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Abstract 
An economic model of crime gives policymakers a basis to understand how income inequality 
and population density relate to crime at the neighborhood level. This study reveals a negative 
and significant relationship between population density in Census tracts and both property and 
violent crime rates. It finds ambiguous results that vary by city for income inequality. This cross-
sectional analysis of Census tracts in Chicago, Los Angeles, Houston, and Dallas uses crime and 
demographic data from the National Neighborhood Crime Study. This study also yields 
interesting results about the importance of residential stability for crime prevention and 
comments on possible urban design tools for crime reduction. 
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I . Introduction 
Crime is a form of blight on communities throughout the world. It causes individuals and 

organizations to have lower confidence in their safety and hence devote resources for their 

security. It is a disruption to normal commerce and life, and it is often influenced by economic 

factors. Individuals or groups who commit crime often knowingly choose to do so, and hence 

these economic factors become important in understanding how to mitigate crime.  

Crime is often used as an indicator of the overall health and vitality of a community. 

More specifically, economists are concerned with how public policies and other factors of 

economic health influence the occurrence of crime. Studies of crime through an economic lens 

began most notably with Nobel-prize winning economist Gary 

ecological theories of crime. More recently, Freakonomics author and economist Steven Levitt 

(2001, 2009) has studied determinants of crime ranging from increased incarceration for drug-

related crime to the effects of Roe v. Wade. Edward economics 

frequently include examinations of crime as an indicator of city health (1998; 2010). Policy 

scholar and economist Phillip Cook (2009) looks closely at different public and private measures 

for preventing crime, starting from a regression analysis at the county level. These findings are a 

starting point for this paper. 

Understanding the determinants and deterrents of crime at the neighborhood level helps 

local government officials formulate policies to combat crime. While the economics literature 

has a wide array of studies on crime, there are some gaps in addressing crime-related economic 

questions at a granular level. This study examines 

supply crime. In particular, the relationships between income inequality and crime rates and 

between population density and crime rates are central points of examination. Understanding 

these relationships can help identify policies to reduce the supply of crime.  

This study finds a negative association between the population density of a Census tract 

and the rates of both property and violent crimes. It finds ambiguous relationships between 

income inequality and crime rates in three of the four cities observed, contrary to most previous 

findings. The rate of housing vacancy in Census tracts stands out as a significant, positive 

descriptor of crime rates. The conclusion is that certain urban development policies focused on 

creating safe spaces and lively communities can help to reduce crime. However, more specific 

study of neighborhoods and generalization to more cities would help to make the findings of this 
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study more relevant to policymakers. The regression model utilized fits the variation in violent 

crime better than for property crime, suggesting that further study on the different motivations 

for each of these crimes can help pinpoint differ

functions. 

This paper analyzes crime and its determinants at the Census tract level. Reference to 

hereafter refers to Census tracts. Neighborhoods, as organic units 

of community, do not follow Census tract lines, and that interaction among neighbors is a 

continuous spectrum rather than distinctly cut-off at tract boundaries. Nonetheless, this is the 

smallest observational unit for which many of the data are readily available.  

The next section discusses an economic model of crime to provide an understanding of 

vations to commit crime and the process by which society reaches an 

equilibrium level of crime. Section III reviews the relevant literature on this topic. Section IV 

describes the quantitative methodology for empirically testing the hypotheses and calculations 

particular to some of the variables. Section V describes the data for this analysis, and Section VI 

discusses the results of the regression analysis. The last two sections conclude with a summary of 

the findings of this study, their importance to policymakers, and topics future researchers can 

pursue to improve on this study. 

I I . Understanding the E conomics of C rime 

Understanding the occurrence of crime in a given area requires an examination of both 

the motivations of individuals to commit crime and the ability of citizens to prevent crime. An 

economic model of crime can help reveal these motivations. Becker (1968) and Cook (1986) 

have done important work in illustrating the market interaction between victims and offenders. 

This section illustrates a model that involves a market for criminal opportunities where society 

supplies criminal opportunities and where potential criminals consume these opportunities. This 

pairs with a market for criminal offenses in which any potential criminal is a supplier of crime 

tral to this model are the costs to committing crime, the payoff to 

crime, and the probability and penalties of being caught. 

based on the total social welfare gains or losses due to crime. His discussion is important to 

understanding how society supplies criminal opportunities. Society supplies criminal 

opportunities based on the costs of prevention, deterrence, and apprehension to reduce crime. On 
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the level of individual motivation, he points out the basic economic reasoning that an individual 

will choose to commit crime when the expected benefits outweigh the expected costs. This and 

other factors that influence the expected benefits to crime affect the willingness of individuals to 

supply criminal offenses. 

Cook (1986) connects the supply of crime with a market for criminal opportunities. It can 

Becker describes the socially optimal supply of criminal opportunities, Cook explains this supply 

harm of crime to the victims. The opportunities supplied are those that cannot be prevented. 

Criminals have more demand for those 

somewhat selective in choosing a crime target and are most attracted to targets that appear to 

offer a high payoff with little effort or  (emphasis added) (Cook 1986, 

2). It is to the benefit of society to find ways to 1) reduce the payoff to the criminal, 2) increase 

the effort for the criminal, or 3) increase the risk of consequences for the criminal. The following 

model for this study focuses on understanding these concepts and how policymakers can use this 

as a framework to reduce crime. 

If individuals are rational agents who seek to maximize the net benefits from their 

actions, then any individual is a potential criminal. It is important to keep in mind that potential 

criminals almost always lack perfect information about the payoff from their criminal activities. 

So the decisions to commit crime are based on expected returns. Therefore, the decision to 

commit a crime involves weighing the expected costs and benefits. In this model, the costs of 

committing a crime by an individual are a function of the probability of apprehension and 

punishment ( i) multiplied by the expected severity of punishment (ri) for each crime. 

Punishment may be a cost in time served in prison or fines paid. This term can be considered a 

probability-punishment profile. For each crime committed by individual i this cost is expressed 

as:  

   (2.1) 

Note that  and  are functions of q where q is the number of crimes committed. 

Therefore, i(q) and i(q) are both positive. It implies that as the number of crime increases the 

probability of apprehension and punishment increases at an increasing rate. Similarly, i(q) and 
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i(q) are both positive implying that the severity of punishment increases at an increasing rate 

with each crime committed. 

The commission of each crime will also have costs related to the planning and action of 

the crime. This can be thought of as the opportunity cost in capital and labor investment in the 

production of a crime, expressed as K. For some crimes, such as a premeditated murder, this cost 

might be very high, requiring meticulous planning and high capital investment in a weapon or 

other tools. Others, such as a spontaneous assault, may have little to no cost in terms of planning 

time or capital investment. The marginal costs to crime will in some cases be constant, but in 

other cases be related to the number of crimes not only of the same type but also to crimes of 

different types. For instance, a criminal who has committed a number of burglaries and is 

arrested for a motor-vehicle theft must include in her punishment function the probability-

punishment profile of the previous burglaries given arrest for the motor-vehicle theft. The 

probability of arrest from previous crimes continues to be a factor with each additional new 

crime, creating a compounding effect. This suggests that there may be increasing marginal costs 

to supplying crimes. Therefore, the total cost of committing crime is:  

  (2.2) 

The marginal benefit an individual receives when committing a crime is represented as P. 

This can be thought of as the price received 

by a supplier in a transaction. The marginal returns to crime will almost certainly be diminishing. 

Together, this creates a net benefit ( ) as a function of the number of crimes (q). This is 

t is equivalent to the difference in total revenue 

and total cost. For each individual crime, any time exceeds zero, the individual will commit 

the crime. Each individual will attempt to maximize their own net benefit with respect to the 

number of crimes. To maximize with respect to q, one finds the first derivative of the net 

benefit function (2.3) with respect to q and sets it equal to zero, and solves for the optimal q. A 

second-derivative test confirms that the optimization point found in the first step is indeed a 

maximum when the second derivative of with respect to q is negative.  The maximization 

process is as follows: 

  (2.3) 

  (2.4) 
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Solving for q yields the net benefit maximizing level of crime for an individual to commit. 

