player 1 will have fulfilled the requirement of any one
flip from Dn to generate the group. By Lemma 3.1, the game will end on the

11



next turn and Player 2 will win.

By selecting a non-identity rotation, Player 1 will generate Rn, since all
non-trivial elements of Rn are generators when n is prime. By Lemma 3.1,
the game will end on the next turn and Player 2 will win.

Therefore, we have a contradiction. The only element available for selec-
tion that will not set up the following player for victory in Dn is the identity
e. Player 1 will select this element, and then Player 2 will be forced to pick an
element that, by Lemma 3.1, sets up the victory for Player 3. Thus, Player 3
will always win the game when n is prime.

3.3.2 Three-Player GEN with Dn where n is Composite

When Dn has an n that is composite, our game of Three-Player GEN gets a
little more interesting. To identify the winners of the game involving differ-
ent dihedral groups, we need to take a closer look at our RPRS possibilities.
We will not pay much attention to the flips of Dn in this section, as the flips
remain trivial to strategy.

Maximal subgroups are the key to playing with a group Dn where n is com-
posite (even though they are key when n is prime as well, since e is maximal
in Rp). As outlined earlier, a maximal subgroup is one that cannot become
any larger without becoming the entire group itself. For this iteration of
Three-Player GEN, we are examining the maximal subgroups of the sub-
group of rotations in Dn.

With a prime n in Dn, every rotation rk that could be selected generated the
group of rotations, other than the identity. Hence, the identity was the only
“safe” pick to make. With a composite n, there are more “safe” picks that
can be made.

Consider D12. In D12, there are 12 elements in the subgroup of rotations:
{e, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11}. The following elements are the “safe”
ones that Player 1 is able to choose from: {e, r2, r3, r4, r6, r8, r9, r10}. Aside
from the identity e = r0, all of the rotations in this set rx have an x value
that is not relatively prime to the n value of Dn. Note that not all of these
elements would remain “safe” as the game moves along.
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By selecting any of these elements, Player 1 will force Player 2 to continue
to build a maximal subgroup of the rotations. As we will see, Player 1 will
choose to select an element that is not the identity so that Player 1 decides
which maximal subgroup of rotations will be constructed.

Let’s examine the maximal subgroups of the rotations of D12. They are:
{e, r2, r4, r6, r8, r10} and {e, r3, r6, r9}. By only taking elements from one of
these maximal subgroups, the players delay constructing a RPRS. Players 2
and 3 will be forced to continue building one of these maximal subgroups, as
they do not want the next player to win, as outlined in Section 1.2.

Since these maximal subgroups are the only elements that can be chosen
safely (without constructing a RPRS or picking a flip), we need to identify
how their sizes matter. Let s be the size of one of these maximal subgroups.
After all of the elements of the subgroup have been picked, s turns will have
been taken. Then, either a RPRS will be completed, or a flip will be taken
on the next turn. Finally, the opposite will occur on the last turn, and the
game will be over. Hence, the game will last s + 2 turns. Table 3.1 provides
an outline of the number of total turns required for a player to win the game.

Player 1 Player 2 Player 3

1 2 3
4 5 6
7 8 9
... ... ...

1(mod 3) 2(mod 3) 0(mod 3)

Table 3.1: Winner of GEN by Number of Total Turns

Let’s subtract the two moves that will always be the last two to occur (com-
pleting the RPRS and selecting a flip). Now, we have a table of the size of
the maximal subgroup of rotations needed to win the game. As was the case
with Dn where n is prime, the only maximal subgroup of rotations is {e},
which has a size of 1. We proved that Player 3 always won in this instance.
This follows in Table 3.2 below, which outlines the winner of the game based
on the size of the maximal subgroup used.

13



Player 1 Player 2 Player 3

- - 1
2 3 4
5 6 7
... ... ...

2(mod 3) 0(mod 3) 1(mod 3)

Table 3.2: Winner of GEN on Dn by Size of Maximal Subgroup of Rn

With D12, the size of the two maximal subgroups are 4 and 6. By looking
at Table 3.2, we see that this either means Player 2 or Player 3 will win. By
Section 1.2, Player 1 would rather have Player 3 win than Player 2. Thus,
Player 1 wants to use the maximal subgroup of size 4 for the game. To en-
sure that this subgroup is used, Player 1 will need to select an element that
is unique to this maximal subgroup, like r3. If Player one were to pick r6,
Player 2 would be able to determine which maximal subgroup to use, because
r6 is an element of both of the maximal subgroups.

For any dihedral group Dn, the winner can be predetermined by examin-
ing the prime factorization of n. There will be as many maximal subgroups
of the rotations of Dn as there are unique prime factors {p1, p2, ..., pm} of n.
By dividing n by each unique prime factor, we are able to determine the sizes
of each of the maximal subgroups.

After identifying the sizes of these subgroups, Player 1 must select a unique
element of the maximal subgroup they would like to construct to begin. To
do so, Player 1 can simply take the rotation rp1 , where p1 is the prime factor
used to identify the size of the maximal subgroup. Clearly, this element can-
not exist in any other maximal subgroup, as the rotations in each maximal
subgroup are separated by multiples of some prime p. That is, a maximal
subgroup will be of the form {rp, r2p, r3p, ..., rlp}, where lp = n for the group
Dn. We know that p1 is prime, so it cannot take the form kq for any integer
k and prime q except for k = 1 and q = p1. Thus, rp1 can only exist in the
maximal subgroup of rotations separated by multiples of p1.

