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1. Introduction

Non-linear Schrödinger equation

iut =−∆u+Vu+σ|u|2u (1)

describes a variety of physical phenomena in optics, acoustics, quantum condensate (Gross-
Pitaevskii equation), hydrodynamics, plasma physics, etc. The case of a periodic potential V
is of great interest. The equation has been studied for a long time. However, majority of the
studies is in physics literature and concerns with one-dimensional situation. Higher dimen-
sions are investigated mostly numerically, (e.g. [1–5]) for dimension two). Theoretical papers
for periodic multidimensional situations are more sparse. We definitely have to refer here to
[6–13] devoted to periodic initial value problems with V being zero or an operator of multi-
plication in the Fourier dual space. We are interested in stationary solutions of (1) in multiple
dimensions. In [14] the existence of stationary solutions decaying at infinity is investigated.
It was proven in [15, 16] that there are stationary solutions of (1) close to plane waves ei(⃗k,⃗x)

for an extensive set of k⃗ in dimensions two and three. In this paper we show that there exist
stationary solutions close to non-trivial combinations of two plane waves at high energies for a
periodic non-linear Schroedinger Equation in dimension two. The corresponding isoenergetic
surfaces are described any sufficiently large energy k2 . It is shown that the isoenergetic surface
corresponding to k2 is essentially different from that for the zero potential.

We start with considering a nonlinear polyharmonic equation:

(−∆)
l u (⃗x)+V (⃗x)u (⃗x)+σ|u (⃗x) |2u (⃗x) = λu (⃗x) , x⃗ ∈ Rn, (2)

and the quasi-periodic boundary conditions:

u(x1, . . . ,xs+ 2π, . . . ,xn) = e2π itsu(x1, . . . ,xs, . . . ,xn) ,
∂
∂xs
u(x1, . . . ,xs+ 2π, . . . ,xn) = e2π its ∂

∂xs
u(x1, . . . ,xs, . . . ,xn) ,

...
∂2l−1

∂x2l−1
s

u(x1, . . . ,xs+ 2π, . . . ,xn) = e2π its ∂2l−1

∂x2l−1
s

u(x1, . . . ,xs, . . . ,xn) ,

s= 1, . . . ,n.

(3)

where l is an integer such that 2l> n or l= 1, n= 2, σ ∈ R and t⃗ ∈ K, K= [0,1)n. We consider
a periodic potential V(⃗x). We assume that the potential V is a trigonometric polynomial with
the elementary cell of periods Q= [0,2π]n:

V (⃗x) =
∑

q̸=0,|q|⩽R0

vqe
i⟨q,⃗x⟩, 0< R0 <∞, (4)

ˆ
Q
V (⃗x) d⃗x= 0.

The last assumption can be done without loss of generality. We require that V is not identically
zero. We consider the case l= 1, n= 2 for a sufficiently small V : ∥V∥< ε∗, here ε∗ ̸= ε∗(λ).

We start with discussing the linear operator:

H= (−∆)
l
+V (⃗x) (5)
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in L2(Rn). The spectral analysis of the operator H can be reduced to the analysis of operators
H(⃗t), t⃗ ∈ K. The operatorsH(⃗t) are defined by (5) and the quasiperiodic conditions (3) in L2(Q).

It is well-known that H(⃗t) has a discrete semi-bounded from below spectrum
⋃∞
n=1λn(⃗t).

By Bloch’s theorem [17], the following is true:

1. The spectrum of H has band structure:

∆=
∞⋃
n=1

⋃
t⃗∈K

λn
(⃗
t
)
.

2. A complete system of generalized eigenfunctions of H can be obtained by extending eigen-
functions of H(⃗t) quasiperiodically to the whole space Rn.

We use the notation H0(⃗t) for H(⃗t) with V = 0, its eigenvalues being given by

p2lj
(⃗
t
)
= |P⃗j

(⃗
t
)
|2l, (6)

where

P⃗j
(⃗
t
)
= P⃗j

(
0⃗
)
+ t⃗= 2π j+ t⃗, j ∈ Zn, t⃗ ∈ K.

The corresponding eigenfunction is a plane wave

ei⟨P⃗j(⃗t),⃗x⟩ (7)

and the corresponding spectral projection is Ej defined by

(Ej)rm = δjrδjm (8)

in the basis (7) in L2(Q). Obviously any k⃗ ∈ Rn can be uniquelywritten in the form k⃗= P⃗j(⃗t) for
some j ∈ Zn and t⃗ ∈ K. An isoenergetic surface S0(k) of H0 is a set of t ∈ K such that pj(t) = k
for some j ∈ Zn. It looks like a sphere ‘packed’ into K. Namely,

S0 =KS(k) , (9)

where S(k) is the sphere in Rn centered at the origin with radius k and

K : Rn → K, KP⃗q
(⃗
t
)
= t⃗. (10)

The process of obtaining S0(k) starts by dividing S(k) by the dual lattice {P⃗m(0)}m∈Zn into
pieces and all the pieces are then translated into K.

Perturbation series for eigenvalues and their spectral projections forH(t) with respect to the
operator H0(⃗t) are obtained in [18]. When 2l> n, perturbation formulas are valid for large k
and a set χ0(k, δ)⊂ S0(k) of t⃗, such that pj(⃗t) = k for some j and

min
q∈Zn\{0}

|p2lj
(⃗
t
)
− p2lj+q

(⃗
t
)
|> k2l−n−δ, (11)

0< δ < 2l− n. For n= 2, l= 1, some additional inequalities are needed. This situation is
called the non-resonant case for t. Correspondingly, χ0(k, δ) is the non-resonant set. The
inequality (11) means that t⃗ is sufficiently far from self-intersections of S0(k). The set χ0(k, δ)

3
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has an asymptotically full measure on the isoenergetic surface S0(k) as k→∞. It is proven
that for every t⃗ ∈ χ0(k, δ), the operator H(t) has an eigenvalue close to p2lj (⃗t) =| P⃗j(⃗t) |2l with
an eigenfunction close to ei⟨P⃗j (⃗t),⃗x⟩. The exact formulas of the eigenvalue and its spectral pro-
jection are given in section 2, theorem 3. In [15] we proved an analog of theorem 3 for the
non-linear case (2) and (3); see theorem 14.

The vector k⃗ is said to satisfy the von Laue Diffraction Condition if

|⃗k|= |⃗k− P⃗q
(
0⃗
)
|, (12)

for some q ∈ Zn \ {0}. If t⃗ : P⃗j(⃗t) = k⃗, then, t⃗ obviously belongs to a self-intersection of S0(k),
Therefore, t⃗ ̸∈ χ0(k, δ). Perturbation formulas for eigenvalues and spectral projections of H(⃗t)
with respect to H0(⃗t) do not work in this situation. The situation when k⃗ is in a vicinity of (12)
is called the resonant case. It turns out that in a vicinity of (12) the eigenvalues and its spectral
projections can be approximated by those of a model matrix(

p2lj
(⃗
t
)

vq
v−q p2lj−q

(⃗
t
)) , (13)

where vq is a Fourier coefficient of V(x). Further, we assume:

q : vq ̸= 0. (14)

We denote eigenvalues and eigenvectors of (13) by λ̂± and ê±, correspondingly. For a fixed
λ0 we consider the surface:

Ŝ(λ0) =
{⃗
t ∈ K : λ̂+

(⃗
t
)
= λ0. or λ̂

− (⃗
t
)
= λ0

}
. (15)

We call it the isoenergetic surface of the matrix (13). Note that the parts λ̂+(⃗t) = λ0 and
λ̂−(⃗t) = λ0 do not intersect, since vq ̸= 0. Thus the deviation of the surface λ̂±(⃗t) = λ0 from
the unperturbed one (V = 0) is essential.

In [18] we described a set χq(k, δ)⊂ S0(k) \χ0(k, δ). Formulas for eigenvalues and spectral
projections ofH(⃗t)were constructed for every t⃗ in this set, when k is sufficiently large. Indeed,
let set KSq(k,n− 2+ δ) be the image of the spherical layer Sq(k,n− 2+ δ) under the map K
given by (10). Here,

Sq (k,n− 2+ δ) =
{⃗
x ∈ S(k) :

∣∣|⃗x|2 − |⃗x− P⃗q (0) |2
∣∣< 4k−n+2−δ

}
. (16)

In other words, we consider Sq(k,n− 2+ δ) being a neighborhood of (12) in the sphere S(k)
and then shift it into the cube K using (10). In section 2 here, we explicitly describe the set
χq(k, δ) which has an asymptotically full measure onKSq(k,n− 2+ δ). For t⃗ in a small vicin-
ity of χq(k, δ) we give formulas for eigenvalues and spectral projections of H(⃗t). The corres-

ponding eigenfunctions are close to non-trivial combinations of two plane waves ei<⃗k,⃗x> and
ei<⃗k−P⃗q (⃗0),⃗x>. The coefficients of plane waves are described through eigenvectors ê± of (13).
Thus, we have a pair of eigenfunctions for every k⃗ and a fixed q. The set χq(k, δ) is called the
resonant set. The exact statement of the result is given in section 2, theorem 9. It is proven
that the isoenergetic surface corresponding to the pair of solutions is close to the isoenergetic
surface (15), see corollary 13.
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Here, we will construct formulas for solutions u±,λ± of (2) and (3) when k⃗ is close
to (12). Essentially, we make use of the results obtained for the linear case, and apply a method
of successive approximation. Namely, we consider the part of equation (2) with the nonlinear
term, i.e. V+σ|u±|2, as an unknown periodic potential. For the method of successive approx-
imation, we define two maps, M̂±, and construct two sequences of potentials,W±

m converging
to the potentials W± = V+σ|u±|2.