Without knowing more about the functional forms of P, , or r, one cannot derive an explicit 

optimal level of crime, q*. Given equation (2.3), we can state the optimal amount of q as: 

 
 

(2.5) 

This is still an implicit solution but provides a clearer look at how to solve for q. The 

costs are expressed as positive and the payoff function P(q) is positive. For crime to occur in the 

first place P(q) is greater than the first derivative of the cost function, making the numerator 

negative. Since the demand curve for offenses that is, the crimes that society is unable to 

abate is negatively sloped,  is negative. Therefore, q* is a positive value.  

From this framework, one can conceptualize the potential to commit multiple crimes and 

understand how crime occurs in a geographic area, rather than on an individual basis. A strong 

assumption here is that all individuals are homogenous in nature, so one can sum up the behavior 

of all individuals in a neighborhood to discuss the neighborhood effects. This yields an overall 

expected quantity of crime for a particular observation unit of: 

  (2.6) 

 As individuals commit more crimes, it is reasonable to expect that the payoff to each 

additional crime decreases. The costs on the other hand, will likely tend to increase. Consider the 

individual from the earlier example who has committed a number of serial burglaries. If she is 

apprehended for one of the crimes, prosecutors will be more likely to find evidence to convict 

her for her previous crimes as well, thereby raising the severity of punishment. Thus, in decisions 

to commit crime, individuals experience increasing marginal costs and decreasing marginal 

revenue. It is important to keep in mind that most individuals find the costs of supplying crime to 

be so great as to prevent them from entering most crime markets. While any given individual 

may find exceeding the speed limit to be an overall profitable activity, society has erected 

structures to cause the costs to burglary to be high enough that most individuals will not supply 

burglaries.  

 Rather than attempt to model the net benefit gained from crimes or probability-

punishment profiles accepted by criminals, this study focuses on neighborhood characteristics 

that affect either the payoffs to crime or the probability of apprehension. The literature review 

fills out the theoretical framework by determining what social and economic factors may be at 
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play in the net benefit equation for crime. It also identifies some existing policies that target 

reduction in the supply of crime through reducing criminal opportunities or the net benefit for 

criminals. 

I I I . L iterature Review & Theoretical G rounding 

 The theoretical model requires identifying quantifiable factors that contribute to crime. 

One can build an understanding of these factors by drawing on economic intuition and the 

contributions of previous work in economics, criminology, sociology, and urban studies. Table 

3.1 gives insight into each of the variables included in the regression analysis and how they are 

included in the theoretical model.  

 Studies examining Census tracts are often more difficult to find. Kreager, Lyons, and 

Hays (2011) provide a helpful study of the relationship between gentrification and crime at the 

Census tract level. Krivo and Peterson  (2009) study on racial composition and crime in Census 

tracts also provides insight. As Kelly (2000) explains, income inequality is a source of social 

Table 3.1: Theoretical Basis of Variables 

Variable Theoretical Relationship with Crime Parameter Affected Expected Sign 
Population Density Decreases probability of arrest  - 

Gini Coefficient Increases expected returns P + 

Per Capita Income Expected returns and opportunity cost 
P, K ? 

Poverty Rate 
Decreases opportunity cost or increases 
expected returns 

K, P + 

Unemployment Rate Decreases opportunity cost K + 

Housing Value Increases expected returns P ? 

High School Graduation 
Rate Increases social cohesion 

P - 

Female-headed-
Households Decreases social cohesion 

P + 

New Immigrants Severity of punishment, social cohesion r, P + 

Percent White Severity of punishment , opportunity cost r, K - 

Percent Black Severity of punishment , opportunity cost r, K + 

Percent Hispanic Severity of punishment , opportunity cost r, K + 
Percent Asian Severity of punishment , opportunity cost r, K - 
Racial Diversity Index Social cohesion K - 

Vacancy Rate Probability of arrest, social cohesion  + 

Percent of Movers Probability of arrest, social cohesion  + 

Percent Renters 
Probability of arrest, social cohesion, 
expected returns 

 + 
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angst and can also make crime more rational from an economic standpoint. Highly unequal areas 

provide more incentive to target those at the upper end of the income distribution. The 

relationship between population density and crime is a matter of incentives to commit or avoid 

crime based on the density of targets and deterrents. Harvard urban economists Edward Glaeser 

and Bruce Sacerdote (1999) explain the impact of population density on the probability of 

success or failure of a criminal act. The literature identifies many other factors of urban 

neighborhood life as important to crime rates. The following sub-sections provide a closer look 

at these other factors that determine crime rates. The concluding sub-section includes a brief 

review of policies that draw together urban planning and crime prevention.  

a. Variables of Interest 

is widely discussed in the literature. 

The social distress caused by inequality might increase expected benefit to committing a crime 

for lower income individuals. With potential victims of a higher income in the same vicinity, one 

should expect the monetary payoff to property crime to be higher. Kelly (2000) shows a 

significant, positive relationship between violent crime and inequality but does not find a 

significant result for p

shows a positive relationship between inequality and both property and violent crime.  

Only a few studies have confronted the relationship between crime and income inequality 

at the neighborhood level. Most studies observe counties (Morgan 2000; Brush 2007). Kreager, 

Lyons, and Hays (2011) study gentrification from 1990 to 2000 in Seattle Census tracts. They 

found that as neighborhoods first began to gentrify, as measured by property values, racial 

composition, and mean household income, crime increased. Once a gentrification transition 

became more complete and neighborhoods became more homogenous in wealth and 

demographic composition, crime rates subsided. This suggests that the introduction of 

inequalities and other heterogeneities places stress on a neighborhood that is manifested in crime.  

Whitworth (2013) provides insight into why the inequality-crime relationship behaves 

differently at different geographical levels and densities. His study shows how the relationship 

between income inequality and crime varies as one extends the area of observation. He begins by 

looking at each middle layer super output area (MSOA)1 in London and South Yorkshire, United 

                                                 
1 MSOAs have an average population of 7,200, making them somewhat more populous than an urban U.S. Census 
tract.  
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Kingdom. He assesses the elasticity of crime with respect to inequality between MSOAs by 

averaging the inequality of a central observation MSOA compared to those first within one 

contiguous ring, then two layers of contiguity around it, and so on for 10 layers. Whitworth finds 

that for the dense city of London, the relationship between the inequality and crime becomes 

more positive as the observation size grows. For the less dense city of South Yorkshire, the 

relationship becomes less negative as the observation size grows, even becoming negative after 

eight layers are included in the observation. This variation in the relationship with different 

observation sizes may be apparent in the findings for this study at the Census tract level. 

One expects a positive relationship between income inequality and both property and 

violent crime. Inequalities in income motivate people to seek more income if they are in the 

lower portion of the income distribution. Some individuals may be driven to property crime as an 

alternative source of income. Violent crime, with the exception of robbery, is less rational in this 

regard because it does not have financial benefit except when it is either done for pay or is an 

externality of a property crime. Dissatisfaction and frustration resulting from inequalities seem 

more likely to influence an individual to commit violent crimes than prospects of financial gain.  