The following theorem generalizes Theorem 3.1.

14



Theorem 3.2. For a game of Three-Player GEN on any dihedral group Dn,
the winning strategies will be determined by the values of n/p for the prime
divisors p of n. If there exists a prime p that divides n such that n/p ≡ 2
(mod 3), Player 1 will win. If no such p exists, but there is a q that divides n
such that n/q ≡ 1 (mod 3), Player 3 will win. Otherwise, Player 2 will win.

Proof. Let Dn be a dihedral group being used for a game of Three-Player
GEN, and let it be the case that there exists a prime p that divides n such
that n/p ≡ 2 (mod 3). Thus, we have a maximal subgroup of rotations M
with the format: M = {rp, r2p, ..., r((n/p)−1)p, r(n/p)p}. Note that r(n/p)p = e
and that there are exactly (n/p) elements in the maximal subgroup. Since
n/p ≡ 2 (mod 3), M falls under the category in Table 3.2 of maximal sub-
groups that will lead Player 1 to win the game. Therefore, Player 1 will
always win a game on a dihedral group Dn where there exists a prime p such
that n/p ≡ 2 (mod 3).

When do we have that n/p ≡ 2 (mod 3)? Considering that n is compos-
ite, we know that n/p will take this form when either any of the following
cases occur, by modular arithmetic:

1. n ≡ 2 (mod 3) and p ≡ 1 (mod 3)

2. n ≡ 1 (mod 3) and p ≡ 2 (mod 3)

3. n ≡ 0 (mod 3) and n/3 ≡ 2 (mod 3)

Now suppose no such prime p exists. If Player 1 is unable to force a win
for herself, she will attempt to force a win for Player 3. So, suppose that a
prime q exists such that n/q ≡ 1 (mod 3). Then we would have a similar
maximal subgroup of rotations with size equivalent to 1 (mod 3). Thus, by
picking rq, Player 1 will force the desired maximal subgroup to be generated
and Player 3 will end up being the winner, by Table 3.2.

Similar to when we were looking for a prime p so that n/p ≡ 2 (mod 3),
we know that n/q ≡ 1 (mod 3) under any of the following circumstances:

1. n ≡ 2 (mod 3) and q ≡ 2 (mod 3)

2. n ≡ 1 (mod 3) and q ≡ 1 (mod 3)

3. n ≡ 0 (mod 3) and n/3 ≡ 1 (mod 3)
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Finally, consider the case in which for any prime p that divides n, we have
that it is neither the case that n/p ≡ 1 (mod 3) nor n/p ≡ 2 (mod 3) for all

prime divisors p of n. That is, all prime divisors pi of n give us
n

pi
= 3ki for

integers ki. Thus, Player 1 has no choice but to pick an element that will
generated a maximal subgroup of rotations of size equivalent to 0 (mod 3).
Then, by Table 3.2, we have that Player 2 will be the victor.

Therefore, the winner of a game of Three-Player GEN on a dihedral group
Dn is determined by the values of n/p for the prime divisors p of n. If there
exists a prime p such that n/p ≡ 2 (mod 3), Player 1 will win. If no such
p exists, but there is a p such that n/p ≡ 1 (mod 3), Player 3 will win.
Otherwise, Player 2 will win.
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Chapter 4

Nilpotent Groups

4.1 Introduction

Nilpotent Groups

A nilpotent group N is a group that is isomorphic to a direct product of p-
groups, where a p-group is a group that has pz elements, where z is a positive
integer. So, we have that N ∼= Pa1×Pa2×Pa3× ...×Pam , where each Pai is a
p-group and ai are primes. In this game, we will go a step further, denoting
each Pai as a Sylow p-subgroup, which is the largest proper subgroup of order
p of the group N . Thus, p-groups that share the same prime p will be put
together into one Sylow p-subgroup factor Pai when we look at the direct
product of N . For simplicity, we will always refer to this direct product of
Sylow p-subgroups when talking about a nilpotent group N .

Abelian Groups

An abelian group is a special type of nilpotent group that is defined as a
group A with an operation ∗ such that for every x, y ∈ A, it is the case that
x ∗ y = y ∗ x. From Theorem 7.10 of Isaacs[5], the Fundamental Theorem
of Abelian Groups states that each finite abelian group is isomorphic to the
direct product of cyclic groups that have orders of prime powers. That is,
A ∼= Zp1n1 × Zp2n2 × ...× Zpnnm , where the pi are prime and not necessarily
distinct, and the nj are integers. This theorem will allow us to better under-
stand how these types of group work in a game of Three-Player GEN.
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For all nilpotent groups N , we will use the notation of d(N) = n, where
n is the minimum number of elements required to generate N . Thus, if d(N)
= 2, the group can be generated by 2 elements, but no fewer than 2 elements.

4.2 Three-Player GEN with Nilpotent Groups

where d(N) = 2

Consider the nilpotent group N = Pa1 ×Pa2 ×Pa3 × ...×Pam . By definition,
each of the factors of N is a Sylow p-subgroup. That is, each of the factors Pai

has a size of pi
ni , where pi is a prime and ni is a positive integer. So, Pa1 has

a size such that some prime pa1 divides it, as does Pa2 with pa2 , and so on. As
we noticed before in our examination of dihedral groups, “safe elements” will
be the key in determining who will win in a game of GEN on nilpotent groups.