The map M̂± is defined in section 3.1. Then, the sequence of potentials {W±
m }∞m=0 is con-

structed as follows:

W±
0 = V, (17)

.W±
m = M̂±W±

m−1. (18)

It turns out that it is a Cauchy sequence converging to a function W with respect to a norm
∥ · ∥∗,

∥W∥∗ =
∑
j∈Zn

|wj|, (19)

where wj’s are the Fourier coefficients of W. Namely, we show that

∥W± −W±
m ∥∗ ⩽

(
ck−γ

)m+1
, (20)

for some γ > 0. Then, we show that convergence of {W±
m }∞m=0 to W± leads to convergence

of the sequences of the spectral projections {Ê±
m (⃗t)}∞m=0 and their corresponding eigenvalues

{λ̂±m (⃗t)}∞m=0 to Ê
±
W (⃗t) and λ̂

±
W (⃗t), here Ê

±
m (⃗t), λ̂

±
m (⃗t) and Ê

±
W (⃗t), λ̂

±
W (⃗t) are spectral projections

and their eigenvalues of H0 +W±
m and H0 +W±. Corresponding to Ê±

W (⃗t) eigenfunction u
± ≡

û±W , see (72) and (73), solves (2) and (3). It is shown that u
± is close to a combination of two

plane waves ei<⃗k,⃗x> and ei<⃗k−P⃗q (⃗0),⃗x> under some restriction on its amplitude. The coefficients
of plane waves are described by eigenvectors ê± of (13) with a good accuracy. The exact
statement of the result is given by theorem 24. The sequences {W±

m }∞m=0, {Ê±
m (⃗t)}∞m=0 and

{λ̂±m (⃗t)}∞m=0. can be differentiated with respect to t⃗ and maintain their convergence. As a result
the asymptotic formulas (141) and (142) for ∇Ê±

W (⃗t), ∇λ̂
±
W (⃗t) are proven, and |∇λ̂±W (⃗t)| ≈

2lk2l−1. It follows that the surface λ±(⃗t) = λ0 is in the C(V)λ
−γ̂
0 -neighborhood of λ̂±(⃗t) = λ0

for every sufficiently large λ0, here λ̂± are eigenvalues of (13) and γ̂ > (2l− 1)(2l)−1, see
theorem 30 and corollary 31.

In section 4 we consider the physically interesting case l= 1, n= 2. All considerations of
the previous case can be done for l= 1, n= 2 under the assumption that V is sufficiently small
∥V∥∗ < ϵ9, 0< ϵ < ϵ0, ϵ0 ̸= ϵ0(λ), for the waves with a sufficiently small amplitude A, the
restriction on A being given in terms of ϵ, see (150).

The isoenergetic surface λ±(⃗t) = λ0 is in a small neighborhood of λ̂±(⃗t) = λ0.
Thus, we prove that for a relatively small set of momenta t⃗ there are solutions u±(⃗x) of

the problem (2) and (3), neither of them being close to a plane wave even for a small V. This
phenomena is important in Physics of Solids already for a linear case (σ= 0). It describes a
reflection of a beam of electrons in a crystal lattice. Measuring the conditions on k⃗ for such a
reflection (a small set of k⃗), physicists define a lattice type of the crystal. The phenomena made
it possible to develop the field of electron crystallography. We show here that the phenomena
persists for a non-linear case even for small potentials.

5
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In our considerations the solutions u±, λ± and the isoenergetic surfaces depend not only on
the periods of V(⃗x), but also on its Fourier coefficients. This may look to be in disagreement
with the von Laue diffraction condition (12) and other related formulas, which is known to
physicists since long time ago. In those formulas there are no dependence on Fourier coeffi-
cients. The reason for this ‘difference’ is that von Laue diffraction conditions can be detected
with the type of equipment that existed for many decades. The newer equipment can detect
more complicated diffraction picture. This enables researches to determine the molecules con-
stituting the crystal, i.e. some important features of V(x).

In the present case we have only two waves ei⟨P⃗j (⃗t),⃗x⟩ and ei⟨P⃗j−q (⃗t),⃗x⟩ with significant amp-
litudes in the Fourier expansions of u±(⃗x). It is due to the fact that |P⃗j−q(⃗t)|2l is close to |P⃗j(⃗t)|2l,
while all other |P⃗j−m(⃗t)|2l, m ̸= 0,q are relatively far away from the pair, when t⃗ ∈ χ q(k, δ).
More precisely, ||P⃗j−q(⃗t)|2 − |P⃗j(⃗t)|2|< c∥V∥, c being the absolute constant, while |P⃗j−m(⃗t)|2l,
m ̸= 0,q satisfy the opposite inequality. Generally speaking, the number of plane waves
ei⟨P⃗j−q (⃗t),⃗x⟩, q ∈ Zn with significant amplitudes in the Fourier expansions of u±(⃗x) is defined
by the number of real points |P⃗j−q(⃗t)|2l, q ∈ Zn \ {0} in a (c∥V∥)-vicinity of k2 = |P⃗j(⃗t)|2l.
Therefore, more than two waves are involved if we have more than one point |P⃗j−q(⃗t)|2l in
such a vicinity (in the present case we have just one). In particular, if n= 2, l= 1 and ∥V∥ is
sufficiently large, then all plane waves ei⟨P⃗j−q (⃗t),⃗x⟩, q : ||P⃗j−q(⃗t)|2 − |P⃗j(⃗t)|2|< c∥V∥ play sig-
nificant roles. In this case the model operator is described not by (13), but by a Hill operator.
This result will be proven in a forthcoming paper.

The paper is organized as follows. Preliminary results are described in sections 2 and 2.1
containing the results for a linear case [18] and section 2.2 containing the results for the non-
linear equation, non-resonant case [15]. Chapter 3 is devoted to proving the main result for the
case 2l> n. We consider l= 1,n= 2 in chapter 4.

2. Preliminary results

In this chapter, we present a brief review of previous results needed for proof of the main result
of this paper.

2.1. Linear polyharmonic equation with periodic potential

Let us consider an operator in L2(Q) given by the differential expression:

Hα

(⃗
t
)
u= (−∆)

l u+αVu, (21)

with the quasi-periodic boundary conditions (3). Here l is an integer such that 2l> n, −1⩽
α⩽ 1.

Perturbation series for eigenvalues and its spectral projections forHα(t) are constructed on a
nonsingular set χ0 [18]. We include here a construction of χ0(k, δ) and discuss the perturbation
theory for Hα(⃗t).

Lemma 1. For an arbitrarily small positive, δ, 2δ < 2l− n, and sufficiently large k> k0(δ),
there exists a non-resonant set χ 0(k, δ), belonging to the isoenergetic surface S0(k) of the free
operator H0(t), such that, for any t⃗ in it,

1. there exists a uniquem ∈ Znsuch thatp2lm
(⃗
t
)
= k2l, (22)

2. min
j̸=m

|p2lj
(⃗
t
)
− p2lm

(⃗
t
)
|> k2l−n−δ. (23)

6
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Moreover, the nonsingular set has an asymptotically full measure on S0(k):

s(S0 (k) \χ 0 (k, δ))
s(S0 (k))

= O
(
k−δ/2

)
, as k→∞,

where s(.) denotes the Lebesgue measure.

Corollary 2. Suppose t⃗ belongs to the (k−n+1−2δ)-neighborhood in K of the resonant set
χ 0(k, δ), 0< 2δ < 2l− n. Then for all z lying on the circle C0 = {z ∈ C : |z− k2l|= k2l−n−δ}
and any i of Zn, the inequality

2 | p2li
(⃗
t
)
− z |> k2l−n−δ

holds.

Let us introduce the functions gr(k,⃗ t) and the operator-valued functions Gr(k,⃗ t), r= 0, 1,
. . ., for t⃗ ∈ χ0(k, δ):

gr
(
k,⃗ t

)
=

(−1)r

2π ir
Tr
˛
C0

((
H0

(⃗
t
)
− z

)−1
V
)r

dz, (24)

Gr
(
k,⃗ t

)
=

(−1)r+1

2π i

˛
C0

((
H0

(⃗
t
)
− z

)−1
V
)r (

H0
(⃗
t
)
− z

)−1
dz. (25)

The following theorem presents the main result for (21).

Theorem 3. Suppose t⃗ belongs to the (k−n+1−2δ)-neighborhood in K of the non-resonant set
χ 0(k, δ), 0< 2δ < 2l− n. Then for sufficiently large k, k> k0(∥V∥, δ), there exists a single
eigenvalue of the operator H(⃗t) in the interval ε(k, δ)≡ (k2l− k2l−n−δ,k2l+ k2l−n−δ). It is
given by the series

λj
(
α,⃗ t

)
= p2lj

(⃗
t
)
+

∞∑
r=2

αrgr
(
k,⃗ t

)
, (26)

converging absolutely in the disk |α|⩽ 1, where the index j is uniquely determined from the
relation p2lj (⃗t) ∈ ε(k, δ) and the spectral projection, corresponding to λj(α,⃗ t) is given by the
series

Ej
(
α,⃗ t

)
= Ej+

∞∑
r=1

αrGr
(
k,⃗ t

)
, (27)

which converges in the trace class S1 uniformly with respect to α in the disk |α|⩽ 1.
Moreover, for the coefficients gr(k,⃗ t) and Gr(k,⃗ t), the following estimates hold.

|gr
(
k,⃗ t

)
|< k2l−n−δk−(2l−n−2δ)r, (28)

∥Gr
(
k,⃗ t

)
∥1 ⩽ k−(2l−n−2δ)r. (29)

The series (26) and (27) are differentiable termwise with respect to t⃗ in the (k−n+1−2δ)-
neighborhood in Cn of the set χ0(k, δ), see [18]. Indeed, let

T(m)≡ ∂|m|

∂tm1
1 ∂t

m2
2 . . .∂tmn

n
,where | m |≡ m1 +m2 + . . .+mn, (30)

m!≡ m1!m2! . . .mn!, 0⩽| m |<∞, T(0) f≡ f. (31)