The relationship of population density and crime is a difficult one to predict because of 

the differing effects of population density on the probability of apprehension and supply of 

cities centers on the importance of density, defensible space, and diversity in economic and 

social use of spaces. Studies like Craglia et al (2001) and Watts (1931) find a positive association 

between crime and density, up  

(1961, 44). Glaeser and Sacerdote (1999) suggest that a higher concentration of potential targets 

and low probability of recognition increases the likelihood of criminal incidents. However, 

despite her lack of empirical support,  idea is also a viable economic 

idea. In a residential neighborhood, individuals who interact frequently have more incentive to 

prevent crime from occurring in their neighborhood because it detracts from the standard-of-

living of the neighborhood and individual neighbors. Thus, with more individuals to be potential 

witnesses to crime in a densely populated neighborhood, a criminal has a higher probability of 

being held accountable for his or her actions.  

Criminologist Dennis Roncek (1981) finds some evidence to support that smaller units of 

observation show negative relationships between density and crime. He studied the cities of 
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Cleveland (relatively high density) and San Diego (relatively low density) and found that 

population density had negative and significant relationship with property crime among city 

blocks. The relationship is negative and significant for violent crime in Cleveland, but not in San 

Diego. Although Cleveland is a more dense city and has an overall higher crime rate than San 

Diego, the elasticity of property crime with respect to density for Cleveland is -0.331 compared 

to only -0.063 for San Diego. A stronger negative relationship between density and crime is 

present for the denser city. This certainly warrants further investigation. 

The literature on public housing shows that density corresponding with a high 

concentration of poverty or disadvantage is more concerning for crime (see, e.g. Popkin et al. 

(2012)). This may be due to a social divide that changes the economic motivations of individuals 

in poorer neighborhoods compared to wealthier ones. Disadvantaged individuals may be less 

likely to report crime or prevent it as bystanders for a number of reasons. First, an individual 

may fear that the obligations of being a witness interfere with earnings and employment 

activities. Second, a fear of retaliation might be greater in a poorer neighborhood than in a 

wealthier one, regardless of population density. Third, since poorer individuals are in general 

more likely to commit crime, they may shy away from interference or reporting for fear of 

having their own criminal activities discovered. The current study predicts a negative 

relationship between population density and crime rates. It may become evident that as lower 

incomes are paired with higher density, crimes become higher than in denser, high income areas. 

This opens up discussion for other factors that may contribute to the supply of crime. 

b. Background L iterature on Other Variables 

 Many other factors are expected to have effects on the supply of different types of crime 

and have been reliably shown to have significant relationships in previous studies. Each of these 

factors has some influence on the probability of apprehension, the input costs, or the expected 

return to crime.  

Socioeconomic Characteristics 

 Income and poverty are two important characteristics to examine. Their places in the 

theoretical model are difficult to parse because they can impact opportunity costs and expected 

benefits simultaneously. Lower income individuals will have a greater expected benefit to crime, 

both explicitly from property crime and through the implicit benefit of violent crime. Relative 

opportunity costs to incarceration will be lower for these individuals, while opportunity costs to 
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fines will be higher relative to their incomes. This would cause one to expect income to have a 

negative relationship with violent crime rates. The case is less obvious for property crime, since 

higher income tracts are more attractive targets for crime. So for property crime, higher income 

raises the expected benefit of the crime but also raises the opportunity cost for criminals. 

Similarly, poverty can be expected to relate positively with violent crime rates, but the 

hypothesized association with property crimes is unclear. Since poverty indicates both financial 

and social marginalization, this positive relationship should be expected for both property and 

violent crime rates.  

 Housing value can serve as a very visible indicator of financial well-being. 

Neighborhoods with higher housing value would tend to have more incentive to protect their 

homes and the means to do so. On the other hand, a higher-valued home may attract more 

burglars because they expect the return to their crime to be higher. The unemployment rate also 

stands out as an important control variable. Levitt (2004) shows that the unemployment rate is 

positively related to crime rates. The opportunity costs to crime decrease if an individual is 

unemployed because they will have more time to plan and commit the crime. The relative 

expected benefit is also higher because the individual may lack legitimate sources of income. 

 The socioeconomic standing of a neighborhood can be indicated not only by explicit 

indicators of financial well-being like income, housing value, or unemployment rate, but also 

factors like education and the percent of female-headed households. Greater levels of education 

proxy for a greater level of social cohesion or willingness of an individual to conform to social 

rules and expectations. The high school graduation rate serves as this proxy and one expects it to 

have a negative relationship with crime rates. Other studies have included this as a control 

variable, finding a negative relationship, including Cook (2009) and Krivo and Peterson (2011). 

Another commonly used control variable is a measure of social disorganization as proxied by the 

percent of female-headed households. In addition to being more likely to be in poverty, female-

headed households indicate a lack of adult male engagement with family and community. This 

also suggests a lack of male role models for young men in a neighborhood. Cook (2009) shows 

positive relationships between the percent of female-headed households and both robbery and 

murder. Glaeser and Sacerdote (1999) show that individuals from a female-headed household are 
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more likely to be victims of crime and those areas with more female-headed households have 

higher rates of crime.  

Racial Characteristics 

Other important population control variables are those to do with race and ethnicity. Most 

major crime studies control for race, and some go as far as to examine racial diversity. 

Criminologists Krivo and Peterson (2011) study how interactions among different races relate 

with crime as a measure of social tension. Cook (2009) uses the percent of Hispanics and blacks 

as a control in his regression analysis of crime rates across U.S. counties. Building on these 

ideas, this study includes the percent composition of white, black, Hispanic, and Asian as defined 

by the U.S. Census and additionally measures the racial diversity of these tracts with a specially 

constructed index described in more detail in Section IV. This study also adds the percent of new 

immigrants to understand whether immigrant populations experience or impact crime differently. 

New immigrants may have less connection to their surrounding community and thus less 

incentive to protect it, suggesting a positive relationship with crimes. Asians and whites are 

expected to have a negative relationship with crime, and Hispanics and blacks are expected to 

have a positive relationship. The latter races are historically more marginalized than Asians and 

whites and are thus expected to have more reason to commit property crimes. Another important 

factor to consider is the probability of apprehension and conviction as well as the severity of 

conviction. New immigrants and non-whites tend to experience the criminal justice system 

differently than native-born, white citizens. 

As racial diversity increases, the ties and relationships between members of a 

neighborhood may diminish, creating a higher level of social disconnect and thus a higher 

expected return to violent crime. For this reason, one can expect the strength of a negative 

relationship between the Racial Diversity Index and crime to be greater for violent crime than 

property crime.2 Racial composition variables give an indication of the social status of a 

neighborhood.  

Housing Characteristics 

In addition to all these indicators, attributes relating to stability and housing can reveal a 

lot about a neighborhood population  toward the space in which they live. Vacancy 

rates are used as a proxy for neighborhood decay indicating social disorganization and lack of 
                                                 
2 The Racial Diversity Index used here has lower values for more diverse tracts. See Section IV. 
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care. Ellen, Lacoe, and Sharygin (2013) find that foreclosed properties tend to indicate 

residential instability or decay and positively correspond with crime rates. Ciu (2010) finds that 

high vacancy rates as a result of foreclosed homes relate with increased violent crime. The 

percent of recent movers is also used to indicate whether residents of an area are likely to be 

unfamiliar to that area or less attentive to activity within it. The lack of care for a neighborhood 

and fewer neighbors attending to crimes would decrease the probability of apprehension in a 

neighborhood, allowing the crime rate to rise. Similarly, rental rates (or, inversely, ownership 

rates) indicate a lower incentive to monitor crimes and prevent them. Again, this lowers the 

probability of apprehension, leading to a positive association with crime rates. Concerns about 

endogeneity can arise with variables like the percent of recent movers and the vacancy rate. 

People are less likely to want to move to neighborhoods with high crime rates, so vacancy rates 

might increase, and the neighborhood may be more transient, causing an increase the percent of 

recent movers. 

With background on the factors that influence the supply of crime, one can turn to 

understanding some of the policy tools that exist to target crime. This study takes a particular 

focus on how space can be planned to raise the costs to committing crime.  

c. Policy Background 

Criminologist and urban planner Derek Paulsen (2013) points out that many planners see 

the importance of finding ways to combat crime and that many police departments see the 

importance of the built environment to crime. However, studies to combine the two are limited. 