For any group that we are using for a game of GEN, the main goal is simple:
win. The second goal is: do not allow the next player to win. To do this,
players need to avoid selecting elements of the group that open the door for
the last needed generator to be chosen. With nilpotent groups, there can be
many generators. However, the number of generators does not change the
strategy of the players: they need to make sure that they do not select the
second to last generator. So, the process of playing a game of GEN with any
nilpotent group will proceed as follows:

1. Players take turns selecting elements until the “safe elements” and “un-
safe elements” are determined.

2. Players avoid the “unsafe elements” that would be the second to last
generator needed in the common pool, S.

3. Players select all remaining “safe elements” in the group.

4. Once all of the “safe elements” are gone, a player is forced to pick an
“unsafe element.”

5. The next player wins the game by selecting the final generator.

Recall from Section 1.1 that a safe set is defined as a set H such that 〈H, x〉 <
G for all x ∈ G.
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Proposition 4.1. For a group G, a set of safe elements K and any element
x ∈ G, it is the case that 〈〈K〉, x〉 = 〈K, x〉.

Proof. Clearly, we have that 〈K, x〉 ≤ 〈〈K〉, x〉, since K ⊆ 〈K〉 ⊆ 〈〈K〉, x〉
and x ∈ 〈〈K〉, x〉. Now, x ∈ 〈K, x〉 and K ⊆ 〈K, x〉, so 〈K〉 ⊆ 〈K, x〉. So
〈〈K〉, x〉 ⊆ 〈K, x〉. Thus, 〈〈K〉, x〉 = 〈K, x〉.

Proposition 4.2. A set of safe elements K of a group G is a subgroup of
G.

Proof. Let K be the set of safe elements of a group G. We will prove that
K = 〈K〉. Since K is safe, we know that for all x ∈ G, it is the case that
〈K, x〉 < G. Then 〈〈K〉, x〉 = 〈K, x〉 < G for all x ∈ G, so 〈K〉 is safe. So
〈K〉 = K. Therefore, since 〈K〉 is a subgroup, K is a subgroup.

Theorem 4.3. A set of safe elements in a game of Three-Player GEN on a
nilpotent group N = Pa1×Pa2×Pa3×...×Pam will be equivalent to the subgroup
H = Qb1 ×Qb2 ×Qb3 × ...×Qbm−1 ×K, where {Qb1 , ..., Qbm} = {Pa1 , ..., Pam}
and K is a proper subgroup of Qbm.

Proof. Let N = Pa1 × Pa2 × Pa3 × ... × Pam be a nilpotent group used for a
game of Three-Player GEN. We can conclude that the last two generators in
a game of GEN on a nilpotent group will come from the same p-group. If
they were to come from separate p-groups, a player would be able to select
them both at the same time since N is a direct product with coprime factor
orders. Thus, the safe elements that the players will have to chose from will
be the direct product of all but one of the p-groups, as well as a separate set
K that comes from the p-group that contains the final two generators.

So, the safe elements H for N will be H = Qb1×Qb2×Qb3× ...×Qbm−1×K,
where each Qbi is a p-group factor that does not contain the final two gen-
erators, and K is a subgroup of safe elements coming from Qbm , the factor
with the final two generators. We know that K is a subgroup by Proposition
4.2. Thus, since K is a subgroup of Qbm , we have that H is a subgroup of G.
So H = Qb1 ×Qb2 ×Qb3 × ...×Qbm−1 ×K is the subgroup of safe elements
elements for the group N .

The following corollary, Corollary 4.4, is a result of the proof from above.

Corollary 4.4. The final two elements chosen in a game of Three-Player
GEN on a nilpotent group N will come from the same factor Qbm.
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For the majority of the rest of the paper, we will focus on nilpotent groups
with d(N) = 2. With these particular groups, we are able to draw clearer
conclusions about winning strategies.

Corollary 4.5. If d(N) = 2, then there is at least one Qbi with d(Qbi) = 2.
For one of these, Qbm, we will have K = Φ(Qbm). The safe set is H =
Qb1 ×Qb2 ×Qb3 × ...×Qbm−1 × Φ(Qbm).

Proof. Let g ∈ Qbm and v ∈ Φ(Qbm). If 〈v, g〉 = Qbm , then 〈v, g〉 ⊆
〈Φ(Qbm), g〉, so Qbm = 〈Φ(Qbm), g〉 which implies that Qbm = 〈g〉 (Isaacs[5,27]).
However, this is a contradiction, because d(Qbm) = 2. Thus, 〈v, g〉 < (Qbm).

Now, let v 6∈ Φ(Qbm). For simplicity, let P = Qbm and F = Φ(Qbm). Then
Fv 6= F in P/F ∼= Zp×Zp, where the isomorphism follows from the Burnside
Basis Theorem (Rose[7,274]). Since Fv 6= F , there exists an Fy ∈ P/F such
that 〈Fv, Fy〉 = P/F . Let H = 〈v, y〉 ⊆ P . If H < P , then H ≤M for some
maximal subgroup, M . Then P/F = 〈Fv, Fy〉 ⊆ MF/F = M/F < P/F ,
where MF = M since F is the intersection of all maximal subgroups. We
obviously cannot have that P/F < P/F , so this is a contradiction. Thus, it
must be the case that 〈v, y〉 is not contained in any maximal subgroup, and
is therefore equal to P . Thus, v is not safe.