7
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Theorem 4. Under the conditions of theorem 3 the series (26) and (27) can be differentiated
with respect to t⃗ any number of times, and they retain their asymptotic character. The coeffi-
cients gr(k,⃗ t) and Gr(k,⃗ t) satisfy the following estimates in the (k−n+1−2δ)-neighborhood in
Cn of the nonsingular set χ0(k, δ):

| T(m)gr
(
k,⃗ t

)
|< m!k−(2l−n−2δ)(r−1)k|m|(n−1+2δ) (32)

∥T(m)Gr
(
k,⃗ t

)
∥1 < m!k−(2l−n−2δ)rk|m|(n−1+2δ). (33)

Corollary 5. The following estimates hold for the perturbed eigenvalue and its spectral
projection.

| T(m)
(
λj
(
α,⃗ t

)
− p2lj

(⃗
t
))

|< cm!k−(2l−n−2δ)k|m|(n−1+2δ) (34)

∥T(m)
(
Ej
(
α,⃗ t

)
−Ej

)
∥1 < cm!k−(2l−n−2δ)k|m|(n−1+2δ). (35)

In particular,

| λj(α,⃗ t))− p2lj (⃗t) |< ck−(2l−n−2δ) (36)

∥Ej(α,⃗ t)−Ej)∥1 < ck−(2l−n−2δ) (37)

| ∇⃗tλj
(
α,⃗ t

)
− 2lP⃗j

(⃗
t
)
p2l−2
j

(⃗
t
)
|< ck−(2l−n−2δ)+n−1+2δ. (38)

Corollary 6. The surface λj(α,⃗ t) = λ0 is in the real λ
−(4l−n+1−2δ)
0 -neighborhood of χ 0(k, δ)

for every sufficiently large λ0.

Next, we consider formulas for t⃗ ∈ S0(k) \χ0(k, δ). This means that there is at least one
q ∈ Zn such that

|p2lj−q

(⃗
t
)
− p2lj

(⃗
t
)
|< k2l−n−δ, P⃗j

(⃗
t
)
∈ S(k) .

Below, we present the main results and the perturbation formulas for an eigenvalue and its
spectral projection for t⃗ belonging to a ‘resonant set’, χq(k, δ)⊂ S0(k)\χ0(k, δ). We set α= 1
for simplicity.

Let Pq be the diagonal operator in l2(Zn) defined by the formula

(Pq)mm = δjm+ δj−q,m. (39)

We define the operator Ĥq(⃗t) as

Ĥq
(⃗
t
)
= H0

(⃗
t
)
+PqVPq. (40)

Note that the matrix corresponding to this operator has only two non-diagonal elements,
namely,

Ĥq
(⃗
t
)
j,j−q

= Ĥq
(⃗
t
)
j−q,j

= vq.

Thus Ĥq(⃗t) has only one block (13), here we assume (14). The eigenvalues of this block matrix
we denote by λ̂+(⃗t) and λ̂−(⃗t). They are given as

λ̂+
(⃗
t
)
= a+ b and λ̂−

(⃗
t
)
= a− b, (41)

8
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where 2a= p2lj (⃗t)+ p2lj−q(⃗t) and 2b= (4|vq|2 +(p2lj (⃗t)− p2lj−q(⃗t))
2)1/2. Note that

λ̂+
(⃗
t
)
− λ̂−

(⃗
t
)
= 2b⩾ 2|vq|.

This means that the spectrum of Ĥq(⃗t) is {{p2li (⃗t)}i̸=j,j−q, λ̂+(⃗t), λ̂−(⃗t)}.

Definition 1. The spectral projections of Ĥq(⃗t) corresponding to λ̂±(⃗t) we denote by = Ê±.

Recall that KSq(k,n− 2+ δ) was defined in section 1, see (10) and (16).

Lemma 7. For an arbitrarily small positive δ, 2δ < 2l− n, and sufficiently large k, there exists
a subset χq(k, δ) of KSq(k,n− 2+ δ), such that the following conditions hold

1. There exists j ∈ Zn such that P⃗j
(⃗
t
)
= k⃗,

2. |p2j−q

(⃗
t
)
− p2j

(⃗
t
)
|< k−n+2−δ,

3. min
i ̸=j,j−q

|p2j
(⃗
t
)
− p2i

(⃗
t
)
|> 2k−n+2−6δ.

for all t⃗ ∈ χq(k, δ). Moreover, for any t⃗ in the k-neighborhood of χq(k, δ) in Cn, there exists a
unique j ∈ Zn such that |p2j (⃗t)− k2|< 5k−n+2−6δ and the second and third conditions above
are satisfied. Also, the set χq(k, δ) has an asymptotically full measure on KSq(k,n− 2+ δ),
that is

s(KSq (k,n− 2+ δ) \χq (k, δ))
s(KSq (k,n− 2+ δ))

= O
(
k−δ/2

)
as k→∞. (42)

The previous lemma means that p2j (⃗t) and p
2
j−q(⃗t) are close to each other, but they are suf-

ficiently far away from the remaining eigenvalues.

Corollary 8. If t⃗ belongs to the (2k−n+1−7δ)- neighborhood of χq(k, δ), then for all z on the
circle

C+
1 =

{
z : |z− λ̂+

(⃗
t
)
|= d

}
, d=

1
10

|vq|, (43)

both of the following inequalities are true:

2|p2lm
(⃗
t
)
− z|⩾ k2l−n−6δ,m ̸= j, j− q0, (44)

|λ̂−
(⃗
t
)
− z|⩾ d. (45)

Similar corollary holds for λ̂−,C−
1 . Further for definiteness we consider λ̂

+,C+
1 .

Let V be as in (4) and functions ĝ+r (k,⃗ t) and Ĝ
+
r (k,⃗ t), r ∈ N, t ∈ χq(k, δ) be defined as

follows:

ĝ+r
(
k,⃗ t

)
=

(−1)r

2π ir
Tr
˛
C+
1

((
Ĥq

(⃗
t
)
− z

)−1
V̂

)r

dz, (46)

Ĝ+
r

(
k,⃗ t

)
=

(−1)r+1

2π i

˛
C+
1

((
Ĥq

(⃗
t
)
− z

)−1
V̂

)r(
Ĥq

(⃗
t
)
− z

)−1
dz, (47)

here and below

V̂= V−PqVPq.

The following result is proven in [18].

9
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Theorem 9. Suppose t⃗ belongs to the (k−n+1−7δ)-neighborhood in K of the set χq(k, δ),
0< 9δ < 2l− n. Then for sufficiently large k, k> k1(V, δ), in the interval ε̂(k, δ)≡ (λ̂+(⃗t)−
k−δ, λ̂+(⃗t)+ k−δ), there exists a single eigenvalue of the operator H(⃗t). It is given by the series

λ̂q,+
(⃗
t
)
= λ̂+

(⃗
t
)
+

∞∑
r=2

ĝ+r
(
k,⃗ t

)
. (48)

The spectral projection, corresponding to λ̂q(⃗t) is given by

Êq,+
(⃗
t
)
= Ê+ +

∞∑
r=1

Ĝ+
r

(
k,⃗ t

)
, (49)

which converges in the class S1. The following estimates hold for ĝ+r (k,⃗ t), Ĝ
+
r (k,⃗ t):

|ĝ+r
(
k,⃗ t

)
|< k−γ1r−δ, (50)

∥Ĝ+
r

(
k,⃗ t

)
∥1 < k−γ1r, (51)

where

γ1 = (2l− n)/2− 4δ > 0. (52)

Theorem 10. Under the conditions of theorem 9, the series (48) and (49) can be differentiated
termwise with respect to t⃗ any number of times, and they retain their asymptotic character. The
coefficients g̃r(k,⃗ t) and G̃r(k,⃗ t) satisfy the following estimates in the (k−n+1−7δ)-neighborhood
in Cn of the singular set χ q(k, δ):

| T(m) ĝ+r
(
k,⃗ t

)
|< m!k−γ1r−δ+|m|(n−1+7δ), (53)

∥T(m) Ĝ+
r

(
k,⃗ t

)
∥1 < m!k−γ1r+|m|(n−1+7δ). (54)

Corollary 11. The following estimates for the perturbed eigenvalue and its spectral projection
hold:

| T(m)
(
λ̂q,+

(⃗
t
)
− λ̂+

(⃗
t
))

|< 2m!k−2γ1−δ+|m|(n−1+7δ), (55)

∥T(m)
(
Êq,+

(⃗
t
)
− Ê+

(⃗
t
))

∥1 < 2m!k−γ1+|m|(n−1+7δ). (56)

In particular, the following estimates are valid:

|λ̂q,+
(⃗
t
)
− λ̂+

(⃗
t
)
|< 2k−2γ1−δ, (57)

∥Êq,+
(⃗
t
)
− Ê+∥1 < 2k−γ1 , (58)

|∇λ̂q,+
(⃗
t
)
−∇λ̂+

(⃗
t
)
|< 2k−2γ1+n−1+6δ. (59)

10
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Corollary 12. An eigenfunction u+0 (⃗x,⃗ t) corresponding to Ê
q,+(⃗t) satisfies the estimate:∥∥∥e−i<⃗k,⃗x>u+0

(⃗
x,⃗ t

)
−
(
a1 + a2e

−i<P⃗q(0),⃗x>
)∥∥∥

∗
< ck−γ1 , (60)

where (a1,a2) is an eigenvector of (13) corresponding to λ̂+(⃗t).

The analogous results hold for λ̂q,−(⃗t), Êq,−(⃗t).

Corollary 13. The surface λ̂q,±(⃗t) = λ0 is in the real λ
−2γ1−2l+1−δ
0 -neighborhood of χ q(k, δ)

for every sufficiently large λ0.

The results above hold for V : ∥V∥∗ <∞.