Jane Jacobs introduced the discussion with her 1961 book and many ideas of how the built 

environment creates social control have blossomed since. One of the foremost theories of 

principle that giving residents control and a sense of ownership over their neighborhoods through 

private partition creates incentive for them to surveil it. Paulsen (2013) explains a different set of 

principles based on well-moderated diversity of uses and connectivity of streets.  

Defensible space principles aim to divide spaces among residents to encourage them to 

protect their individual space. Newman (1996) shows in a policy memo that developers can 

create this sense of ownership through dividing up space through fences, constructing row 

houses instead of towers, or separating high-traffic arterial roads from residential access avenues. 

Former Secretary of Housing and Urban Development Henry Cisneros (1996) points out that 
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many components of defensible space design can be implemented inexpensively and easily. The 

overarching theme of defensible space is clear articulation of spaces and their ownership.  

Rather than the separation and division policies of defensible space, Paulsen (2013) 

points to theorists that suggest more connectivity among streets and neighborhoods as ways to 

increase interaction. One model even discourages cul-de-sacs in street design, directly 

-de-sacs as a means of assigning 

ownership. Paulsen discusses ways to increase social control and natural surveillance through 

(1961) 

by encouraging walking and social interaction. Zoning policies, mixed-use development, and 

connectivity are all relevant issues for crime prevention. Paulsen illustrates that there are 

complex nuances in how diversity or intensity of uses can impact crime.3 This makes studying 

dual street blocks over 

time. 

Although comprehensive study of the impacts of crime prevention-oriented planning is 

difficult, one can draw some direction from previous studies. Paulsen (2013) indicates that 

property crimes are more likely to occur in areas of mixed-use diversity. Usage intensity, on the 

other hand, does not seem to have the same effect. This is logical since property crime can be 

expected to concentrate around commercial areas where people are more likely to walk. Murder 

and rape, however, tend to occur in residences between a perpetrator and victim who know one 

another. These crimes are less impacted by the built environment. These trends are important to 

keep in mind for understanding how crime differs across neighborhoods due to usage.  

With this background from the literature, the methods for quantitative analysis come into 

question. The rest of this study comprises of an examination of the relationships among the 

socioeconomic factors that influence the supply of crime and their relationships to observed 

crime rates. Section IV describes the quantitative methodology for this analysis and Section V 

provides a quantitatively descriptive look at each of the variables discussed in the literature 

review. 

                                                 
3 Usage diversity refers to differences in use such as commercial versus residential. Usage intensity refers to the 
differences and depth in one type of use, for instance, the presence of apartment towers, row homes, and single-
family units all as residential use in a space. 
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I V . Methodology 

In order to provide a robust study of the variables and relevant policy, this study includes 

descriptive statistics, correlation analysis, spatial lag regression analysis and negative binomial 

regression analysis. The original analysis is performed for the city of Chicago, Illinois. This is 

supplemented with a comparison to results for Los Angeles, California, and Houston and Dallas, 

Texas. These cities together are four of the seven most populous cities in the United States. New 

York City, Philadelphia, and Phoenix are among the seven largest as well, but this study does not 

use them due to many missing observations in the National Neighborhood Crime Study.    

This explanation of methodology first describes the regression models used in this study 

based on an understanding of the probability distributions of the variables. It also discusses the 

problem of spatial autocorrelation in geographically interrelated data. Finally, it explains the 

process for constructing the Gini coefficient used in this analysis and the Racial Diversity Index.  

a. Regression Models 

The variables described in Section IIIa are the variables of interest in the study and those 

in Section IIIb are the additional control variables. With all of these variables, the final model 

takes the form: 

  

 

(4.1) 

In (4.1), Yt is the crime rate for each tract t, 0 is a constant intercept, i is the coefficient vector 

for the ith control variable in the vector of variables Xit,  is the coefficient on the log of 

population density,  is the coefficient on the log of the Gini  is the coefficient on 

the interaction term between density and poverty, N is the population, and  is the error term. 

Hereafter, the density term, Gini coefficient term, and the interaction term are implied to be 

included in Xit.  

Descriptive statistics and histograms show that most of the variables are not normally 

distributed, but appear closer to normally distributed after a natural log transformation. This 

provides the motivation for log-transforming the independent variables. Some Census tracts have 

observations of 0 for variables like the poverty rate or unemployment rate. These variables are 

transformed by taking  for all observations of the variable X. Since crime counts are 

count variables bounded at zero, Poisson or negative binomial models are more appropriate than 
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simple linear regression. Osgood (2000) explains in detail how the counting process of a Poisson 

works well for crime rates, especially when counts and population sizes are relatively low. Other 

studies such as Kelly (2000) use a Poisson process to model crime rates. Osgood also explains 

the use of a negative binomial regression model. These are useful when there is overdispersion in 

the model. 2 for overdispersion indicates that negative binomial models are appropriate for 

the data in this study.  Both Osgood (2000) and Kelly (2000) also use an exposure term as a 

means of accounting for population differences among observations. This is accomplished 

simply by adding the log of population to the right-hand side of the equation with the assumed 

coefficient of one.  

The negative binomial model is a generalization of the Poisson where the error terms can be 

heterogeneous (Greene 2008). Using the same symbols as the model in (4.1), the negative 

binomial is:  

  (4.2) 

b. Spatial Autocorrelation 

With this foundation for regression models, one can turn to an issue that arises in 

analyzing crime patterns. In cross-sectional datasets where the analysis is over relatively small 

geographical regions, it is important to consider that each observation affects all others. Many 

methods exist for correcting spatial autocorrelation. Luc Anselin (1996; 2003) has developed an 

extensive literature on spatial econometrics. This is especially a concern when trends in data do 

not fall exactly within the spatial constraints of each observation. Anselin and Bera (1998) 

economic rrors 

in the variable observed (Anselin and Bera 1998, 239). Assuming those observations farther 

from the central observation have proportionally lower impact on that central observation than 

those closer, one can construct a matrix of weights based on inverse distance of one observation 

to any other. Spatial autocorrelation can be 

correlation among variables in a given space. Reported Z-scores indicate the level of 

autocorrelation with negative numbers indicating more uncorrelated and positive numbers 

indicating more correlated (Moran 1948). 
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To build an understanding of this model, it is easiest to start with the Ordinary Least 

Squares (OLS) model. This foundation is also important for understanding a spatial-lag 

regression. A log-log OLS model is represented as: 

  (4.3) 

All the symbols on the right-hand side match that of equation 4.2. However, there is no exposure 

term. Instead,  on the left side represents the crime rate simply the crime count adjusted by 

population. Anselin (2003) and Pisati (2012) explain a method for correcting autocorrelation in 

regression that includes the spatial weight matrix in a regression equation to account for spatial 

lag. The spatial lag model adds in a factor to a typical regression equation where the vector of all 

the dependent variable values over the observations is multiplied by the respective weights in the 

matrix. A log-log OLS form with a spatial lag term is represented as:  

  (4.4) 

The spatial weights term is represented as log( m), where  represents the spatial weights 

matrix and m  on the right hand side is the vector of the crime rates for each tract m. Each 

element in this vector is multiplied by its corresponding weight in square matrix .4,5  

c. Construction of the G ini Coefficient and Racial Diversity Index 

 With the details of the regression models determined, it is also useful to consider that not 

all of the variables in this study are directly observed from existing datasets. The Gini coefficient 

and the Racial Diversity Index are both variables in this study that the researcher constructs 

before analysis. 

A Gini coefficient is a commonly used measure of income inequality for social scientists. 