Thus, v ∈ Φ(Qbm) is safe and v 6∈ Φ(Qbm) is unsafe. Therefore, the safe
elements coming from Qbm are equal to Φ(Qbm). So, for a game on a nilpo-
tent group N with d(N) = 2, the safe elements that players can choose from
will be H = Qb1 ×Qb2 ×Qb3 × ...×Qbm−1 × Φ(Qbm).

4.2.1 Nilpotent Groups With Sizes Divisible by Three

Before we dive into more specific cases of nilpotent groups, we need to make
an observation that will simplify winning the game of GEN on nilpotent
groups for one of our players. As outlined in the introduction to this section,
all nilpotent groups are isomorphic to a direct product of p-groups. Due to
this fact, we are able to draw a separate conclusion about nilpotent groups
that have sizes that are divisible by three.

As was the case with dihedral groups, if the number of safe elements H ≡

20



0(mod 3), Player 2 will be the victor. Player 3 will be the last player to select
a safe element, Player 1 will pick an unsafe element, and Player 2 will pick
the final generator to win. Due to the makeup of nilpotent groups, it is easy
to identify when H ≡ 0(mod 3).

Assume that there exists a factor Pai of N = Pa1 × Pa2 × Pa3 × ... × Pam

such that Pai is a Sylow 3-subgroup. Then, |Pai | = 3n for some n. So, if Pai

does not contain the final two generators of N , |Pai | will be a factor multi-
plied to obtain the number of safe elements |H|. Since 3 divides Pai , it is also
the case that 3||H|. So, |H| ≡ 0(mod 3) and Player 2 will win. In the case
that the 3-group Pai is the p-group that contains the final two generators,
there is only one case in which Player 2 will be unable to win the game.

Theorem 4.6. In a game of Three-Player GEN on a nilpotent group N with
a Sylow 3-subgroup P3, if it is the case that 3 | |N |:

• Player 1 will win if d(N) = 2,
|N |
9
≡ 2(mod 3) and P3

∼= Z3 × Z3.

• Player 3 will win if d(N) = 2,
|N |
9
≡ 1(mod 3) and P3

∼= Z3 × Z3.

• Player 2 will win otherwise.

Proof. Let N = Pa1 × Pa2 × Pa3 × ... × Pam . Without loss of generality,
let Pa1 = P3. Think of the format of each element chosen by players as
(x1, x2, x3, ..., xm). If Player 1 picks x̄ = (x1, x2, x3, ..., xm) such that 3|o(x1),
then either Player 2 picks ȳ such that 〈x̄, ȳ〉 = N and wins, or the safe
set H is divisible by 3 and Player 2 will win. So Player 1 will not select an
element like x̄. Note that if d(N) = 1, then N is Cyclic, and Player 1 will win.

We can assume that Player 1 will select an element x̄ = (1, x2, x3, ..., xm),
where 1 is the identity of P3. Then Player 2 will select z̄ = (z, 1, 1, ..., 1),
where 1 6= z ∈ Φ(P3) if Φ(P3) 6= 1 and 1 6= z otherwise. Player 3 will pick an
element ȳ = (y1, y2, y3, ..., ym).

If d(P3) ≥ 3, we have that 〈1, z, y〉 = 〈z, y〉 < P3, so N is not generated.
Thus, Player 2 is able to select z̄ and make it the case that 3||H|. Thus,
Player 2 will win.
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If d(P3) = 2 and P3 6∼= Z3 × Z3, then we have 〈1, z, y〉 = P3 implies 〈y〉 = P3

Isaacs[5]. Clearly, this is a contradiction, because d(P3) = 2. So Player 2 is
able to select z̄ and force |H| to be divisible by 3. So Player 2 will win.

If d(N) ≥ 3, there exists an i such that d(Pai) ≥ 3. Then, we have that
〈xi, 1, yi〉 = 〈xi, yi〉 < Pai , so N has not been generated. Thus, Player 2 is
able to select z̄ as his first element. Then Player 2 will win.

Now, if d(N) = 2 and P3
∼= Z3 × Z3, Player 1 will once again pick x̄, but

Player 2 is unable to select z̄ such that z̄ 6= e, the identity of N . By Corollary

4.5, K = Φ(P3) = {1}. Since |P3| = 9, then |H| =
|N |
9

. Thus, if
|N |
9
≡ 1

(mod 3), Player 3 will win. Similarly, if
|N |
9
≡ 2 (mod 3), Player 1 will win.

Finally, consider when d(P3) = 1 and d(N) ≥ 2. Clearly, for any x̄ that
Player 1 picks, there must be an i such that Pai is not able to be generated
by Player 2. That is, Player 1 must pick xi such that 〈xi, zi〉 < Pai . So,
Player 2 is able to select an element with a generator of P3 in his first selec-
tion and the identity for the ith term. Thus, N cannot be generated when
Player 3 selects ȳ. So, |H| is divisible by 3. Thus, Player 2 will win.

Therefore, we have that the winning strategies of a game of Three-Player
GEN on a nilpotent group N such that 3 | |N | are as follows:

• Player 1 will win if d(N) = 2,
|N |
9
≡ 2(mod 3) and P3

∼= Z3 × Z3.

• Player 3 will win if d(N) = 2,
|N |
9
≡ 1(mod 3) and P3

∼= Z3 × Z3.

• Player 2 will win otherwise.