2.2. Nonlinear periodic polyharmonic equation

In this section we consider equation (2) with the quasi-periodic boundary conditions (3). In
[15, 16] we proved existence of a quasi-periodic solution of equation (2) being close to a plane
wave Aei⟨⃗k,⃗x⟩ for every k⃗ belonging to a non-resonant set χ 0(k), where A is a complex number
with sufficiently small |A|. The main idea of the papers is to look at equation (2) as a linear
equation. This can be done by considering the sum V(⃗x)+σ|u(⃗x)|2 as an unknown potential.
We use the facts proved for the linear case.

Now we describe the technique used to find a function u that solves the nonlinear equation.
Let l̂1 be the space of functions in Q with Fourier coefficients in l1(Zn), see (19). First, a
sequence of operators {Wm}∞m=0 is constructed via the map M : l̂1 → l̂1 defined as

MW (⃗x) = V (⃗x)+σ|uW̃ (⃗x) |2. (61)

Here, uW̃ is an eigenfunction of the linear operator (−∆)l+ W̃ with the same boundary con-
ditions (3), where W̃ is defined by the formula

W̃ (⃗x) =W (⃗x)− 1
(2π)n

ˆ
Q
W (⃗x) d⃗x. (62)

More precisely, uW̃ is defined as

uW̃ (⃗x) =
∑
s∈Zn

(
EW̃

(⃗
t
))

sj
ei⟨P⃗s(⃗t),⃗x⟩

= ei⟨P⃗j(⃗t),⃗x⟩ +
∞∑
r=1

∑
s∈Zn

(
Gr
W̃

(
k,⃗ t

))
sj
ei⟨P⃗s(⃗t),⃗x⟩,

(63)

here j : P⃗j(⃗t) = k⃗. Formula (63) is analogous to (27). Second, the operator Wm is defined by a
recurrence procedure as follows. Let W0 = V+σ|A|2. Define

Wm+1 =MWm, m= 0,1,2, . . . (64)

Then, Wm is proved to be a Cauchy sequence of periodic potentials converging to a periodic
potential W with respect to the norm ∥ · ∥∗, see (19). Note that for any m, there is a solution
um of the equation

(−∆)
l um+ W̃mum = λmum,

11
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given by the formula (63). Moreover, the sequences of the functions {um}∞m=0 and the eigen-
values {λm}∞m=0 converge to a function uW̃ and a real number λ, respectively. It is shown
that u= uW̃ solves the nonlinear equation (2). The limits EW̃(⃗t) and λW̃(⃗t) of the sequences
{Em(⃗t)}∞m=0 and {λm(⃗t)}∞m=0, respectively, are given by the two series (26) and (27) written
for the potential W̃ instead of V. The following theorem holds when 2l> n.

Theorem 14. Let 0< 2δ < 2l− n. Suppose t⃗ belongs to the (k−n+1−2δ)-neighborhood in K of
the non-resonant set χ0(k, δ), k> k1(∥V∥∗, δ), and A ∈ C : |σ||A|2 < kγ0−δ , where

γ0 = 2l− n− 2δ. (65)

Then, there is a function u, depending on t⃗ as a parameter, and a real value λ(⃗t), such that they
solve the equation (2) and the quasi-periodic boundary condition (3). The following estimates
hold:

λ
(⃗
t
)
= p2lj

(⃗
t
)
+σ|A|2 +O

(
k−γ0

)
, (66)

u (⃗x) = Aei⟨P⃗j(⃗t),⃗x⟩ (1+ ũ (⃗x)) , (67)

where ũ is periodic and

∥ũ∥∗ < k−γ0 . (68)

Moreover, the following estimates hold:

∣∣∇(
λ
(⃗
t
)
− p2lj

(⃗
t
)
−σ|A|2

)∣∣< k2l−1−γ0 . (69)

Corollary 15. The surface λ(⃗t) = λ0, λ0 ≡ k2l0 +σ|A|2, is in the k−(4l−n+1−2δ)
0 -neighborhood

of χ 0(k, δ) for every fixed A : |σ||A|2 < kγ0−δ
0 and sufficiently large λ0.

If l= 1,n= 2 an analogous theorem holds with somewhat different non-resonant set set
χ0(k, δ), and a constant γ0.

3. Perturbation theory for non-linear polyharmonic equation with periodic
potential for 2l> n. Resonant case

In section 3.1, we introduce maps M̂± and construct two sequences of potentials {W±
m }∞m=0.

Wewill prove that they are Cauchy sequences converging to some potentialsW±. In section 3.2
we prove the existence of solutions u±(⃗t, x⃗), λ= λ±(⃗t) of (2) and (3) and obtain their estimates
at the high energy region. The functions u±(⃗t, x⃗) are shown to be close to non-trivial combin-
ations of two plane waves. Finally, in section 3.3, we derive estimates for the derivatives of
λ±(⃗t) and u±(⃗t, x⃗) with respect to t⃗. The isoenergetic surface {t ∈ K,λ±(⃗t) = λ0} is construc-
ted for the resonant case for every sufficiently large λ0.

12
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3.1. Construction of a Cauchy sequence

Recall that the operator Ĥq(⃗t) defined by (40) has the spectrum {{p2li (⃗t)}i̸=j,j−q, λ̂
+(⃗t), λ̂−(⃗t)}.

It is easy to verify that eigenvectors of the block submatrix of Ĥq(⃗t) corresponding to the
eigenvalues λ̂±(⃗t), see (41), are:

ê+ =
(
p2lj−q

(⃗
t
)
− λ̂+

(⃗
t
)
, −vq

)T
(70)

ê− =
(
−v−q, p

2l
j

(⃗
t
)
− λ̂−

(⃗
t
))T

. (71)

By definition 1 the corresponding spectral projections are denoted by by Ê±(⃗t). It is clear that
|λ̂+(⃗t)− p2lj (⃗t)|< 2|vq| and |λ̂−(⃗t)− p2lj (⃗t)|< 2|vq|. We assume that |vq| ̸= 0.

The cases + and − are analogous. Further, for definiteness we consider the case +.
Wee use a geometric lemma 7 and corollary 8.

Definition 2. Let W be such that ∥W∥∗ <∞, t⃗ ∈ χ q(k, δ) and

u+W (⃗x) = ψ+
W (⃗x)ei⟨P⃗j(⃗t),⃗x⟩, (72)

where ψ+
W is periodic and

ψ+
W (⃗x) = A

∑
b∈Zn

Êq,+W
(⃗
t
)
j−b,j e

i⟨P⃗b(0),⃗x⟩ (73)

Êq,+W being given by (47) and (49) with W−PqVPq in (47) instead of V̂.

Obviously, u+W(x) satisfies (−∆)lu+W +Wu+W = λ+W(t)u
+
W , where λ

+
W(t) is given by (48) with

W−PqVPq in (47) instead of V̂.

Definition 3. Let the map M̂+ : l̂1 → l̂1 be defined by

M̂+W (⃗x) = V (⃗x)+σ|u+W (⃗x) |2, (74)

here l̂1 is the space of functions in Q with Fourier coefficients in l1(Zn), see (19).

Next, we define the sequence {W+
m }∞m=0 using the map M̂+. Let

W+
0 = V, (75)

W+
m = M̂+W+

m−1. (76)

For everym there is an eigenfunction u+m (⃗x) correspondingW
+
m , see (72), and the corresponding

eigenvalue number λ+m . Note that this sequence W+
m is quite different from that for a non-

resonance case given by (64).

Definition 4. Let, Ê+
−1 ≡ Ê+ be the spectral projection of themodel operator Ĥq corresponding

to λ+(⃗t), and Ê+
0 = Êq,+, see (49). By analogy, Ê+

m ≡ Êq,+
W+
m
(⃗t), the formula (47) and (49) being

used for E+

W+
m
(⃗t) with W+

m −PqVPq instead of V̂ .

Clearly, Ê+
−1 is a one-dimensional projection corresponding to (70).

13
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Definition 5. Let

u+−1 (⃗x) = ψ+
−1 (⃗x)e

i⟨P⃗j(⃗t),⃗x⟩, (77)

u+0 (⃗x) = ψ+
0 (⃗x)ei⟨P⃗j(⃗t),⃗x⟩, (78)

where ψ+
−1 and ψ

+
0 are the periodic parts of u+−1 and u

+
0 , written in terms of Ê+(⃗t) and Eq,+(⃗t)

as follows. First,

ψ+
−1 (⃗x) = A

(
Ê+

(⃗
t
)
j,j
+ Ê+

(⃗
t
)
j−q,j

e−i⟨P⃗q(0),⃗x⟩
)

(79)

The sum in (79) has only two terms, because Ê+
lm = 0 if l,m ̸= 0,−q. Note that u+−1(⃗x) is a

linear combination of ei⟨P⃗j (⃗t),⃗x⟩ and ei⟨P⃗j−q (⃗t),⃗x⟩.
Second,

ψ+
0 (⃗x) = A

∑
b∈Zn

Êq,+
(⃗
t
)
j−b,j

ei⟨P⃗b(0),⃗x⟩, (80)

see (49) and definition 4.
Next, by analogy to (77) and (79),

u+s (⃗x) = ψ+
s (⃗x)ei⟨P⃗j(⃗t),⃗x⟩, (81)

ψ+
s being periodic and given by the formula:

ψ+
s (⃗x) = A

∑
b∈Zn

Ê+
s

(⃗
t
)
j−b,j

ei⟨P⃗b(0),⃗x⟩. (82)

Definition 6. Let T be an operator in l2(Zn). Then ∥T∥0 is defined by

∥T∥0 =
1
2
max
r

∑
p

(|Tpr|+ |Trp|) . (83)

It is obvious that ∥AB∥0 ⩽ 2∥A∥0∥B∥0.

Remind that 2γ1 = 2l− n− 8δ, see (52).