Gini coefficients are typically calculated from an estimation of a Lorenz Curve using quintile 

data. Since this type of data is unavailable for the year 2000 at the Census tract level, this paper 

uses grouped data. The method for calculation of the Gini coefficient used in this paper is 

described in detail in Abounoori and McCloughan (2003) a similar method is described in 

Gastwirth (1972). These papers illustrate how this method differs from other methods using 

grouped data and results from traditionally calculated Gini coefficients using a Lorenz Curve, 

indicating that this method yields results very near the traditional method (Abounoori and 

                                                 
4 The weight in  is 0 where m is observed for the same tract as t. That is, the diagonal of matrix   is all zeroes. 
5 Limitations of the software for this analysis prevented using spatial negative binomial or other generalized linear 
models.  
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McCloughan 2003). The generalized form of the Gini originally used by Milanovic (1994) is the 

following:  

 
 

 
(4.5) 

There is a constructed Gini coefficient for each Census tract from grouped household 

income data. This Gini is calculated assuming the median of each group to be the group mean yk. 

For instance, the group of incomes between $15,000 and $19,999 has an assumed group mean of 

$17,500. The category for those with less than $10,000 household income is assumed to have a 

group mean of $5000, and the group of above $200,000 assumes $750,000 as the mean. As 

shown in the descriptive statistics, this produces Gini coefficients similar to those for counties 

used in Kelly (2000) and Cook (2009). A sensitivity analysis changing the assumed means on the 

upper and lower groups is provided in the Appendix. This shows that the assumed group means 

for the upper and lower groups of $5,000 and $750,000 provide a point in the middle of the 

possibilities when the bounds are arranged as combinations of $0 or $9,999 and $200,000 or 

$1,500,000. Interpretation of the Gini coefficient is simple: a Gini coefficient ranges between 0 

and 1 with higher values indicating more inequality. While 1 represents perfect inequality where 

one party receives all the income, 0 represents perfect parity where all parties have equal income. 

In regards to race, it is important to measure not only the percentages of each race in a 

neighborhood, but also the heterogeneity or homogeneity of races in a given tract. The scope of 

possible diversity indices is large and draws from many fields. This study measures racial 

diversity using a sum of squares index very similar to the Herfindahl-Hirschman Index (HHI) 

that is used by economists to measure the market concentration of competing firms. Qian (2013) 

uses this index to measure ethnic diversity in U.S. metropolitan areas. Weiss and Sommers 

(2008) also use this method to measure the racial diversity of basketball teams in a study 

measuring the relationship between team performance and racial diversity. Racial heterogeneity 

is the sum of the proportional shares of each race squared for each tract. The formula for the 

Racial Diversity Index in each tract is as follows: 

 
 

 
(4.6) 

In equation (4.6) j is the race-ethnic category, and X is the proportional share of that race-ethnic 

group in a tract. With four race-ethnic groups included (white, black, Hispanic, and Asian or 
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Pacific Islander), this value ranges from 2,500 to 10,000.6 The minimum case indicates that each 

of the race-ethnic groups is evenly distributed. The maximum indicates perfect homogeneity for 

one group.  

All this methodology makes progress towards modeling the equilibrium quantity of crime 

in a neighborhood. It is not enough to simply theorize on these variables. The rigorous 

econometric procedures outlined in this section show how a researcher can use statistical tools to 

apply the economic theory of crime to observations of real life. Section V explains the specific 

nature of the data used for these models and transformations in more detail. It provides 

descriptive statistics to help the reader understand the peculiarities of each variable and their 

economic meaning.  

V . Data & Variable Descr iptions 

a. Data Descriptions 

This section describes the variables used in this study first by noting their measurement, 

then by explaining descriptive statistics. It also gives a look at the geographic distribution of the 

variables of interest. Table 5.1 provides a brief description of each of these variables and lists 

their respective sources. All variables are specified at the Census tract level unless otherwise 

noted. Most of the data for this study come from the National Neighborhood Crime Study 

(NNCS), a dataset assembled by Krivo and Peterson providing Census tract level data on crime 

rates and many other variables. For this study, all variables are transformed using a natural 

logarithm except the crime counts.  

In addition to the variables listed in Table 5.1, an interaction term gauges the importance 

of the effect of density and poverty together. Crime rates in the dataset are all expressed as 

crimes reported per 1,000 people in each Census tract as an average over three years from 1998 

to 2000. 

 

 

 

 

                                                 
6  
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Table 5.1: Variable Descriptions 

Variable Description Symbol 
DEPENDENT VARIABLES 
Violent Crime Rate Number of violent crimes per 1,000 people per year VIOLRT 
Property Crime Rate Number of property crimes per 1,000 people per year PROPRT 
Violent Crime Count Number of violent crimes over three years VIOL 
Property Crime Count Number of property crimes over three years PROP 
INDEPENDENT VARIABLES 
Per Capita Income Average income per person in real 2000 US$.  PCINC 
Unemployment Rate Number of unemployed persons as a percent of the labor force. UNEMP 
New Immigrants The percent of newly immigrated residents. NEWIMM 
Area Area of a Census tract in square kilometers. AREA 
Population Total tract population in the 2000 Census. POP 
Population Density Tract population divided by tract area. Expressed as persons 

per square kilometer.  
DENSITY 

Percent [Race] Proportion present of white, black, Asian, and Hispanic by 
U.S. Census reporting. 

PCWHT, PCBLK, 
PCASN, PCHISP 

Racial Diversity Index An index measuring the sum of squared proportions of major 
race-ethnic groups.  

RDI 

Female-headed 
Households 

Percent of female-headed households. FHH 

Males 15-24 Percent of males aged 15-24. YMALE 
High School Graduates Percent of tract population who are high school graduates. HSGRAD 
Percent Renters Percent of tracts households who rent their housing. PCRENT 
Vacant Housing Percent of vacant housing units. VACANT 
Housing Value Value of housing in US $.  HSVALU 
Recent Movers Percent of residents who have moved in the last 5 years. MOVER 
Poverty Rate Percent of population below the poverty line. POVERTY 
Gini Coefficient Gini index of income inequality.  GINI 

b. Descriptive Statistics 

Table 5.2 shows descriptive statistics for the variables in Chicago Census tracts. A typical 

Chicago Census tract has a population (POP) of just over 3,500 residents, but these can range 

from as few as 302 to as high as over 15,000. With an average area of 0.63 square kilometers and 

population density (DENSITY) of 7,130, Chicago is fairly dense. 

The neighborhoods of Chicago take on many different patterns of characteristics 

throughout the 800 Census tracts observed in this study. While the average poverty rate 

(POVERTY), the percentage of people below the poverty line, is 22.45 percent, some tracts have 

no residents in poverty, while others have as many as 92.7 percent in poverty. The median per 
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capita annual income (PCINC) of $15,585 and average of $20,055 were below the U.S. per 

capita income of approximately $30,000 at the time. In some cases, tracts ranged as high as 

$110,000 for per capita income but as low as $2,500. Income inequality, as measured by the Gini 

coefficient, varies widely across tracts but has a median and mean of 0.43 and a standard 

deviation of 0.07, showing that 95 percent of these tracts have Ginis (GINI) between 0.29 and 

0.57. These are on par with the estimates from Cook (1986) and Kelly (2000) for U.S. counties. 

Housing value (HSVALU) in Chicago has a median value of $140,000 and a mean of $160,000, 

but in a handful of outlying tracts, the average housing value is over half a million U.S. dollars.  

While about 69 percent of the adult population are high school graduates (HSGRAD) in 

each tract on average, as few as a quarter have graduated in some cases. Fifty-two of the 800 

tracts have greater than 50 percent female-headed households (FHH) while there are 79 with less 

than 5 percent female-headed households. The mean is about 23 percent. 