4.2.2 Abelian Groups where d(G) = 2 and 3 - |G|
As we progress forward into our examination of groups in the game of Three-
Player GEN, taking a moment to look at abelian groups will help us better
understand nilpotent groups.
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As defined by Judson, “Suppose that G is a[n] [abelian] group and let {Gi :
i ∈ I} be a set of elements in G, where i is some index set I (not necessarily
finite). The smallest subgroup of G containing all of the gi’s is the subgroup
of G generated by the gi’s. If this subgroup of G is in fact all of G, then G
is generated by the set {gi : i ∈ I}. In this case the gi’s are said to be the
generators of G. If there is a finite set {gi : i ∈ I} that generates G, then G
is finitely generated”(Judson 197).

In this rendition of the game, players will need to successfully select all of the
elements contained in a finite set {gi : i ∈ I} that generates G. Players will
need to identify which of these finite sets are being constructed and make
sure that they do not pick the second to last element needed to complete the
set.

Due to the amount of cyclic groups that can form the direct product that is
isomorphic to a finite abelian group, we will break them down into separate
cases to explain their strategies. We will begin with direct products of the
form Zpi×Zpj , where p is a prime number and i and j are integers. Later on,
we will explain the strategy for all abelian groups in general. Note: We are
skipping the case of Zp0 × Zp1 where p0 and p1 are distinct primes, because
groups of that form are cyclic.

4.2.3 Abelian Groups: Zpi × Zpj and p 6= 3

For a finite abelian group isomorphic to Zpi × Zpj where p is a prime num-
ber and i and j are integers, our game depends completely on the integers
i and j. Since Zpi × Zpj involves a direct product of two cyclic groups, we
know that both of them need to be independently generated in order for
the entire group to be generated. Consider Zpi as the x-coordinate and Zpj

as the y-coordinate in a (x, y) ordered pair. Players are going to be select-
ing ordered pairs to add to the common pool S to try and generate the group.

Since this type of abelian group is not cyclic, players will need to use a
combination of elements to generate the group. Players will need to generate
both the x-coordinate and y-coordinate, but they must also be able to form
all (x, y) combinations.
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For example, if Player 1 were to select (0, 1) to begin the game, he would
not be able to win. The generated subgroup would be S1 = 〈(0, 1)〉 =
{(0, 1), (0, 2), ..., (0, pj−1), (0, pj)} 6= Zpi × Zpj . Player 1 would have success-
fully generated Zpj , but not Zpi . However, it is not sufficient to pick an
element like (1, 1) to win the game. While both of the factors will be gen-
erated, they are not independently generated. Clearly, an element such as
(0, 1) would not be in S1 = 〈(1, 1)〉.

As we discussed with dihedral groups, players are going to be looking to
select “safe” elements to add to the common pool, S. If Player 1 begins the
game by picking any element that generates the x-coordinate, Player 2 sim-
ply needs to select (0, 1) to add to S to win the game. Similarly, if Player 1
begins the game by picking any element that generates the y-coordinate,
Player 2 will select (1, 0) to add to S and win the game.

So, Player 1 is restricted to picking an element that does not generate ei-
ther of the coordinates. Let’s examine the safe elements of an abelian group
that is isomorphic to Z24 × Z23 :

(0,0) (0,2) (0,4) (0,6)
(2,0) (2,2) (2,4) (2,6)
(4,0) (4,2) (4,4) (4,6)
(6,0) (6,2) (6,4) (6,6)
(8,0) (8,2) (8,4) (8,6)
(10,0) (10,2) (10,4) (10,6)
(12,0) (12,2) (12,4) (12,6)
(14,0) (14,2) (14,4) (14,6)

Table 4.1: Safe Elements in GEN on Z24 × Z23

As we can see in Table 4.1, there are 32 safe elements. By looking a little
closer, we can see that 24−1 × 23−1 = 23 × 22 = 8× 4 = 32. This notation of
24−1 × 23−1 is important: each of the factors represent the sizes of the
Frattini subgroups of Z24 and Z23 , respectively. This is no surprise, since by
Corollary 4.5, we have that K = Φ(Zpi × Zpj). It follows from Dlab[4] that
Φ(Zpi × Zpj) = Φ(Zpi)× Φ(Zpj).

By the Fundamental Theorem of Abelian Groups, we know that the abelian
group is isomorphic to Zpi × Zpj . So the elements in Table 4.2 will be safe.
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(0,0) (0,p) ... (0,(pj−1 − 1)p)
(p,0) (p,p) ... (p,(pj−1 − 1)p)
(2p,0) (2p,p) ... (2p,(pj−1 − 1)p)
(3p,0) (3p,p) ... (3p,(pj−1 − 1)p)

... ... ... ...
((pi−1 − 1)p,0) ((pi−1 − 1)p,p) ... ((pi−1 − 1)p,(pj−1 − 1)p)

Table 4.2: Safe Elements in GEN on Zpi × Zpj

We have a table of “safe” elements that is pj−1 columns by pi−1 rows. So,
there are exactly pj−1 × pi−1 elements that can be added to S without the
next player being able to select an element that will win the game. Thus,
the sizes of the Frattini subgroups are multiplied together to determine the
number of safe elements.

Since players want to avoid having the following player win the game, all
elements of Φ(Zpi × Zpj) will be chosen before a player must choose a sep-
arate element. Similar to the dihedral groups, two elements (each of which
are relatively prime to at least one of the coordinates) will be added to the
common pool S after all of the safe elements are chosen, and the game will
end.

Recall that in Section 4.3, we discussed the results of having a group such
that 3 | G. The theorem below covers all groups G = Zpi ×Zpj where p 6= 3.