Lemma 16. Let γ2 > 0, 0< 8δ < 2l− n. The following estimates hold for every m = 1, 2, …,
and ∀A ∈ C : |σ||A|2 < k−γ2 when t⃗ ∈ χ q(k, δ):

∥W+
m −W+

m−1∥∗ <
(
ĉk−γ

)m
, (84)

∥W+
m −V∥∗ <

m∑
r=1

(
ĉk−γ

)r
, (85)

∥Ê+
0

(⃗
t
)
− Ê+

−1

(⃗
t
)
∥0 < ĉk−γ , (86)

∥Ê+
m−1

(⃗
t
)
− Ê+

m−2

(⃗
t
)
∥0 < ĉ

(
ĉk−γ

)m−1
,m⩾ 2, (87)

where

γ =min{γ1,γ2} , (88)

ĉ= ĉ(V) and k is sufficiently large: k> k0(V,γ2, δ).
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Corollary 17. The sequence {W+
m }∞m=0 converges to a continuous and periodic potential W

+

with respect to the norm ∥ · ∥∗. The following estimate holds:

∥W+ −W+
m ∥∗ < 2

(
ĉk−γ

)m+1
. (89)

Proof. We use an induction. For the first step m= 1, we need to show (86) and

∥W+
1 −W+

0 ∥∗ ⩽ ĉk−γ . (90)

We start with (86). This is a perturbative formula for a linear operator. It is given by (56) for
m= 0 up to the notations in definition 4. To prove (90) we consider two functions u+−1(⃗x) and
u+0 (⃗x), see definition 5. Next, by (74)–(76),

∥W+
1 −W+

0 ∥∗ =
∥∥|σ||u+0 |2∥∥∗

⩽ |σ|
(
∥|u+0 |

2 − |u+−1|
2∥∗ + ∥u+−1∥

2
∗
)

= |σ|
(
∥|ψ+

0 |
2 − |ψ+

−1|
2∥∗ + ∥ψ+

−1∥
2
∗
)

⩽ |σ|
(
∥|ψ+

0 |
2 − |ψ+

−1|
2 + 2iℑ

(
ψ̄+

−1ψ
+
0

)
∥∗ + ∥ψ+

−1∥
2
∗
)

= |σ|
(
∥
(
ψ+
0 −ψ+

−1

)(
ψ̄+
0 + ψ̄+

−1

)
∥∗ + ∥ψ+

−1∥
2
∗
)

⩽ |σ|
(
∥ψ+

0 −ψ+
−1∥∗∥ψ̄

+
0 + ψ̄+

−1∥∗ + ∥ψ+
−1∥

2
∗
)
. (91)

By (56) for m= 0,

∥ψ+
0 −ψ+

−1∥∗ ⩽|A|∥Ê+q
(⃗
t
)
− Ê+

(⃗
t
)
∥0 ⩽ 2|A|k−γ1 , (92)

Next, we notice that ∥ψ̄+
−1∥∗ = ∥ψ+

−1∥∗ and |Ê+
jj |⩽ 1 and |Ê+

j−q,j|⩽ 1. This implies that

∥ψ+
−1∥∗ ⩽ 2|A| because the only two nonzero elements of Ê+(⃗t) are Ê+

jj and Ê+
j−q,j . Hence,

by (92),

∥ψ̄+
0 + ψ̄+

−1∥∗ ⩽∥ψ̄+
0 − ψ̄+

−1∥∗ + 2∥ψ̄+
−1∥∗ ⩽ 2|A|k−γ1 + 4|A|.

Since k is chosen to be sufficiently large, we can write

∥ψ̄+
0 + ψ̄+

−1∥∗ ⩽ 5|A|. (93)

Considering the last line of (91) and using (92), (93) and the condition |σ||A|2 < k−γ2 , we
obtain that

∥|W+
1 −W+

0 ∥∗ ⩽|σ|
((
2|A|k−γ1

)
5|A|+ 2|A|2

)
⩽ 10|σ||A|2k−γ1 + 2|σ||A|2 (94)

⩽ 3k−γ2 . (95)

for sufficiently large k> k0(∥V∥∗,d,γ1). This proves (84) and (85) for m= 1.
Now, let us assume that (84)–(87) are satisfied for all s= 1,2, . . . ,m− 1, m⩾ 2, i.e.

∥W+
s −W+

s−1∥∗ ⩽
(
ĉk−γ

)s
, (96)

∥W+
s −V∥∗ ⩽

s∑
r=1

(
ĉk−γ

)r
, (97)

∥Ê+
s−1

(⃗
t
)
− Ê+

s−2

(⃗
t
)
∥0 ⩽ ĉ

(
ĉk−γ

)s−1
. (98)
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First, let us prove (87). Considering that H0 +W+
m−1 = Ĥq+(W+

m−1 −PqVPq) we define:

B̂+
m−1 (z) =

(
Ĥq

(⃗
t
)
− z

)− 1
2 (
W+
m−1 −PqVPq

)(
Ĥq

(⃗
t
)
− z

)− 1
2
. (99)

It is quite obvious that

∥(I−Pq)
(
Ĥq

(⃗
t
)
− z

)− 1
2 ∥0 = ∥

(
Ĥq

(⃗
t
)
− z

)− 1
2
(I−Pq)∥0 ⩽ k−γ1 ; (100)

∥Pq
(
Ĥq

(⃗
t
)
− z

)− 1
2 ∥0 = ∥

(
Ĥq

(⃗
t
)
− z

)− 1
2
Pq∥0 ⩽

1√
d
; (101)

here z ∈ C+
1 , d is the radius of C

+
1 , d=

1
10 |vq|. Considering two above estimates and

W+
m−1 −PqVPq = Ŵ+

m−1 +Pq
(
W+
m−1 −V

)
Pq, here Ŵ+

m =W+
m −PqW

+
mPq, (102)

we obtain:

max
z∈C1

∥B̂+
m−1 (z)∥0 ⩽

(
1+

2√
d

)
∥Ŵ+

m−1∥0k
−γ1 + d−1∥Pq

(
W+
m−1 −V

)
Pq∥0. (103)

Hence, by induction assumption (97),

max
z∈C1

∥B̂+
m−1 (z)∥0 ⩽ βk−γ . (104)

where β(V) = 3(1+ 2√
d
)∥V∥+ 2ĉd−1. This means that

∥Ĝ+
m−1,r

(
k,⃗ t

)
∥0 ⩽

(
cβk−γ

)r
, (105)

where Ĝ+
m−1,r(k,⃗ t) is given by (47) with W+

m−1 −PqVPq instead of V̂ and c is an absolute
constant. Clearly,

∥Ê+
m−1

(⃗
t
)
∥0 ⩽ |Ê+

(⃗
t
)
jj
|+ |Ê+

(⃗
t
)
j−q,j

|+
∞∑
r=1

∥Ĝ+
m−1,r

(
k,⃗ t

)
∥0.

Since |Ê+(⃗t)jj|, |Ê+
m−1(⃗t)|⩽ 1 and by (105), we get ∥Ê+

m−1(⃗t)∥0 ⩽ 3.
Now, we note that for m⩾ 2:

∥Ê+
m−1

(⃗
t
)
− Ê+

m−2

(⃗
t
)
∥0 ⩽

∞∑
r=1

∥∥Ĝ+
m−1,r

(
k,⃗ t
)
− Ĝ+

m−2,r

(
k,⃗ t
)∥∥

0

⩽ 1
2π

∞∑
r=1

∥∥˛
C+1

(
Ĥq
(⃗
t
)
− z
)− 1

2
[
B̂+
m−1 (z)

r − B̂+
m−2 (z)

r](Ĥq
(⃗
t
)
− z
)− 1

2 dz
∥∥
0
,

⩽
(

1
2π

ˆ
C+1

∥∥(Ĥq
(⃗
t
)
− z
)−1/2∥∥2

0
ds

)( ∞∑
r=1

max
z∈C+1

∥∥B̂+
m−1 (z)

r − B̂+
m−2 (z)

r
∥∥
0

)

⩽ c
∞∑
r=1

max
z∈C+1

∥∥(B̂+
m−1(z)

r − B̂+
m−2(z)

r
∥∥
0
. (106)

16



Nonlinearity 37 (2024) 095012 A Duaibes and Y Karpeshina

Consider ∥B̂+
m−1(z)− B̂+

m−2(z)∥0 for any z ∈ C
+
1 . Arguing as in the proof of the estimate for

∥B̂+
m−1(z)∥0, see (103) and (104), we obtain:

∥B̂+
m−1 (z)− B̂+

m−2 (z)∥0 ⩽ β∥W+
m−1 −W+

m−2∥0, m⩾ 2. (107)

On the other hand, the right-hand side of (106), which we denote here by R for simplicity, can
be estimated by using (96), (104) and (107):

R⩽ c
∞∑
r=1

max
z∈C+

1

[
∥B̂+

m−1 (z)− B̂+
m−2 (z)∥0

(
∥B̂+

m−1 (z)∥0 + ∥B̂+
m−2 (z)∥0

)r−1
]

⩽ c
∞∑
r=1

β∥W+
m−1 −W+

m−2∥0
(
2βk−γ

)r−1 ⩽ cβ∥W+
m−1 −W+

m−2∥0

⩽ cβ
(
ĉk−γ

)m−1
. (108)

Thus, (87) holds. Next, we consider ∥W+
m −W+

m−1∥0. Obviously,

∥ψ+
s ∥∗ ⩽ |A|∥Ê+

s

(⃗
t
)
∥0. (109)

Using (74), we easily get

∥W+
m −W+

m−1∥0 =
∥∥σ|u+m−1|

2 −σ|u+m−2|
2
∥∥
∗ ⩽ |σ|∥ψ+

m−1 −ψ+
m−2∥∗∥ψ̄

+
m−1 + ψ̄+

m−2∥∗.
(110)

Now, formula (110) can be rewritten using (82) and (109):

∥W+
m −W+

m−1∥0 ⩽ |σ||A|2∥Ê+
m−1

(⃗
t
)
− Ê+

m−2

(⃗
t
)
∥0

(
∥Ê+

m−1

(⃗
t
)
∥0 + ∥Ê+

m−2

(⃗
t
)
∥0
)

⩽
(
ĉk−γ

)m
, m⩾ 2. (111)

Therefore, (84) and (85) hold.

