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Changing Modes of Thought 
Non-Euclidean Geometry 

and the Liberal Arts 

Thomas Sibley 

"The essence of mathematics lies in its freedom." - Georg Cantor 

The understanding of postulates (axioms) as "self-evident truths" was forever 
shattered in mathematics by the introduction and understanding of non-Euclidean 
geometry during the nineteenth century. In addition, non-Euclidean geometry 
illustrates the need to transcend the intuitive models of elementary mathematics in 
order to think successfully about the much more abstract concepts of modem 
mathematics. The story ofnon-Eucldiean geometry plays an important role in the 
history of ideas and, I think, deserves to be better known. 

Radical changes in the way mathematicians thought occurred during the 
nineteenth century. Mathematicians pursued increasingly abstract systems, even 
ones which seemed to contradict previously accepted mathematics. A freedom to 
investigate new questions developed together with a demand for rigor which 
surpassed previous levels. 

At the same time that mathematics experienced profound changes, many other 
intellectual areas had major transformations. Whether one thinks of evolution in 
biology, Marxian analysis in economics and politics, Impressionism in art, or 
Freudian thought in psychology, major reformulation of thought happened in the 
nineteenth century. I feel that some connections exist between these changes. In 
particular.I wonder if the relativism which appears in many areas has some common 
aspects and if, perhaps, there are common causes for such shifts. 

This paper has a more modest goal, confined to mathematics. This paper will 
provide an overview of the history of geometry into the nineteenth century, a brief 

[This paper was first presenJed at a faculty dialogue dinner in Spring, 1987] 
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discussion about non-Euclidean geometry and some of its consequences in physics 
and philosophy as well as mathematics. I leave to the reader to judge how 
intellectual changes in various disciplines parallel or diverge from those I will 
describe in mathematics. 

A Sketch of Geometry before Non-Euclidean Geometry 

"As to writing another book on geometry, the middle ages would as 
soon have thought of composing another New Testament." -Augustus 
DeMorgan 

"We hold these truths to be self-evident ... " - Thomas Jefferson 

From Pythagoras(circa500 BC) toKant(l 724-1804), mathematics was consid­
ered unquestionably true. Thus we have 2,300 years of this orientation. Euclid's 
synthesis of geometry (c. 300 BC) comes early on, and no one before 1800 doubted 
the truth of Euclid's postulates (axioms) and theorems. However, throughout this 
span of time, commentators focused on one "flaw" in Euclid- one postulate, the 
fifth one, was not self evident. 

Postulate 1. To draw a straight line from any point to any point. 
Postulate 2. To produce a finite straight line continuously in a 

straight line. 
Postulate 3. To describe a circle with any center and distance. 
Postulate 4. That all right angles are equal to one another. 
Postulate 5. That, if a straight line falling on two straight lines make the 

interior angles on the same side less than two right angles, the two 
straight lines, if produced indefinitely, meet on that side on which are 
the angles less than the two right angles. (Heath, 195-202) 

I suspect you too would not consider this fifth postulate, illustrated in Figure 1, 
"self-evident" by any stretch of the imagination. Euclid chose this wording to avoid 
the dangers of infinite lines. Aristotle, among other Greeks, realized the shakiness 
of reasoning about "actual infinities, 11 as opposed to "potential infinities. 11 Euclid's 
straight lines are indefinite in length, although "potentially infinite" in that there is 
no limit to their lengths. Thus Postulate 5 guarantees that the lines will meet in a 
finite, although indefinite, distance. In modem terms, this postulate is equivalent 
to saying that for two lines to be parallel, any transversal must cut them such that 
alternate interior angles add up to 180", i.e. two right angles. (See Figure 2.) 
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Figure 1. If 1:.l + 1:.2 is less than 
180°, lines BC and M)i will 
meet somewhere on the right. 

C 

D 

Figure 2. If BCi and ADi are 
parallel, then 1:.l + 1:.2 = 
1800. 