Theorem 4.7. The winner of the game of GEN on Zpi ×Zpj where i, j 6= 0
will be determined by the values of the prime p 6= 3 and i + j. If p ≡ 1(mod
3), Player 3 will always win. If p ≡ 2 (mod 3) and i+ j is odd, then Player 3
will win. If p ≡ 2 (mod 3) and i + j is even, then Player 1 will win.

Proof. Let Zpi × Zpj be the abelian group used for a game of GEN with
three players. First, consider the case where p ≡ 1 (mod 3). Then we know
that the size of the group will be equivalent to 1 (mod 3), as primes of this
sort will remain equivalent to 1 (mod 3) no matter what power they are
raised to. Similarly, since the size of Frattini subgroup will be equivalent to
Zpi−1 × Zpj−1 , it will also have a size equivalent to 1 (mod 3), as the size is
just divided by p2 ≡ 1 (mod 3). Thus, the number of safe elements, which is
equal to the number of elements in the Frattini subgroup, will be equivalent
to 1 (mod 3). Thus, Player 3 will be the winner.
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Now, consider when p ≡ 2 (mod 3). Unlike before, pn will oscillate be-
tween being equivalent to 1 (mod 3) and 2 (mod 3), depending on the parity
of n. By modular arithmetic, for a prime p ≡ 2 (mod 3), p2 ≡ 2× 2 ≡ 4 ≡ 1
(mod 3). Similarly, as another p is multiplied, p3 ≡ 2× 2× 2 ≡ 8 ≡ 2 (mod
3). This continues. So if n is odd, pn ≡ 2 (mod 3). Likewise, if n is even,
pn ≡ 1 (mod 3). Thus, since pi and pj are being multiplied by each other,
the size of the group will be pi+j. By letting n = i + j, we see that if i + j
is odd, the size of the group will be equivalent to 2 (mod 3), and if i + j is
even, the size of the group will be equivalent to 1 (mod 3).

Now, notice that the size of the Frattini subgroup will be equal to pi−1 ×
pj−1 = pi+j−2. Also see that subtracting 2 from i+j does not change whether
it is even or odd. So, we know that the size of the Frattini subgroup will be
equivalent to the same number (mod 3) as the size of the entire group. So, if
i + j is odd, then i + j − 2 is also odd, and the size of the Frattini subgroup
will be equivalent to 1 (mod 3). Thus, Player 3 will win. If i+ j is even, then
i+ j− 2 is also even, and the size of the Frattini subgroup will be equivalent
to 2 (mod 3). Thus, Player 1 will win.

Therefore, the winner of GEN on an abelian group of the form Zpi × Zpj

where i, j 6= 0 will be determined by the values of p, j, and i. If p ≡ 1(mod
3), Player 3 will always win. If p ≡ 2 (mod 3) and i+ j is odd, then Player 3
will win. If p ≡ 2 (mod 3) and i + j is even, then Player 1 will win.

4.2.4 Abelian Groups: (Zpi × Zn)× Zpj where p - n
Now, let’s examine a family of abelian groups that is isomorphic to (Zpi ×
Zn)× Zpj where p - n and p 6= 3. These groups are very similar to the ones
that were just covered, but they have an added factor to the isomorphism:
Zn, where p - n. This factor plays a major role in determining which player
will win.

It is important to make the distinction that p - n. Due to this, the Zn

factor and either the Zpi factor or the Zpj factor can both be generated at
the same time. (By selecting (1,1,0), they will generate all possible combi-
nations of the first two coordinates.) Thus, if any player generates either the
Zpi factor or the Zpj factor (or both), the next player will win on the next
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move. So, it is easy to see that the size of Zn will have a big influence on the
game. As we identified earlier in Table 4.1, the winner of the Zpi ×Zpj game
was dependent on the size of the Frattini subgroup of the group, Φ(Zpi×Zpj).
Once again, we need to look at the Frattini subgroup to help us identify the
winner. Similar to before, we have both the Zpi and Zpj factors. If either is
generated (as was the case previously), the game will end on the next turn.
So, we will use their respective Frattini subgroup sizes, pi−1 and pj−1, in de-
termining the Frattini subgroup, Φ((Zpi × Zn) × Zpj). We know that there
will be pi−1×x× pj−1 safe elements for our group. We need to identify what
value x will have.

We know that Zn can be generated by a player without leading to a win
for the next player, given that both of the other factors, Zpi and Zpj , have
not been generated. For example, assume that Player 1 selected the element
(0, 1, 0) to add to the common pool, S. It is clear that the Zn factor would
be generated, but Player 2 would not have the ability to win the game on
their turn. The format of all safe elements is:

(Element of Φ(Zpi), Element of Zn, Element of Φ(Zpj))

So, we can see that our x value for determining the number of safe elements
will actually be the size of Zn, n. Thus, we will have pi−1 × n × pj−1 safe
elements for the players to choose from. Once all of those elements are chosen,
a player will be forced to select an unsafe element and generate Zpi or Zpj .
The next player will win. Below is the table of winners based on the value
of pi−1 × n× pj−1:

Player 1 Player 2 Player 3

- - 1
2 3 4
5 6 7
8 9 10
11 12 13
... ... ...