3.2. Solution to nonlinear polyharmonic equation with periodic potential for 2l> n

In this section we show that convergence of {W+
m }∞m=0 leads to convergence of the sequence

of the spectral projections {Ê+
m (⃗t)}∞m=0 to that of the operator H0(⃗t)+W+ (in the norm ∥ · ∥0).

The sequence of the corresponding eigenvalues {λ̂+m (⃗t)}∞m=0 converges to the corresponding
eigenvalue of H0(⃗t)+W+.

Lemma 18. Let γ2 > 0, 0< 9δ < 2l− n. Suppose that t⃗ belong to the (k−n+1−7δ)-
neighborhood in K of the set χ q(k, δ). Then, for every sufficiently large k> k0(V,γ2, δ) and
every A ∈ C : |σ||A|2 < k−γ2 , the sequence {Ê+

m (⃗t)}∞m=0 converges with respect to the norm
∥ · ∥0 to a one-dimensional spectral projection Ê+

W (⃗t) of H0(⃗t)+W+,

∥Ê+
m

(⃗
t
)
− Ê+

W

(⃗
t
)
∥0 ⩽ ĉ

(
ĉk−γ

)m+1
, m= 0,1, . . . (112)

The projection Ê+
W (⃗t) is given as

Ê+
W

(⃗
t
)
= Ê+

(⃗
t
)
+

∞∑
r=1

Ĝ+
W,r

(
k,⃗ t

)
, (113)
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where. Ĝ+
W,r(k,⃗ t) is given by (47) with with W

+ −PqVPq instead of V̂. The following estimate
holds:

∥Ĝ+
W,r

(
k,⃗ t

)
∥0 ⩽ ĉ

(
ĉk−γ

)r
. (114)

Proof. Let B+
W(z) be defined by (99) with W+ instead of W+

m−1. Next, we estimate

∥B̂+
m (z)− B̂+

W (z)∥0 = ∥
(
Ĥq

(⃗
t
)
− z

)− 1
2 (
W+
m −W+

)(
Ĥq

(⃗
t
)
− z

)− 1
2 ∥0.

By (100) and (101)

∥B̂+
m (z)− B̂+

W (z)∥0 ⩽ β∥W+
m −W+∥∗. (115)

Using corollary 17, we get

∥B̂+
m (z)− B̂+

W (z)∥0 ⩽ĉ
(
ĉk−γ

)m+1
. (116)

By (104),

max
z∈C1

∥B̂+
W (z)∥0 ⩽ βk−γ . (117)

Next, we prove (112). Let us write∥∥∥Ê+
m

(⃗
t
)
− Ê+

W

(⃗
t
)∥∥∥

0
⩽

∞∑
r=1

∥∥Ĝ+
m,r

(
k,⃗ t

)
− Ĝ+

W,r

(
k,⃗ t

)∥∥
0

⩽ c
∞∑
r=1

max
z∈C+

1

∥∥B̂+
m (z)r− B̂+

W (z)r
∥∥
0

⩽ c
∞∑
r=1

max
z∈C+

1

[
∥B̂+

m (z)−B+
W (z)∥0

(
∥B̂+

m (z)∥0 + ∥B+
W (z)∥0

)r−1
]
.

(118)

By (104) and (115),

∥Ê+
m

(⃗
t
)
− Ê+

W

(⃗
t
)
∥0 ⩽

∞∑
r=1

[
d−1∥W+

m −W+∥∗
(
2βk−γ

)r−1
]

⩽ ĉ∥W+
m −W+∥∗.

Hence, by (89) we get (112). Since ∥W+
m −W+∥∗ → 0 as m→∞, we have that Ê+

W (⃗t) is the
limit of Ê+

m (⃗t). Formulas above also prove that Ĝ+
m,r(k,⃗ t) converges to Ĝ

+
W,r(k,⃗ t) in the norm

∥ · ∥0. Now, it remains to prove (114). Indeed,

∥Ĝ+
W,r∥0 =

∥∥∥ (−1)r+1

2π i

˛
C+
1

(
Ĥq

(⃗
t
)
− z

)− 1
2
(
B̂+
W (z)

)r(
Ĥq

(⃗
t
)
− z

)− 1
2
dz
∥∥∥
0

⩽ 1
2π

max
z∈C+

1

∥B̂+
W (z)∥r0

ˆ
C+
1

∥∥(Ĥq
(⃗
t
)
− z

)−1∥∥
0
ds⩽

(
ĉk−γ

)r
.

Let u+W,ψ
+
W be defined by definition 2 for W=W+.
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Lemma 19. Under the assumptions of lemma 18 and, for every sufficiently large k>
k0(V,γ2, δ) and every A ∈ C : |σ||A|2 < k−γ2 , the function ψ+

W (⃗x) is the limit of the sequence
ψ+
m (⃗x) in the norm ∥ · ∥∗. Moreover,

∥ψ+
m −ψ+

W∥∗ ⩽
(
ĉk−γ

)m+1
, m= 0,1, . . . (119)

Proof. Using (112), we get

∥ψ+
m −ψ+

W∥∗ ⩽ |A|∥Ê+
m

(⃗
t
)
− Ê+

W

(⃗
t
)
∥0

⩽ |A|
(
ĉk−γ

)m+1
. (120)

Corollary 20. The sequence u+m converges to û+W in C(Q).

Corollary 21. The operator M̂+ maps the operator W+ into W+. In other words, M̂+W+ =
W+.

Proof. We know that W+
m →W+ with respect to the norm ∥ · ∥∗. We also know that W+

m+1 =

M̂W+
m by the equation (76). It follows that M̂+W+

m →W+ as m→∞. On the other hand,

∥M̂+W+
m −M̂+W+∥∗ ⩽ |σ|∥ψ+

m −ψ+∥∗∥ψ̄+
m + ψ̄+∥∗.

This implies, by (119), that M̂+W+
m →M+W+ in the norm ∥ · ∥∗. Therefore, M̂+W+ =W+.

Remark 22. Note that W+ depends on V, σ, A, t⃗.

We use the notations λ̂+m (⃗t) and λ̂
+
W (⃗t) for the eigenvalues corresponding to Ê

+
m (⃗t) and Ê

+
W (⃗t),

respectively.

Lemma 23. Under assumptions of lemma 18 and, for every sufficiently large k> k0(V,γ2, δ)
and every A ∈ C : |σ||A|2 < k−γ2 , the sequence λ̂+m (⃗t) converges to λ̂

+
W (⃗t). The limit λ̂

+
W (⃗t) is

defined by

λ̂+W
(⃗
t
)
= λ̂+

(⃗
t
)
+

∞∑
r=1

ĝ+W,r

(
k,⃗ t

)
. (121)

Moreover,

|ĝ+W,r

(
k,⃗ t

)
|< ĉ

(
ĉk−γ

)r
, (122)

where g+W,r is given by (46) with W
+ −PqVPq instead of V̂:

Proof. First, we prove (122). For simplicity, we denote here Ê+(⃗t) by E0 and E1 = I−E0.
Note that, for any r,

˛
C+
1

(
E1B̂

+
m (z)E1

)r
dz= 0,
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since E1B̂+
m (z)E1 is holomorphic inside C+

1 . Consider

Fm,r =

˛
C+
1

(
B̂+
m (z)

)r
dz.

Then,

Fm,r =

˛
C+
1

[
(B̂+

m (z))
r− (E1B̂

+
m (z)E1)

r
]
(dz

=

˛
C+
1

[(
(E0 +E1) B̂

+
m (z)(E0 +E1)

)r
−
(
E1B̂

+
m (z)E1

)r]
dz

=
∑˛

C+
1

Ei1 B̂
+
m (z)Ei2 . . .Eir B̂

+
m (z)Eir+1dz

where the sum is taken over i1, . . . , ir+1 = 0,1, and ∃s such that Eis = E0. Let Eiro be
the first one to be equal to E0. Since E0 belongs to the trace class, it is obvious that
Ei1 B̂

+
m (z)Ei2 . . .Eir B̂

+
m (z)Eir+1 is also in the trace class. Hence, we get by (104)

∥Ei1 B̂+
m (z)Ei2 . . .Eir B̂

+
m (z)Eir+1∥1 ⩽ ∥B̂+

m (z)∥r00 ∥B̂
+
m (z)∥r−r0

0 ⩽
(
βk−γ

)r
. (123)

Thus,

∥Fm,r∥1 =

∥∥∥∥∥∑
˛
C+
1

Ei1 B̂
+
m (z)Ei2 . . .Eir B̂

+
m (z)Eir+1dz

∥∥∥∥∥
1

⩽ max
z∈C+

1

∥Ei1 B̂+
m (z)Ei2 . . .Eir B̂

+
m (z)Eir+1∥1

ˆ
C+
1

ds⩽ 2π
(
βk−γ

)r
(124)

and Fm,r converges to

Fr =

˛
C+
1

B+
W (z)r dz (125)

in the trace class. Let ĝ+m,r be given by (46) with W+
m −PqVPq instead of V̂. Since ĝm,r(k,⃗ t) =

(−1)r

2π ir Tr Fm,r, it follows that ĝm,r(k,⃗ t) converges to ĝW,r(k,⃗ t). Then,

|ĝW,r
(
k,⃗ t

)
|=

∣∣∣∣ (−1)r

2π ir
TrFr

∣∣∣∣⩽ r−1

2π
· 2π

(
β∥V∥∗k−γ

)r ⩽ ĉ
(
ĉ∥V∥∗k−γ

)r
. (126)

This proves (122). Now, it is clear that λ+W (⃗t) is the limit of {λ̂+m (⃗t)}∞m=0 since∣∣∣λ̂+m (⃗
t
)
− λ̂+W

(⃗
t
)∣∣∣⩽ ∞∑

r=1

∣∣ĝm,r (k,⃗ t)− gW,r
(
k,⃗ t

)∣∣ .