Many mathematicians tried but failed to prove Euclid's fifth postulate as a 
theorem, using only his other four postulates. For the most part, they either 
explicitly or implicitly used equivalent postulates, such as Playfair's, which is now 
used in geometry books. It reads "Given a line k and a point P not on k, there is 
just one line m parallel to k and passing through the point P" (Kline, Thought 
865). Before 1800, the one who came closest to realizing that the fifth postulate 
could not be proven from the others was an Italian mathematician named Gerolamo 
Saccheri (1667-1733). His approach was to start from the negation of the fifth 
postulate and look for a contradiction. He deduced increasingly bizarre conse­
quences, such as the existence of two straight lines which approach each other but 
never cross. (See figure 3.) But he found no contradiction. Final ly, he concluded, 
"the hypothesis ... is absolutely false, because it is repugnant to the nature of the 
straight line" (Bonola,43). Saccheri missed being the inventor of non-Euclidean 
geometry because he couldn't transcend the world view asserting the truth of 
Euclidean geometry. That world view seemed increasingly convincing throughout 
the 1700s. 

Figure 3. Two "straight" lines which 
approach each other but never cross - -
one of the consequences of Saccheri' s 
investigations. 

The eighteenth century, the Age of Enlightenment, built on the assumed truth 
of mathematics in two ways pertinent to our discussion. First of all, Kant classified 
our (Euclidean) geometric notions of space as necessary prerequisites to perception. 
He argued that mathematical knowledge was synthetic a priori, that is gained 
without experience, but nevertheless providing new information about our world 
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(Kline, Thought 862). Secondly, the astounding success of Newton's calculus and 
physics convinced his successors that mathematics was not just true in some 
metaphysical sense, but also in a palpable sense. The ideal world of mathematics, 
it seemed, was the real world. Some felt, echoing Galileo's sentiments, that God had 
written the book ofnature in mathematical terms. The confluence of the philosophi­
cal certainty and physical centrality of mathematics bolstered confidence in an age 
of reason guided by mathematics. During the eighteenth century, mathematicians 
eagerly extended mathematics and found numerous connections with physics. 
Indeed, the term "natural philosophy" then current made it less necessary to 
distinguish mathematics from physics (Kline, Thought 619-621). 

The physical meaning of much of the mathematics developed in the eighteenth 
century was sufficiently convincing that the rigorous deductive methods of Greek 
geometry seemed superfluous. When mathematical equations could accurately 
predict complicated events which were previously inexplicable, no one felt any 
need to scrutinize the mathematics. It took the shock of the radically different 
mathematical results of the nineteenth century, like non-Euclidean geometry, to 
force mathematicians to reintroduce rigor (Kline, Thought 617). 

The first person to break out of the world view of Euclidean geometry and its 
unquestionable truth was Carl Friedrich Gauss (1777-1855), the greatest mathema­
tician since Newton. However, Gauss never published anything on non-Euclidean 
geometry because he feared ridicule, a reflection of the dominance of Kantian 
thinking about geometry. He did absorb the work of his predecessors, and through 
correspondance he passed on their work and his own insights. Nikolai Lobachevsky 
(1793-1856) and John Bolyai (1802-1860), the two young mathematicians who did 
publish works on non-Euclidean geometry as an independent geometry, were 
greeted with silence for a number of years after their publications in 1829 and 1832, 
respectively (Kline, Thought 869-879). I will fill in that period of silence with a 
sketch of their results. 

A Sketch of Non-Euclidean Geometry 

"The most suggestive and notable achievement of the last 
century is the discovery of non-Euclidean geometry." - David Hilbert 

Hyperbolic geometry, the non-Euclidean geometry which Gauss, Lobachevsky 
and Bolyai created, retained the first four postulates ofEuclid and changed the fifth 
postulate to the form given below. 
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Revised Postulate. Given any line k and any point P not on k, 
there are at least two lines through P which do not intersect k. 

A 

Figure 4. In hyperbolic geometry, 
it is possible for both AP) and 
'Bl to miss line k. 

p 

k 

This postulate makes the notion of"parallel lines" very different in hyperbolic 
geometry. In fact, one can show that through the point Pin the revised postulate, 
there must be infinitely many lines which do not intersect k. A variety of other 
consequences result, including the many which Saccheri found. (See Figure 3.) The 
most startling consequence is the theorem that the angles of a triangle do not add up 
to 180°, as they do in Euclidean geometry. The theorem below goes even further, 
relating the sum of the angles with the area of the entire triangle. (See Figure 5.) The 
bigger the area of the triangle, the smaller the sum of the angles. One consequence 
of this is that there is a maximum area for any triangle. Since the sides of triangles 
can become indefinitely long, this consequence seems paradoxical. 