2(mod 3) 0(mod 3) 1(mod 3)

Table 4.3: Winner of GEN on (Zpi × Zn)× Zpj by value of pi−1 × n× pj−1
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Theorem 4.8. The winner of the game of Three-Player GEN on (Zpi ×
Zn) × Zpj will be determined by the values of n, p, and i + j. Player 1 will
win when any of the following occur:

1. p ≡ 1(mod 3), n ≡ 2(mod 3)

2. p ≡ 2(mod 3), n ≡ 1(mod 3) and i + j is odd

3. p ≡ 2(mod 3), n ≡ 2(mod 3) and i + j is even

Similarly, Player 3 will win when any of these conditions are met:

1. p ≡ 1(mod 3), n ≡ 1(mod 3)

2. p ≡ 2(mod 3), n ≡ 1(mod 3) and i + j is even

3. p ≡ 2(mod 3), n ≡ 2(mod 3) and i + j is odd

Proof. For the entire proof, consider the results from Theorem 4.7 to under-
stand how pi and pj will behave in this group. The only difference is that we
have added another factor, Zn.

First, consider the claimed cases when Player 1 will win. If we have that
p ≡ 1(mod 3) and n ≡ 2(mod 3), we know that pl+k ≡ 1(mod 3) for any
l+k. So, we have that the number of safe elements is 1×2 ≡ 2(mod 3) ≡ |H|.
So Player 1 will win.

Consider when we have p ≡ 2(mod 3), n ≡ 1(mod 3) and i + j is odd. We
know from Theorem 4.7 that pi+j−2 ≡ 2(mod 3), so we have 2× 1 ≡ 2(mod
3) ≡ |H|. So Player 1 will win.

Now consider when p ≡ 2(mod 3), n ≡ 2(mod 3) and i + j is even. By
Theorem 4.7, pi+j−2 ≡ 1(mod 3). Thus, since n ≡ 2(mod 3), 2× 1 ≡ 2(mod
3) ≡ |H|. Player 1 wins this case.

We have similar proofs for Player 3 winning. First, when we have p ≡ 1(mod
3), n ≡ 1(mod 3), we know that pl+k ≡ 1(mod 3) for any l + k. So, we have
that the number of safe elements is 1×1 ≡ 2(mod 3) ≡ |H|. Player 3 will win.

Next, examine the case when p ≡ 2(mod 3), n ≡ 1(mod 3) and i + j is
even. We know that pi+j−2 ≡ 1(mod 3), so we have 2× 1 ≡ 1(mod 3) ≡ |H|.
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Player 3 wins.

Finally, consider when p ≡ 2(mod 3), n ≡ 2(mod 3) and i + j is odd. Then
we have pi+j−2 ≡ 2(mod 3). So 2× 2 ≡ 1(mod 3) ≡ |H|. Player 3 wins this
scenario.

Therefore, we can see that the winner of the game of Three-Player GEN on
(Zpi ×Zn)×Zpj is determined by the values of n, p, and i+ j. Player 1 and
Player 3 win in their respective cases that are described in the theorem.

4.2.5 Nilpotent Groups where d(N) = 2 and 3 - |N |
As was outlined in earlier in the chapter, if there exists a Sylow 3-subgroup
Pi in a nilpotent group, then Player 2 is most likely going to be the victor
of the game. (As a reminder: Player 2 will not have this guaranteed victory
if Pi

∼= Z3 × Z3 and d(N) = 2.) So, this begs the question: who wins if
there is no nontrivial 3-group in the composition of our nilpotent group, N?
Note: The results of this section generalize the previous, more specific cases
of nilpotent groups that we have covered.

Based on our knowledge of how the game works, it is fairly easy to de-
duce that if N does not have a Sylow 3-subgroup that will lead to a Player 2
victory, Player 2 has no way to win the game. Since N is composed of Sylow
p-subgroups, there cannot be a product of all but one of the p-group sizes and
a subgroup K from the final p-group Pak that has order divisible by three.
As discussed earlier, none of the sizes of the p-groups will be divisible by
three, and |K| will be an integer that is equivalent to the size of the Frattini
subgroup of Φ(Pak). Clearly, |Φ(Pak)| 6≡ 0(mod 3) if |Pak | 6≡ 0(mod 3).

So, consider a nilpotent group N such that 3 - |N |. Thus, Player 2 is going
to be unable to win the game of Three-Player GEN with this group. Since
d(N) = 2, every p-group that makes up N is at most generated by two ele-
ments. Therefore, Player 1 will be able to determine which elements are safe
and unsafe before Player 3 takes his or her first turn. We have already deter-
mined the possible outcomes of the game when |N | ≡ 0(mod 3). To finalize
our examination of nilpotent groups where d(N) = 2, we must consider when
|N | 6≡ 0(mod 3).
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We have already used the Burnside Basis Theorem (Rose[7,274]) to assist
us in determining the format of the number of safe elements in a game of the
Three-Player GEN on a nilpotent group N with d(N) = 2. By examining
this theorem further, we are able to see that when 3 - |N | and d(Qbm) = 2
for a Sylow p-subgroup:

d(Qbm) = 2 =⇒ Qbm/Φ(Qbm) ∼= Zp × Zp

=⇒ |Qbm|
|Φ(Qbm)|

= p2

=⇒ |Qbm| = p2|Φ(Qbm)|
=⇒ |Qbm| ≡ |Φ(Qbm)| (mod 3)

So, since the set of safe elements H = Qb1×Qb2×Qb3×...×Qbm−1×Φ(Qbm) by
Corollary 4.5 and |Qbm| ≡ |Φ(Qbm)| (mod 3), we can deduce that |H| ≡ |N |
(mod 3). The following theorem summarizes the aforementioned and allows
us to conclude the nilpotent case when d(N) = 2.