The following theorem is the main result of the paper for the case 2l> n.
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Theorem 24. Let γ2 > 0, 0< 9δ < 2l− n. Then, for each sufficiently large k: k> k0(V,γ2, δ),
the following holds. If t⃗ belongs to the (k−n+1−7δ)-neighborhood in K of the resonant set
χq(k, δ) and A ∈ C : |σ||A|2 < k−γ2 , then, there is a pair of functions u±(⃗x,⃗ t) and the cor-
responding real values λ±(⃗t), solving the equation (2) with the boundary conditions (3).
Moreover, the following is true as k→∞:

u±
(⃗
x,⃗ t

)
= Aei⟨⃗k,⃗x⟩

(
ψ±
−1

(⃗
x,⃗ t

)
+ϕ± (⃗

x,⃗ t
))
, (127)

λ±
(⃗
t
)
= λ̂±

(⃗
t
)
+O

(
k−γ

)
, (128)

where ψ±
−1 is given by (79) and definition 1 on page 9 (see also (70), (71)) and ϕ (⃗x,⃗ t) is

periodic in x⃗, and satisfies:

∥ϕ∥∗ ⩽ ĉk−γ , (129)

γ =min{γ1,γ2}, 2γ1 = 2l− n− 8δ.

From now on we set

u±
(⃗
x,⃗ t

)
= u±W

(⃗
x,⃗ t

)
, λ±

(⃗
t
)
= λ̂±W

(⃗
t
)
, E± = Ê±

W . (130)

Remark 25. Formulas (127), (129) and (79) show that each u±(⃗x,⃗ t) is close to a combination
of two plane waves ei⟨⃗k,⃗x⟩ and ei⟨⃗k−P⃗q(0),⃗x⟩ as k→∞.

Proof. We note that the function u±W defined by (72) and the value λ±W (⃗t) given in lemma 23
by formula (121) solve the equation:(

H0
(⃗
t
)
+W±)u±W (⃗

x,⃗ t
)
= λ̂±W

(⃗
t
)
u±W

(⃗
x,⃗ t

)
, x⃗ ∈ Q, W± =W± (⃗

x,⃗ t,A
)
, (131)

and satisfying the boundary conditions (3). Using corollary 21, we can rewrite equation (131)
as (2). Considering (130) we finish the proof.

3.3. The differentiability of the eigenvalue and its spectral projection

Lemma 26. Under conditions of lemma 16

∥∇⃗t

(
W±
m −W±

m−1

)
∥∗ ⩽ k2l−1

(
ĉk−γ

)m
, (132)

∥∇⃗t

(
W±
m −V

)
∥∗ ⩽ k2l−1

m∑
r=1

(
ĉk−γ

)r
, (133)

∥∇⃗t

(
Ê±
0

(⃗
t
)
− Ê±

−1

(⃗
t
))

∥0 ⩽ ĉkn−1+7δ−γ , (134)

∥∇⃗t

(
Ê±
m−1

(⃗
t
)
− Ê±

m−2

(⃗
t
))

∥0 ⩽ k2l−1
(
ĉk−γ

)m−1
, m⩾ 2. (135)

Proof. The inequality (134) follows from the linear case inequality (56). To obtain the estim-
ates (132), (133) and (135), we use the obvious inequality:∥∥∥∥∇⃗t

(
Ĥq

(⃗
t
)
− z

)−1/2
∥∥∥∥
0

< ck2l−1d−3/2, z ∈ C±
1 ,

d being given by (43). Further considerations are analogous to that in lemma 16.
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Lemma 27. Under conditions of lemma 18 the sequences {∇⃗tÊ
±
m (⃗t)}∞m=0 converge to ∇⃗tE

±(⃗t)
in ∥ · ∥0 and ∥∥∥∇⃗t

(
Ê±
m

(⃗
t
)
−E± (⃗

t
))∥∥∥

0
⩽ k2l−1

(
ĉk−γ

)m+1
. (136)

The operator ∇⃗tE
±(⃗t) is given as

∇⃗tE
± (⃗

t
)
= ∇⃗tÊ

± (⃗
t
)
+

∞∑
r=1

∇⃗tĜ
±
W,r

(
k,⃗ t

)
, (137)

where

∥∇⃗tĜ
±
W,r

(
k,⃗ t

)
∥0 ⩽ k2l−1

(
ĉk−γ

)r
. (138)

The sequences ∇⃗tλ̂
±
m (⃗t) converge to ∇⃗tλ

±(⃗t). The limits ∇⃗tλ
±(⃗t) are defined by

∇⃗tλ
± (⃗

t
)
= ∇⃗tλ̂

± (⃗
t
)
+

∞∑
r=1

∇⃗tĝ
±
W,r

(
k,⃗ t

)
, (139)

where

|∇⃗tĝ
±
W,r

(
k,⃗ t

)
|< k2l−1

(
ĉk−γ

)r
. (140)

Proof. The proof is analogous to those of lemmas 18 and 23 up to differentiation, lemma 26
being used.

The next theorem easily follows from the previous lemma.

Theorem 28. Under conditions of theorem 24:

∥∇⃗t

(
E± (⃗

t
)
− Ê± (⃗

t
))

∥0 < C(V)k2l−1−γ , (141)∣∣∣∇⃗t

(
λ±

(⃗
t
)
− λ̂±

(⃗
t
))∣∣∣< C(V)k2l−1−γ . (142)

Corollary 29. ∣∣∇⃗tλ
± (⃗

t
)∣∣= 2lk2l−1

(
1+O

(
k−γ

)
+O

(
k−1

))
. (143)

The corollary follows from the theorem and the obvious relation ∇λ̂±(⃗t) = 2lk2l−1(1+
O(k−1)).

Let us consider the surface (15) for a fixed λ0, λ0 > k2l0 (V,γ2, δ). Note that the parts λ̂
+(⃗t) =

λ0 and λ̂−(⃗t) = λ0 do not intersect, since vq ̸= 0. Thus the deviation of the surface λ̂±(⃗t) = λ0
from the unperturbed one (V = 0) is essential. The next theorem follows.

Theorem 30. If λ0 > k2l0 (V,γ2, δ), then the surface λ±(⃗t) = λ0 is in the C(V)λ−γ̂
0 -

neighborhood of λ̂±(⃗t) = λ0 for every sufficiently large λ0, here γ̂ = (2l− 1+ γ)(2l)−1.

Corollary 31. The surfaces λ+(⃗t) = λ0 and λ−(⃗t) = λ0 do not intersect and located at the

distance greater than |vq|+O
(
λ−γ̂
0

)
from each other as λ0 →∞.
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4. Solutions of nonlinear Scrödinger equation in dimension two

In this section, we present resonant solutions of (2) and (3) for n= 2, l= 1. The equation is

−∆u+Vu+σ|u|2u= λu. (144)

The proof of the result is analogous to that for 2l> n. Indeed, let S(k, ϵ) be given by (16) up
to replacing of 4k−n+2−δ by ϵ:

Sq (k, ϵ) =
{⃗
x ∈ S(k) :

∣∣|⃗x|2 − |⃗x− P⃗q (0) |2
∣∣< ϵ

}
. (145)

We first state the geometric lemma.

Lemma 32. Let 0< ϵ < ε0. Then, for sufficiently largek, k> k1(q,ε0), there exists a resonant
set χ q(k, ϵ)⊂KSq(k, ϵ) such that, for any t⃗ ∈ χ q(k, ϵ), the followings hold:

1. There exists a uniquej ∈ Znsuch that|P⃗j
(⃗
t
)
|= k, (146)

2. |p2j
(⃗
t
)
− p2j−q

(⃗
t
)
|< ϵ, (147)

3. min
m̸=j,j−q

|p2j
(⃗
t
)
− p2m

(⃗
t
)
|> 2ϵ6. (148)

Moreover, for any t⃗ in the (k−1ϵ7)-neighborhood of χq(k, ϵ) in C2, there exists a unique j ∈ Z2

such that |p2j (⃗t)− k2|< 5ϵ7 and the second and third conditions above are satisfied.
The set χq(k, ϵ) has an asymptotically full measure on KSq(k, ϵ) as ϵ→ 0, that is

s(KSq (k, ϵ) \χq (k, ϵ))
s(KSq (k, ϵ))

< cϵ, c ̸= c(k) . (149)

For all of the followings we assume that

∥V∥∗ < ϵ9, |vq|> ϵ10, |σ||A2|< ϵ11. (150)

Corollary 33. If t⃗ belongs to the ( 18k
−1ε10)- neighborhood of χq(k, ϵ), then for all z on the

circle

C+
1 =

{
z : |z− λ̂+

(⃗
t
)
|= d

}
, d=

1
3
ϵ10,

both of the following inequalities are true:

2|p2m
(⃗
t
)
− z|⩾ ϵ6, m ̸= j, j− q, (151)

|λ̂±
(⃗
t
)
− z|⩾ 1

12
ϵ10, (152)

λ̂± being the eigenvalues of (13).

Now, consider the map M̂ defined by (74). The following lemma can be proved by analogy
with lemma 16.
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Lemma 34. There is ϵ0, 0< ϵ0 ̸= ϵ0(λ), such that for any 0< ϵ < ϵ0 under the condi-
tions (150) and for any sufficiently large k: k> k1(V, ϵ0), the following holds. Let t⃗ belong
to the ( 18k

−1ε10)-neighborhood in K of the set χ q(k, ϵ). Then, for any m= 1,2, . . .:

∥W+
m −W+

m−1∥∗ ⩽ ϵ11 (cϵ)m−1
, (153)

∥W+
m −V∥∗ ⩽ ϵ11

m∑
r=1

(cϵ)r−1
, (154)

∥Ê+
0

(⃗
t
)
− Ê+

−1

(⃗
t
)
∥0 ⩽ cϵ, (155)

∥Ê+
m−1

(⃗
t
)
− Ê+

m−2

(⃗
t
)
∥0 ⩽ (cϵ)m−1

, (156)

where c is an absolute constant.