Figure Sa. In Euclidean 
geometry, we always have 
1-1 + 1-2 + -t3 = J 8(i'. 

Figure Sb. In hyperbolic geometry, 
f.l + f.2 + 1-3 <l 8(i' and bigger 
triangles have smaller sums. 

Theorem. The difference, 180° - ( 1-A + <jB + 1-C), between 180° and 
the sum of the angles of a triangle in hyperbolic geometry is 
proportional to the area of the triangle. 
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This theorem stated something measurable about a fairly simple object which 
we can construct approximately in the real world. Gauss considered the angles 
formed by three mountains. He found that the accuracy of the measurements was 
not good enough to tell if the sum of those angles was greater than, less than or equal 
to 180°. Thus, the first test of the reality of hyperbolic geometry proved 
inconclusive (Losee 169 and Kline,Loss 85). By the end of the nineteenth century, 
mathematicians realized the naivete of empirically deciding which geometry was 
correct because one must make physical assumptions as well as test mathematical 
relations. 

All geometry students encountering hyperbolic geometry for the first time 
experience perplexity with the series of theorems which fly in the face of everything 
they have been taught about geometry since grade school. They relive, in effect, the 
experience of Saccheri. One thing hampering the understanding of modem 
mathematics is the overly naive sense of model which students have from high 
school. Until we need a more sophisticated notion, we assume mathematical terms 
describe the intuitive world we experience. Thus a "line" in geometry "ought" to 
be an abstraction of taut threads or edges of boards. In such an intuitive model of 
geometry, postulates simply express accepted, even obvious, properties. However, 
the revised postulate and its consequences do not fit with the comfortable pictures 
we have of space, as codified in Euclidean geometry. Modem mathematics uses 
postulates to define abstractly what we mean by terms which are not supposed to 
carry strong connotations from overly naive models. Although this modern under­
standing of mathematics was not caused solely by the creation of non-Euclidean ge­
ometry, the changes in geometry were symptomatic of the profound change which 
happened to mathematics in the nineteenth century. 

Mathematics after the Advent of Non-Euclidean Geometry 

"But in the present century, thanks in good part to the influence 
of Hilbert, we have come to see that the unproved postulates with 
which we start are purely arbitrary. They MUST be consistent; 
they HAD BETTER lead to something interesting." - Julian Coolidge 

The explosion of mathematical activity since 1800 admits no easy summary. 
However, three general aspects deserve our attention here because they represent 
seminal changes in nineteenth century mathematics which connect with non­
Euclidean geometry. First, large parts of mathematics have become very abstract, 
exploring formal systems far more general and less intuitive than previous systems. 
Second, mathematicians have become much freer in inventing new systems, even 
ones which explicitly contradict more intuitive systems. (It should be noted that 

40 



actual mathematical systems do not start from purely arbitrary postulates, despite 
the preceding quote of Coolidge. Mathematicians choose their postulates to reflect 
what they are investigating.) Third, the demand for rigorous proofs has pervaded 
much of mathematics. A need to understand what constitutes a proof in an abstract 
system has led to an investigation oflogic itself, opening new doors to mathematics. 
Although these changes have happened in many areas within mathematics, the 
effects in geometry have been quite noticeable and widely discussed. 

The first notable response to the advent of hyperbolic geometry came in 1854 
in a lecture delivered by Georg Bernhard Riemann (1826-1866) for his introductory 
lecture at Gottingen University. Since the audience was not a mathematical one, 
only Riemann's teacher,the aging Gauss, caught the point of this lecture, entitled 
"On the Hypotheses which underlie Geometry." However, Riemann published this 
talk later, focusing geometrical thought on a new field, differential geometry, and 
initiating an active debate on non-Euclidean geometries. He realized that the work 
of Gauss, Lobachevsky and Bolyai was more than playing abstractly with a 
meaningless postulate. In essence, he saw that the revised postulate implied space 
had to be shaped differently than what Euclid's fifth postulate implied. He then 
articulated how one could create infinitely many different geometries, each with its 
own shape. Riemann's vision was so broad that he conceived of these geometries 
as having any number of dimensions, not just the one, two or three dimensions we 
can visualize (LeCorbeiller 128-133). 
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A 

Figure 6. A portion of 
the Euclidean plane with 
parallel lines and a 
right triangle. 