Theorem 4.9. In a game of Three-Player GEN on a nilpotent group N such
that d(N) = 2 and 3 - |N |, Player 1 will win when |N | ≡ 2(mod 3) and Player
3 will win when |N | ≡ 1(mod 3).

Proof. Let N be a nilpotent group used for a game of Three-Player GEN such
that d(N) = 2 and 3 - |N |. As was shown above, for any Sylow p-subgroup
with d(Qbm) = 2, |Qbm| ≡ |Φ(Qbm)| (mod 3).

So, consider the set of safe elements H. We have H = Qa1 × Qa2 × Qa3 ×
... × Qam−1 × Φ(Qbm) by Corollary 4.5. As shown above with the use of
the Burnside Basis Theorem, we know that for any Qbm chosen by Player 1,
|Qbm| ≡ |Φ(Qbm)| (mod 3) since d(Qbm) = 2. Thus, we have that we have
that:

|H| = |N |
|Qbm|

|Φ(Qbm)| ≡ |N | (mod 3)

Therefore, it is clear that when |N | ≡ 2(mod 3), we will have that |H| ≡
2(mod 3) and Player 1 will win. Similarly, when |N | ≡ 1(mod 3), it will be
the case that |H| ≡ 1(mod 3), so Player 3 will win.
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4.2.6 Nilpotent Groups where d(N) = 2

Now that we have separately identified the winning strategies for a nilpotent
group N when 3 | |N | and 3 - |N |, we can combine the theorems to completely
span the case of when d(N) = 2.

Theorem 4.10. The winner of the game of GEN on a nilpotent group N
such that d(N) = 2 can be determined by the value of |N |, with the exception
of when N has a Sylow 3-group isomorphic to Z3 × Z3. Specifically:

• If |N | ≡ 1(mod 3), Player 3 wins.

• If |N | ≡ 2(mod 3), Player 1 wins.

• If |N | ≡ 0(mod 3) and P3 6∼= Z3 × Z3, Player 2 wins.

• If |N | ≡ 0(mod 3), P3
∼= Z3 × Z3, and

|N |
9
≡ 1(mod 3) Player 3 wins.

• If |N | ≡ 0(mod 3), P3
∼= Z3 × Z3, and

|N |
9
≡ 2(mod 3) Player 1 wins.
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Chapter 5

Conclusion

We have seen that the traits and characteristics of the families of groups we
have examined have led to many different strategies in the game of Three-
Player GEN. While some families of groups had more obvious winning strate-
gies than others (cyclic groups), we found more complex strategies that relied
heavily on the composition of each group.

Being able to identify a strategy that works in most cases for nilpotent groups
where d(N) = 2 was a huge breakthrough, and it turned out to be even bet-
ter when we were able to apply it to abelian groups as it covered all cases.
As a summary, we have come up with the following theorems and corollaries
for the game of Three-Player GEN on groups:

Cyclic Groups

Theorem 5.1. Player 1 has the winning strategy of Three-Player GEN with
a cyclic group.

Dihedral Groups

Theorem 5.2. For a game of Three-Player GEN on any dihedral group Dn,
the winning strategies will be determined by the values of n/p for the prime
divisors p of n. If there exists a prime p that divides n such that n/p ≡ 2
(mod 3), Player 1 will win. If no such p exists, but there is a q that divides n
such that n/q ≡ 1 (mod 3), Player 3 will win. Otherwise, Player 2 will win.
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Nilpotent Groups

Theorem 5.3. In a game of Three-Player GEN on a nilpotent group N with
a Sylow 3-subgroup P3, if it is the case that 3 | |N |:

• Player 1 will win if d(N) = 2,
|N |
9
≡ 2(mod 3) and P3

∼= Z3 × Z3.

• Player 3 will win if d(N) = 2,
|N |
9
≡ 1(mod 3) and P3

∼= Z3 × Z3.

• Player 2 will win otherwise.

Theorem 5.4. The winner of the game of GEN on a nilpotent group N such
that d(N) = 2 can be determined by the value of |N |, with the exception of
when N has a Sylow 3-group isomorphic to Z3 × Z3. Specifically:

• If |N | ≡ 1(mod 3), Player 3 wins.

• If |N | ≡ 2(mod 3), Player 1 wins.

• If |N | ≡ 0(mod 3) and P3 6∼= Z3 × Z3, Player 2 wins.

• If |N | ≡ 0(mod 3), P3
∼= Z3 × Z3, and

|N |
9
≡ 1(mod 3) Player 3 wins.

• If |N | ≡ 0(mod 3), P3
∼= Z3 × Z3, and

|N |
9
≡ 2(mod 3) Player 1 wins.

Moving forward, the challenge for any student researching Three-Player
GEN will be tackling more general cases in which d(G) ≥ 3. Obviously,
these cases will bring a whole lot of uncertainty into the mix. In a game the
depends so heavily on the final two generators, requiring three or more
generators to make the group will drastically complicate the strategy.

By altering the rules of the game, students researching this topic will also be
able to tackle new problems. What would these strategies look like if players
would prefer that the person after them win instead of the person in front of
them? Will the strategies remain very similar, or will the altered rule cause
the game to change drastically? What would happen if a non-prime number
of players, such as 4 or 6, played the game? Is there a generalization that
can be made about playing with a prime number of players? These questions
are waiting to be answered.
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