Corollary 35. The sequence {W+
m }∞m=0 converges to a continuous and periodic function W

with respect to the norm ∥ · ∥∗. The following estimate holds:

∥W+ −W+
m ∥∗ ⩽ 2ϵ11 (cϵ)m . (157)

Proof. The following facts can be easily checked:

1. ∥(I−Pq)
(
Ĥq

(⃗
t
)
− z

)− 1
2 ∥0 = ∥

(
Ĥq

(⃗
t
)
− z

)− 1
2
(I−Pq)∥0 < 2ϵ−3, (158)

2. ∥Pq
(
Ĥq

(⃗
t
)
− z

)− 1
2 ∥0 = ∥

(
Ĥq

(⃗
t
)
− z

)− 1
2
Pq∥0 < cϵ−5, (159)

Pq, Ĥq being defined by (39) and (40). Further we use an induction. For the first step we need
to show that

∥Ê+
0

(⃗
t
)
− Ê+

−1

(⃗
t
)
∥0 ⩽ cϵ, (160)

∥W+
1 −W+

0 ∥∗ ⩽ cϵ11. (161)

We start with (160). This is a perturbative formula for a linear operator. We use the series (48)
and (49). Indeed, we take B̂0(z) given by

B̂0 (z) =
(
Ĥq

(⃗
t
)
− z

)− 1
2
Ŵ0

(
Ĥq

(⃗
t
)
− z

)− 1
2
, Ŵ0 = V−PqVPq. (162)

Using ∥V∥∗ < ϵ9 and (158) and (159), we obtain:

max
z∈C+

1

∥B̂0 (z)∥0 < cϵ. (163)

Now, we consider Ĝ+
0,r(k,⃗ t), see (47). Applying (163) we get:

∥Ĝ+
0,r

(
k,⃗ t

)
∥0 ⩽ (cε)r . (164)

Hence, (160) follows. Let us estimate ∥W+
1 −W+

0 ∥∗. We use again definition 5 and (91)–(93).
Applying the condition |σA|2 < ϵ11 we obtain (161).
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Now, let us assume that (153)–(156) are satisfied for all s= 1,2, . . . ,m− 1, i.e.

∥W+
s −W+

s−1∥∗ ⩽ ϵ11 (cϵ)s−1 (165)

∥W+
s −V∥∗ ⩽ ϵ11

s∑
r=1

(cϵ)r−1
, (166)

∥Ê+
s−1

(⃗
t
)
− Ê+

s−2

(⃗
t
)
∥0 ⩽ (cϵ)s−1

. (167)

First, let us prove (156). We define B̂+
m−1(z) by (99). Considering as in (102) and (103), we

get:

max
z∈C1

∥B̂+
m−1 (z)∥0 ⩽ ∥Ŵ+

m−1∥0ϵ
−8 + d−1∥Pq

(
W+
m−1 −V

)
Pq∥0 < cϵ. (168)

It follows ∥Ê+
m−1(⃗t)∥0 ⩽ 3. Now, we consider (106) and further. The analog of (107) is

∥B̂+
m−1 (z)− B̂+

m−2 (z)∥0 ⩽d−1∥W+
m−1 −W+

m−2∥0, m⩾ 2. (169)

The analog of (108) is

R⩽c
∞∑
r=1

d−1∥W+
m−1 −W+

m−2∥0 (cϵ)
r−1 ⩽ cd−1∥W+

m−1 −W+
m−2∥0 ⩽ cϵ(cϵ)m−2

,

m⩾ 2. Thus, (156) follows. Next, we consider ∥W+
m −W+

m−1∥0. Using the first line of (111),
we obtain:

∥W+
m −W+

m−1∥0 < ϵ11 (cϵ)m−1
. (170)

Therefore, (153) and (154) hold.

The convergence of the sequences of the eigenvalues and their spectral projections follow.

Lemma 36. There is ϵ0, 0< ϵ0 ̸= ϵ0(λ), such that for any 0< ϵ < ϵ0 under the condi-
tions (150) and for any sufficiently large k, k> k1(V, ϵ0), the following holds. Let t⃗ belong to the
( 18k

−1ε10)-neighborhood in K of the set χ q(k, ϵ). Then, the sequence {Ê+
m (⃗t)}∞m=0 converges

with respect to the norm ∥ · ∥0 to a one-dimensional spectral projection Ê+
W (⃗t) of H0(⃗t)+W+

and

∥Ê+
m

(⃗
t
)
− Ê+

W

(⃗
t
)
∥0 < (cϵ)m+1

, m⩾ 0, (171)

∥Ê+
−1

(⃗
t
)
− Ê+

W

(⃗
t
)
∥0 < cϵ. (172)

The projection Ê+
W (⃗t) is given by (113) where Ê

+ is the spectral projection of Ĥq(⃗t) corres-
ponding to the eigenvalue λ̂+(⃗t) and Ĝ+

W,r(k,⃗ t) is defined by (47) with W
+ −PqVPq instead of

V̂. Moreover, the following estimate is valid:

∥Ĝ+
W,r

(
k,⃗ t

)
∥0 ⩽ (ĉϵ)r . (173)

Proof. The proof of the lemma is analogous to that of lemma 18.

Using definition 2, we obtain the following results analogous to lemma 19, corollaries 20
and 21.
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Lemma 37. There is ϵ0, 0< ϵ0 ̸= ϵ0(λ), such that for any 0< ϵ < ϵ0 under the conditions (150)
and for any sufficiently large k, k> k1(V, ϵ0), the following holds. Let t⃗ belong to the ( 18k

−1ε10)-

neighborhood in K of the set χ q(k, ϵ). Then, the sequence λ̂+m (⃗t) converges to λ
+
W (⃗t) given

by (121), and for all r we have

|ĝ+W,r

(
k,⃗ t

)
|< ϵ10 (cϵ)r , (174)

where ĝW,r is given by (46) with W+ −PqVPq instead of V̂.

Corollary 38. The sequence u+m converges to û+W in C(Q).

Corollary 39. The operator M̂+ maps the operator W+ into W+. In other words,
M̂+W+ =W+.

Next, we present a solution of non-linear Scrödinger equation in the dimension two.

Theorem 40. There is ϵ0, 0< ϵ0 ̸= ϵ0(λ), such that for any 0< ϵ < ϵ0 under conditions (150)
and for any sufficiently large k, k> k1(V, ϵ0), the following holds. Suppose t⃗ belongs to the
( 18k

−1ε10)-neighborhood in K of the resonant set χq(k, ϵ). Then, there is a pair of functions
u±(⃗x,⃗ t) and the corresponding real values λ±(⃗t), satisfying the equation

−∆u± +V (⃗x)u± +σ|u±|2u± = λ±u±, x⃗ ∈ Q, (175)

and the quasi-periodic boundary condition (3). The followings hold:

u±
(⃗
x,⃗ t

)
= Aei⟨k,⃗x⟩

(
ψ±
−1

(⃗
x,⃗ t

)
+ϕ±

(⃗
x,⃗ t

))
, (176)

λ±
(⃗
t
)
= λ̂±

(⃗
t
)
+O

(
ϵ11

)
, (177)

where ψ±
−1 is as defined by (79) and definition 1 (see also (70), (71)) and ϕ

±(⃗x,⃗ t) is periodic
in x⃗, and satisfies:

∥ϕ±∥∗ ⩽ ϵ. (178)

The proof of the theorem is similar to that of theorem 24, the notation (130) being used.

Theorem 41. Under the conditions of theorem 40 the series (113) and (121) can be differenti-
ated with respect to t⃗ retaining their asymptotic character. Moreover, the coefficients ĝ±W,r(k,⃗ t)

and Ĝ±
W,r(k,⃗ t) satisfy the following estimates in the (

1
8k

−1ε10)-neighborhood in C2 of the set
χq(k, δ):

| ∇⃗tĝ
±
W,r

(
k,⃗ t

)
|< (ĉε)r k (179)

∥∇⃗tĜ
±
W,r

(
k,⃗ t

)
∥0 < (cε)r

(
kε−10

)
. (180)

Corollary 42. The followings hold for the perturbed eigenvalue and its spectral projection:∣∣∇⃗t

(
λ±

(⃗
t
)
− λ̂±

(⃗
t
))∣∣< C(V)kε (181)

∥∇⃗t

(
E± (⃗

t
)
− Ê±

)
∥0 < C(V)kε−9. (182)

Corollary 43.

|∇⃗tλ
± (⃗

t
)
|= 2k(1+O(ϵ)) . (183)
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Let us consider the surface λ̂±(⃗t) = λ0 for a fixed λ0, λ0 > k21(V, ϵ0). Note that the parts
λ̂+(⃗t) = λ0 and λ̂−(⃗t) = λ0 do not intersect, since vq ̸= 0. Thus the deviation of the surface
λ̂±(⃗t) = λ0 from the unperturbed one (V = 0) is essential. The next theorem follows.

Theorem 44. If 0< ε < ϵ0, λ0 > k2l1 (V, ϵ0), then the curves λ±(⃗t) = λ0 are in the

C(V)ε11λ−1/2
0 -neighborhood of the curves λ̂±(⃗t) = λ0.

Corollary 45. The curves λ+(⃗t) = λ0 and λ−(⃗t) = λ0 do not intersect and located at the dis-

tance greater than |vq|+O
(
ε11λ

−1/2
0

)
from each other as ελ−1/2

0 → 0.
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