Racial composition in Chicago shows that a typical Census tract has about 29 percent 

white (PCWHT), 42.8 percent black (PCBLK), 3.7 Asian (PCASN), and 22.8 percent Hispanic 

(PCHISP) population. Racial disparity seems to exist more across tracts than within them. The 

minimum and maximum statistics for each race show that tracts can be highly homogenous with 

at least one tract being all black and another being greater than 99 percent Hispanic. A Racial 

Diversity Index (RDI) of 10,000 indicates perfect homogeneity while values of 2,500 would 

suggest an even 25 percent split across the races.7 Over 250 of the tracts have RDI values over 

9,000 (implying at least 94.5 percent of one race) while 212 are fewer than 5,000 (where two 

races each make up half the population). The average value is 6,988.93. The proportion of new 

immigrants is also an important factor for race-ethnic composition. While the median tract has 

only 4.6 percent new immigrants (NEWIMM), and the average has 8 percent, 314 of the tracts 

have fewer than 2 percent. Only one tract has greater than 50 percent new immigrants.  

Housing characteristics in Chicago are widely varied with vacancy rates ranging from 0.0 

to 71 percent with a standard deviation of 8 percent, even though the average tract has a vacancy 

rate (VACANT) of approximately 9 percent. The typical Census tract has about 45 percent of its 

population who have moved there in the last five years (MOVER) and a rental rate with a 

                                                 
7 
from the calculation of this index.  
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median and mean close to 60 percent. In some areas, less than 5 percent of the population rents 

their homes, while the maximum is 100 percent renters (PCRENT).  

Descriptive statistics for the crime rates show that there is not a great deal of consistency 

in crime across tracts in Chicago. Each of these crime rates is expressed as the number of crimes 

per 1,000 people averaged over a three-year period. While some tracts have almost no violent 

crime, others are much higher, with the maximum violent crime rate reaching over 145 crimes 

per 1,000 people each year. While the median murder rate is just 0.07 per year fewer than 1 

murder per 10,000 people in a year 55 of the 800 tracts observed more than one murder per 

1,000 people per year. Aggravated assault is the most frequently occurring violent crime with a 

median rate of 7.77 and average of 11.73. The mean property crime rate was 69.49 and the 

median was 49.75. Larcenies are the most common property crimes at a rate of 46.60 on average. 

However, larcenies also have a large standard deviation of 82.17 because they range as high as a 

rate of 1609. 

Property crimes tend to occur more frequently than violent crimes. Only 14 Census tracts 

in Chicago experienced higher rates of violent crime than of property crime. Most of these tracts 

had especially high rates of assault and comparatively low rates of larceny. All but two of these 

tracts also had poverty rates greater than 50 percent, and low rates of racial diversity (high RDI 

scores), suggesting that social and financial conditions influence violence, but the level of 

deprivation makes committing property crimes less rewarding.  

 With this context for the magnitudes of variables and understanding of the city of 

Chicago, proceeding to correlations gives insight into how the variables relate to one another. 
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Table 5.2: Chicago Descriptive Statistics 

Variable Mean S.D . Median Min Max 
Crimes 
VIOL (count) 187.85 150.38 154.00 6.00 954.00 
PROP (count) 61.42 45.15 52.38 8.50 474.84 
VIOLRT (rate) 20.50 18.44 14.58 0.52 145.28 
PROPRT (rate) 69.49 92.18 49.75 9.10 1717.39 
Tract Characteristics 
POP 3504.28 2558.71 2769.50 302.00 15359.00 
DENSITY 7130.84 4500.71 6332.11 395.07 35042.82 
AREA 0.63 0.68 0.45 0.04 8.65 
Economic & Social Characteristics 
GINI 0.44 0.07 0.43 0.25 0.76 
POVERTY 22.45 16.13 18.98 0.00 92.69 
PCINC 20055.24 14742.36 15585.50 2465.00 110000.00 
UNEMP 13.08 10.38 10.22 0.00 57.45 
HSVALU (000s) 160.00 91.65 140.00 0.00 680.00 
HSGRAD 68.98 16.91 69.79 24.22 100.00 
NEWIMM 8.02 9.20 4.63 0.00 61.68 
YMALE 7.31 2.51 7.15 0.00 17.33 
FHH 23.00 16.47 17.74 0.00 80.93 
VACANT 9.34 8.18 7.05 0.00 71.15 
MOVER 45.53 14.60 44.37 9.58 93.20 
PCRENT 58.02 22.33 62.07 2.91 100.00 
Racial Composition 
PCWHT 28.96 31.44 14.79 0.00 95.55 
PCBLK 42.76 43.64 16.17 0.00 100.00 
PCASN 3.74 8.26 0.83 0.00 84.93 
PCHISP 22.82 28.73 7.50 0.00 99.35 
RDI 6988.93 2260.14 7093.02 2390.36* 10000.00 

included.  

c. Spatial Inference  

A look at maps of Chicago colored by crime rate or other variables can give an 

understanding of some of the expected trends for crime rates, crime hotspots, or relationships 

among variables in a more visual sense. Figure 5.1 shows the property crime rate in Chicago 

with tracts colored by the number of standard deviations of the property crime rate from the 

mean. Figure 5.2 shows the violent crime rate colored the same way. Figure 5.3 shows 

population density, and Figure 5.4 shows the Gini coefficient by Census tract. All of these 



 

23 
 

figures are colored according to the number of standard deviations by which the observation 

varies from the mean. 

An immediately noticeable difference between the two crime rate maps is the difference 

in the concentration of high violent crimes rates compared to high property crime rates. Figure 

5.1 shows a clustering of high property crime on the northeast side of Chicago. The Census tracts 

in this area make up a large, defined neighborhood known as Near Northside, just south of the 

Lincoln Park neighborhood. Near Northside includes the Cabrini-Green public housing project, 

an area rife with crime. Figure 5.2 shows that violent crime is more concentrated on the south 

side in the Wagner and Sherman Park neighborhoods, as well as on the northwest side in the 

Garfield Park neighborhood. Examining Figure 5.3, the densest areas of Chicago are on the far 

northeast side along the lake and the west central portion. Comparing this to the crime maps, it is 

apparent that most of the tracts with density of greater than 1.5 standard deviations from the 

mean have crime rates that are near or at least 0.5 standard deviations below the mean. Finally, 

looking at Figure 5.4 for the Gini coefficient shows that high and low rates of income inequality 

are generally scattered throughout the city without any clear clustering.  

It is useful to look at the leve

8 The 

negative values actually indicate that the variables are more dispersed than expected. 

Descriptive statistics provide a snapshot of the city of Chicago. The look at spatial 

relationships gives a visualization of the variables as well as a basis for understanding spatial 

autocorrelation. A regression analysis will help to better discern the role of each variable in the 

supply of crime. 

Table 5.5: Spatial Diagnostics for Chicago 

VARIABLE Moran's I Z-score 

VIOLRT -0.004 -2.985** 

PROPRT -0.006 -6.34** 

*Significant at 5% level, **Significant at 1% level 

                                                 
8 -1 to 1 where -1 indicates perfect dispersion and 1 indicates perfect concentration. The 
correlation among different measures of crime rates can best be assessed by looking at the Z-  
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V I . Empirical Results 

 The findings from the models analyzed generally support the hypothesis about population 

density, showing a negative relationship between the density and crime rates. There is not a 

statistically significant relationship between the Gini coefficient and crime rates for Chicago. 

This section first addresses some of the econometric concerns raised in the model and goes 

through a correlation analysis. It then presents the violent and property crime results for spatial 

regressions from Chicago. These are followed by results for violent and property crime negative 

binomial regressions from Chicago. The regressions results from Chicago are the focus of this 

paper, but these are supported and compared with results for the variables of interest from 

negative binomial regression results for Dallas, Houston, and Los Angeles. 