B 

C 

Figure 8. We can find 
the hypothenuse AB in 
terms of the lengths of 
the sides AC and BC: 
(AB)2 = (AC)2 + (BC)2 . 

Figure 7. A portion of the 
hyperbolic plane with lines 
illustrating the revised postulate 
and a right triangle. 

C 

A 

Figure 9. The general formula is more 
complicated. The values off, g and 
h depend on the curvature of the 
geometry: 
(AB )2 = f(AC)2 + g(AC)(BC) + h(BC)2. 

B 

Differential geometry, the field that Riemann and Gauss before him started, 
investigates geometries by looking at how they behave in small regions. For 
example, the Euclidean plane is flat, while hyperbolic geometry has to bend like a 
saddle in order to accomodate all the peculiarities stemming from the revised 
postulate. (See Figures 6 and 7.) It would be easiest to think of the geometries 
Riemann considered, including hyperbolic geometry, as surfaces inside ordinary 
Euclidean space; but unfortunately most such geometries do not fit inside ordinary 
Euclidean three-dimensional space. For example, only portions of hyperbolic 
geometry can fit inside Euclidean three-dimensional geometry due to the bending 
of hyperbolic geometry. To free himself from Euclidean assumptions Riemann 
needed to articulate the hypotheses which underlie geometry. What made it 
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possible for all of these things to be geometries? Riemann decided that to do 
geometry, he needed to be able to measure distances along different directions in the 
geometry and to be able to describe how these measurements interacted. In familiar 
Euclidean plane geometry, the interaction is described by the Pythagorean theorem, 
illustrated in Figure 8. More complicated geometries require more complicated 
interactions as in Figure 9. 

Consider musical notes as an example of a geometry in this sense. (Riemann 
would have had no difficulty with this idea.) One dimension of measurement for 
a note would be the pitch. Another would be its duration. A third would be its 
intensity. In a more sophisticated model, one could include the intensities of the 
various harmonics which give each instrument its characteristic timbre. I have no 
idea what the interactions between these various measurements are, but in principle, 
music qualifies as a geometry in Riemann's sense. 

Riemann's vision of geometry clearly was very abstract and inclusive. Others 
approached non-Euclidean geometry from different standpoints, including Felix 
Klein (1849-1925), who exemplified another fruitful approach to understanding the 
variety of geometries which appeared during the nineteenth century. He took as 
fundamental the possible symmetries of a geometry, using them to study the various 
properties of a geometry and, more importantly, to relate different geometries to one 
another. In Euclidean geometry, the symmetries include rotations, translations 
(sliding motions) and reflections, shown in Figure 10. A symmetry in general is a 
permissible motion of the geometry which makes one shape move onto another 
shape in that geometry. Hyperbolic geometry has symmetries as well, although they 
are harder to picture. Instead, consider the geometry of a sphere, which allows 
rotations and reflections, as in Figure 11. 

Figure 10. In Euclidean 
geometry, a translation (t), a 
rotation (r) and a mirror 
reflection (m) move a triangle 
or other shape to a congruent 
shape. 

Figure 11. In spherical geometry, 
a rotation (r) and a mirror 
reflection (m) move a triangle 
or other shape to a congruent 
shape. 
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This focus on the symmetries allowed mathematicians to abstract the concept of 
congruence from Euclidean figures and to tum it into an idea which could apply to 
geometries which didn't have the concepts of distance and angle. For example, 
projective geometry includes symmetries which distort shapes, such as the ones 
artists use in drawing in perspective. The circular rim of a glass might appear as an 
ellipse in a drawing to convey the angle of viewing. (See Figure 12.) Such a change 
goes beyond Euclidean geometry, since it changes the distances of the original 
points of the circular rim to the distances of the points in the sketch. Klein and others 
revealed the common ground underlying Euclidean, hyperbolic, spherical and 
projective geometries. 

Figure 12. In perspective, a circular rim 
appears elliptical. This corresponds to a 
projective symmetry which distorts a circle 
into an ellipse. ~ 
Mathematicians in all areas built more abstract systems and used the abstract­

ness to free their minds. In algebra, arithmetic systems appeared where a*b does 
not always equal b*a. In analysis, mathematicians imagined strange curves bent 
so badly at every spot they could not be drawn. 

The increase in abstraction required a corresponding increase in the rigor of 
mathematical arguments. No longer could a mathematician rely on an intuitive 
model to reveal the essential idea behind an argument. Mathematicians made 
explicit the more sophisticated reasoning required for abstract mathematics. 
Aristotle's insights into logic were superceded by a fonnal logic both more powerful 
and flexible than his syllogisms and more in tune with the abstract nature of the 
mathematics. 

44 



The Influence of Mathematics 

"Mathematics is the subject in which we never know what we are talking 
about, nor whether what we are saying is true." - Bertrand Russell 

"As far as the laws of mathematics refer to reality, they are not certain; and 
as far as they are certain, they do not refer to reality." - Albert Einstein 

"How can it be that mathematics, being after all a product of human thought 
independent of experience, is so admirably adapted to the objects of 
reality?" - Albert Einstein 
While mathematics incorporated abstraction, rigor and new freedom into its 

creations, other areas incorporated the new mathematics in varying ways. I will 
consider two aspects which were influenced by the advent of non-Euclidean 
geometry, Poincare's ideas in philosophy of science and Einstein's theory of 
relativity. 

In the latter part of the nineteenth century, many wrestled with the questions 
"Which geometry is true?" and "Which geometry represents the real world?" Henri 
Poincare (1854-1912) provided a very modem resolution to this quandary, com­
pared with Gauss' efforts to determine the answer experimentally by measuring 
angles formed by mountains. Poincare propounded a philosophy of science now 
called conventionalism. He said that we cannot test the truth of a particular concept 
independently of the theory and interpretations of which it is a part. In the case of 
geometry, we would like to know if, in the "real world," a triangle has exactly 180° 
for the sum of its angles or not. Poincare argued that in order to answer this, one must 
first decide what "lines" are in "reality." He pointed out that we could postulate lines 
to be Euclidean and then build our physics based on that, or we could pick another 
postulated form for the underlying geometry and build our physics on that. While 
either would work, the simpler system should be preferred. Poincare thought that 
Euclidean geometry would always be preferred to any other geometry due to its 
simplicity, but none had any claim to truth. He pointed out that there was no 
empirical way to test the different geometries because one had to use real phenom­
ena, not mathematical lines. For example, Gauss' attempt to measure the angles of 
triangles whose comers were mountains used the path oflight as a straight line. But 
how could one measure the straightness of the light path itself? (Einstein showed 
how to determine that light paths are not straight, as in Figure 13.) In other words, 
the assumption about the lines ties in with assumptions about physical phenomena, 
like the path oflight. Hence, the reality of Euclidean geometry is untestable outside 
the context of other, more empirical assumptions. This does not make the 
assumptions arbitrary, since science must conform with experiment. 
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The theory ofrelativity of Albert Einstein (1879 - 1955) has justifiably caught 
the imagination of popular Western culture and has made enormous contributions 
to scientific thought. However, the popular culture does not accord the same 
excitement to the mathematics which is the language of relativity. Einstein's special 
theory ofrelativity has as its natural model a four-dimensional geometry, Minkow­
ski geometry, which has striking similarities to hyperbolic geometry. From 
Poincare's point of view, this non-Euclidean geometry provides a simpler geomet­
rical base for the physics. However, Einstein did not stop there. He went on to 
investigate how gravitational forces "bend" space. To describe these deep insights, 
Einstein and all who work in relativity drew on the differential geometry developed 
by Riemann. Indeed, the curvature of space needed to describe relativistic effects 
is just the thing Riemann's geometrical approach sought to describe. Hence 
Riemann's abstract vision of geometry has been mathematically fruitful in its own 
right and has flowered wonderfully in its applications. 