 All of the variables shown in the correlation analysis are included in the regression except 

the area of a tract and the percent composition of whites. The area is provided purely for 

descriptive reference. The percent of whites is not included in the regression because to prevent 

multicollinearity with the other racial variables. There is one interaction term in the model that 

multiplies the log of population density by the log of poverty. The interaction between density 

and poverty gives some idea of how the effects of density vary depending on the financial well-

 

 Multicollinearity and heteroskedasticity are two econometric issues coming from the 

models in this study. Robust standard errors were generated to alleviate any concerns of 

heteroskedasticity.9 Multicollinearity is an issue that occurs when variables are related. The 

correlation analysis in Section V indicates some of the variables that may be concerning in the 

model. A Variance Inflation Factor test of the variables indicates that while multicollinearity is a 

concern for the variables involved in the interaction term, as would be expected given their 

mathematical relatedness, multicollinearity does not confound the model overall.10 Furthermore, 

any theoretical considerations for including variables outweigh any econometric issues.  

a. Correlation Analysis 

This section describes the correlation coefficients of some of the variables of interest, and 

to that end, this section provides two correlation tables. Table 6.1 shows the relationships 

between the dependent variables and the set of independent variables. The second set of tables, 

                                                 
9 The results of Breusch-Pagan tests for OLS regressions of property and violent crime are reported in the appendix. 
10 The full results of this test are given in the appendix. 
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Tables 6.2a and 6.2b, supports the Variance Inflation Factor test and directs the researcher to 

understand sources of collinearity in the model. 

Correlates of Crime 

 Correlations among the dependent variables and the independent variables provide 

preliminary insight into the relationships that may emerge from a regression model. Both the 

rates of violent and property crime and the counts of violent and property crime are shown. The 

lack of control for population in the count variable certainly causes differences between the two, 

as evidenced by the difference in direction of correlations for the population between counts and 

rates. The focus here is on the relationships with crime rates rather than crime counts since. This 

section first discusses the variables of interest, discusses the poverty rate and per capita income 

in more detail, and then highlights correlations from the remaining control variables. 

 Population density correlates at -0.166 with the violent crime rate, -0.056 with the 

property crime rate. However, it correlates positively with the counts at 0.217 for the violent 

count and 0.304 with the property count. The Gini coefficient has strong positive correlations 

with the violent crime rate and count at 0.676 and 0.415, respectively. It was negative 

correlations of -0.003 and -0.121 with the property rate and count, respectively.  

 The poverty rate correlates positively for both rates and counts, and more strongly with 

violent crime than property crime at 0.361 and 0.264 for the violent rate and count, respectively, 

compared to 0.054 and 0.021 for the property rate and count, respectively. Similarly, per capita 

income correlates at 0.681 and 0.423 with the violent crime rate and violent crime count, but at 

only 0.022 and -0.109 with the property rate and count, respectively. Note that intuitively a high 

poverty rate would suggest a low per capita income. One would expect that if poverty relates 

positively with a variable, income should related negatively. However, differences in these 

differences in empirical results. 

 The unemployment rate correlates negatively with the violent crime rate at -0.378 but 

positively with the property crime rate at 0.206. The relationships are similar for the counts of 

crime. Housing value has strong relationships with violent crime than property crime. While it 

has a correlation coefficient of 0.528 with the violent crime rate, it has a coefficient not 

statistically different from 0 for the property crime rate. This is surprising given that one might 
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associate higher value homes with a higher expected return for a crime like burglary. The high 

school graduation rate has negative correlations with violent crimes at -0.370 with the violent 

rate but positively with the property crime rate at 0.106. The percentage of female-headed 

households correlates negatively with both of the crime rates at -0.355 with the violent crime rate 

and -0.255 with the property crime rate. Note that these relationships are positive for the crime 

counts, but once controlled for population, this relationship changes. The percentage of new 

immigrants has a 

correlation of -0.341 with 

the violent crime rate and 

0.131 with the property 

crime rate.  

 The racial 

composition variables 

indicate differences among 

the races for relationships 

with crime. While the 

percent composition of 

whites correlates 

negatively at 0.691 with 

the violent crime rate, an 

unexpected result, it 

correlates negatively with the property crime rate. The percent composition of blacks correlates 

negatively with both the violent and property crime rates. The percent composition of Asians 

correlates negatively with violent crimes and trivially with property crimes. The percent of 

Hispanics correlates positively with both crimes. The Racial Diversity index has a negative 

correlation with the violent crime rate, indicating more heterogeneity corresponds with higher 

crime, but has a very small positive relationship with property crimes. 

 As anticipated, the vacancy rate correlates positively with both the violent crime rate and 

property crime rate. This is also true of the percent of renters. However, the percent of recent 

movers correlates negatively with the violent crime rate but positively with the property crime 

rate.  

Table 6.1: Correlations between C rime rates and 

Independent Variables  

 
VIOLRT PROPRT VIOL PROP 

 

POP -0.355 -0.255 0.452 0.497 
AREA -0.237 -0.242 0.118 0.096 
DENSITY -0.166 -0.056 0.217 0.304 
GINI 0.676 -0.003 0.415 -0.121 
POVERTY 0.361 0.054 0.264 0.021 
PCINC 0.681 0.022 0.423 -0.109 
UNEMP -0.378 0.206 -0.348 0.255 
HSVALU 0.528 0.006 0.337 -0.081 
HSGRAD -0.370 0.106 -0.377 0.019 
FHH -0.355 -0.255 0.452 0.497 
NEWIMM -0.341 0.131 -0.257 0.193 
PCWHT 0.691 -0.059 0.501 -0.110 
PCBLK -0.405 -0.079 -0.194 0.029 
PCASAN -0.571 0.038 -0.519 0.044 
PCHISP 0.676 0.043 0.507 0.003 
RDI -0.243 0.009 -0.206 0.019 
VACANT 0.619 0.155 0.258 -0.037 
MOVER -0.191 0.207 -0.201 0.170 
PCRENT 0.387 0.062 0.226 -0.028 
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Independent Variable Correlations 

Correlations among independent variables (Table 5.4a and 5.4b) are important to 

understanding sources of collinearity in the model. In the matrices below, an asterisk indicates 

that a coefficient has an absolute value greater than 0.500. The greatest correlation among the 

independent variables is a coefficient of 0.782 between the unemployment rate and the poverty 

rate. There is a correlation between the per capita income and housing value of 0.709. Per capita 

income is also highly correlated with the percent of whites at 0.732. 

The variables of interest, population density and the Gini coefficient, have a correlation 

coefficient of 0.090. This is one of the lowest in the model. This is good for the analysis because 

these variables are not closely related to one another. Density corresponds most strongly with the 

percent of renters at 0.377. This is not surprising since rental apartments can be developed more 

densely than single-family homes. The Gini coefficient correlates most strongly with the poverty 

rate at 0.534. 

The poverty rate is one of the most highly correlated variables across the matrix with a 

coefficient of -0.553 with the high school graduation rate and of -0.651 with the percent of 

whites. It also has a positive correlation of 0.658 with the percent of new immigrants. The 

percent of female-headed households has a coefficient of 0.765 with the unemployment rate, a 

correlation of 0.734 with the poverty rate, and a correlation of -0.400 with the high school 

graduation rate. This indicates levels of high poverty, low employment, and low education for 

female-headed households. 

 High correlations also turn up for per capita income. Housing value correlates with the 

high school graduation rate at 0.719. Along with some of the other correlations present here, 

there may be some issues with multicollinearity resulting from the inclusion of these variables 

together. However, it is important to consider that each of these variables has a unique 

theoretical reason for inclusion. For instance, while high school graduation and income are 

highly correlated, the inclusion of both helps to separate out the effect of the high school 

graduation rate on social expectations rather than purely based on its boost to income. 

b. A Note on Interpreting Results 

For all the regressions displayed, a coefficient on a scalar variable can be interpreted as 

an elasticity. That is, a one-percent change in the value of the independent variable results in a 
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percentage change in the dependent variable equal to the coefficient on the independent variable. 