Figure 13. Sir A. Eddington verified the 
bending of light beams in the presence of 
gravity. During an eclipse of the sun in 
1919, he observed a star which "should" 
have been hidden by the sun. Instead, 
the light beam was bent by the gravitation 
of the sun. One can model this bending by 
using a geometry which has a curvature so 
that the light beam naturally follows a 
curved path. The diagram at the far left 
shows the ordinary path of light, while 
the other diagram shows the sun's effect. 

star - ~ 

I 

I 

Riemann's geometry is but one example of the rich dividends abstraction has 
paid in mathematics. In every area of mathematics, there are abstract systems which 
have led to deep mathematical insights and have at the same time provided powerful 
models in other areas. Finite geometries appear in the design of statistical 
experiments; and the convoluted curves of analysis, renamed as fractals, find 
applications as models oflungs, geological fault lines and coastlines. Using the very 
word "model" for an application of mathematics points out a change in how we see 
mathematics. The entire body of mathematics does not have to be the ideal laws 
governing the universe. Instead, an abstract mathematical system may provide the 
means to recognizing an underlying connection between seemingly disparate 
phenomena. 
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Mathematics and the History of Ideas 

"Genius is the willingness to test the strangest alternatives." -Anon. 

Other areas of nineteenth century Western culture underwent profound change 
at the same time as mathematics did. Simply dropping names like Marx, Darwin 
and Freud evokes images of how differently we see the world compared to people 
of the Enlightenment. What connections and divergences are there between the 
change of viewpoint in mathematics and the changes in other areas? Is it possible 
to find underlying causes or contributing factors? 

I make no pretenses of being a historian, but I think that there are important 
connections between the changes in various disciplines since the last half of the 
nineteenth century. The willingness of great minds in a variety of disciplines to take 
radically different approaches to understanding their subjects seems more than 
coincidental. Perhaps the fervor and excess of political turmoil from 1789 to 1848 
transformed the benign glow of the Enlightenment into intellectual revolution. The 
simultaneous unfolding of the Industrial Revolution added its stimulus, as did the 
concentrating of intellectual thought in greatly altered universities. 

In any case, I think that the twenty-five year pause between the initial publishing 
of non-Euclidean geometry and its active integration into the mainstream of 
mathematical discourse may point to more than historical peculiarities in the 
mathematical community. The long and active investigation of Euclid's fifth 
postulate should have ensured an interested, if critical, reception to hyperbolic 
geometry. However, I think the general mathematical climate in 1830 was not ready 
to handle such non-intuitive mathematics. In a similar vein, intimations of four­
dimensional geometry appeared about this time, but it was in the last half of the 
nineteenth century that mathematicians incorporated higher-dimensional space 
into the realm of mathematics. Other areas of mathematics contributed similar 
examples of this change in acceptance of abstract, non-intuitive mathematics build 
on rigorous foundations. 

Somewhere around 1850, it seems that European thought crossed a watershed 
which has opened our culture to profound changes. Beethoven may have seemed 
impetuous to the waning Rococco period, but Stravinsky would have been utterly 
frightening. The same seems to hold in art, literature and the sciences. I find the 
transitions in mathematics as exciting and fruitful as the changes in other disci­
plines. While the beautiful proofs of Gauss would have almost certainly found an 
appreciative audience in Newton, the abstract mathematics of today seems too far 
removed to be comprehended by that great mathematician. The serene and intuitive 
truth of Euclidean geometry has yielded to an abstract theory positing infinitely 
many possible geometries. 
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Paradox 

Not truth, nor certainty. These I forswore 
In my novitiate, as young men called 
To holy orders must abjure the world. 
"If .. , then ... ," this only I assert; 
And my successes are but pretty chains 
Linking twin doubts.for it is vain to ask 
If what I postulate be justified, 
Or what I prove possess the stamp of fact. 

Yet bridges stand, and men no longer crawl 
In two dimensions. And such triumphs stem 
In no small measure from the power this game 
Played with the thrice-attenuated shades 
Of things, has over their originals. 
How frail the wand, but how profound the spell! 

Clarence R. Wylie, Jr. 
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