Multiplicative interaction terms and their components must be treated all together. The elasticity 

of a dependent variable with respect to an independent variable is the partial derivative of the 

natural log of dependent variable Y with respect to the natural log of independent variable X. To 

discern the total effect of the variables that are components of the interaction term, consider the 

following equation:  

  (6.1) 

Where Y is the dependent variable, and A and B are two independent variables being 

multiplicatively interacted. The elasticity of Y with respect to A is the partial derivative of the 

natural log of Y with respect to the natural log of A giving the equation:  

 
 

(6.2) 

To find the elasticity, the right hand side of this expression is evaluated using the estimated 

1 3 and the sample mean of B. The same can be done for the elasticity of Y 

with respect to B, by taking the partial derivative of (6.1) with respect to log(B), effectively 

2 1 and A for B in (6.2). This method can be applied to all models in this 

analysis. 
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Table 6.2a: Correlation Matrix for Independent Variables  

 POP AREA DENSITY GINI POVERTY PCINC UNEMP HSVALU HSGRAD 

POP 1.000         

AREA 0.472 1.000        

DENSITY 0.378 -0.333 1.000       

GINI -0.096 -0.151 0.082 1.000      

POVERTY -0.227 -0.203 0.037 0.510* 1.000     

PCINC 0.015 -0.029 0.149 -0.129 -0.552* 1.000    

UNEMP -0.210 -0.111 -0.116 0.393 0.789* -0.528* 1.000   

HSVALU -0.086 -0.159 0.178 -0.037 -0.386 0.709* -0.442 1.000  

HSGRAD 0.043 0.104 -0.047 -0.187 -0.557* 0.710* -0.449 0.488 1.000 

FHH -0.187 -0.056 -0.178 0.297 0.744* -0.613* 0.772* -0.539* -0.409 

NEWIMM 0.312 -0.003 0.322 -0.202 -0.213 -0.079 -0.392 0.046 -0.257 

PCWHT 0.086 0.080 0.074 -0.322 -0.643* 0.733* -0.657* 0.636* 0.620* 

PCBLK -0.197 -0.036 -0.232 0.382 0.588* -0.420 0.716* -0.474 -0.132 

PCASN 0.088 -0.030 0.111 0.023 -0.146 0.143 -0.272 0.147 0.173 

PCHISP 0.168 -0.025 0.230 -0.232 -0.132 -0.216 -0.269 -0.032 -0.543* 

RDI -0.209 -0.032 -0.187 0.184 0.430 -0.244 0.544* -0.341 -0.215 

VACANT -0.273 -0.191 -0.041 0.307 0.595* -0.256 0.503* -0.181 -0.316 

MOVER -0.009 -0.227 0.352 0.012 -0.145 0.508* -0.321 0.531* 0.291 

PCRENT -0.163 -0.383 0.369 0.459 0.609* -0.181 0.372 0.089 -0.260 

*Coefficient has absolute value greater than 0.500 

Table 6.2b: Correlation Matrix for Independent Variables 

 FHH NEWIMM PCWHT PCBLK PCASN PCHISP RDI VACANT MOVER PCRENT 

FHH 1.000          

NEWIMM -0.468 1.000         

PCWHT -0.737* 0.155 1.000        

PCBLK 0.818* -0.646* -0.732* 1.000       

PCASN -0.321 0.466 0.205 -0.314 1.000      

PCHISP -0.320 0.657* -0.061 -0.606* -0.056 1.000     

RDI 0.633* -0.540* -0.494 0.703* -0.439 -0.366 1.000    

VACANT 0.511* -0.253 -0.391 0.426 -0.128 -0.171 0.324 1.000   

MOVER -0.443 0.273 0.397 -0.395 0.253 0.075 -0.379 -0.026 1.000  

PCRENT 0.293 0.042 -0.322 0.230 0.057 -0.018 0.077 0.432 0.400 1.000 

*Coefficient has absolute value greater than 0.500 
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c. Spatial Regression Results 

This section presents the results for the linear spatial regression. This section acts as a 

basis for understanding the empirical relationships between the control variables, variables of 

interest, and the crime rates. It is necessary to use these spatial regressions to understand the 

influence of spatially-related crime rates. As the  parameters of these regressions show, one can 

safely move on and ignore spatial autocorrelation.11 The results for violent crime and property 

crime are explained side-by-side here. First the relationships between the crime rate and 

variables of interest are explained. Relationships between the crime rate and different economic, 

social, racial, and housing characteristics are then explained in order. 

Table 6.3: Spatial Regressions for Chicago 

 
Violent Rate (log) Property Rate (log) 

 VARIABLE  SE   SE 
log.DENSITY -0.369 0.193 -0.535 0.151** 
log.DENSITY * log.POVERTY 0.053 0.057 0.045 0.043 
log.POVERTY -0.191 0.493 -0.187 0.366 
log.GINI -0.171 0.159 -0.255 0.139 
log.PCINC -0.044 0.102 0.344 0.098** 
log.POP -0.155 0.033** -0.167 0.029** 
log.UNEMP 0.020 0.049 0.064 0.045 
log.HSVALU 0.015 0.018 0.002 0.011 
log.HSGRAD -0.444 0.130** 0.039 0.118 
log.FHH -0.019 0.064 -0.192 0.067** 
log.NEWIMM -0.036 0.038 0.019 0.033 
log.PCBLK 0.258 0.027** 0.126 0.024** 
log.PCHISP 0.046 0.030 0.031 0.028 
log.PCASN -0.089 0.034** -0.049 0.030 
log.RDI 0.149 0.113 0.163 0.100 
log.VACANT 0.116 0.031** 0.073 0.028** 
log.MOVER 0.114 0.090 0.318 0.083** 
log.PCRENT 0.267 0.065** 0.203 0.059** 
Constant 4.538 2.025* 1.930 1.823 
*Significant at the 5% level, **Significant at the 1% level 

 0.000 0.000 0.000 0.000 
Variance Ratio 0.765 0.541 
                                                 
11 The additional  term is the coefficient on the spatial lag vector of the spatial weights multiplied by the vector of 
the dependent variable. The measures of here are very near 0 and insignificant, indicating that the impact of the 
spatial lag on the regression was almost nothing. 
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Table 6.3a: Total Marginal E ffect of Density and Poverty for Spatial Regression 
 Violent Crime Property Crime Sample Mean 
Density -0.089 -0.103 7130.840 
Poverty 0.120 0.055 22.450 

The spatial lag model indicates an elasticity of the violent crime rate with respect to 

density of -0.089 and of the property crime rate with respect to density of -0.103. That is, an 

increase in population density of 1 percent would correspond with a 0.089 percent drop in the 

violent crime rate and a 0.103 percent drop in the property crime rate. These negative results are 

consistent with the hypothesis and findings of all other models in this study. The results for the 

Gini coefficient are statistically insignificant. The poverty rate does not have a significant 

relationship with either aggregate crime rate in this model. Per capita income does not have a 

significant relationship with the violent crime rate, the property crime rate has an elasticity of 

0.344 with respect to per capita income, meaning a 1 percent increase in per capita income 

corresponds with a 0.344 percent increase in the property crime rate. This supports the 

theoretical expectation that expected returns are higher in a wealthier neighborhood, thus making 

crime more profitable. 

The violent crime rate and property crime rate have elasticities with respect to population 

of -0.155 and -0.167, respectively. Both housing value and the unemployment rate do not have 

statistically significant relationships with the crime rates. The lack of significant relationship for 

the unemployment rate is particularly surprising given findings of previous studies. The high 

school graduation rate has a negative relationship with an elasticity of -0.444 with violent crime, 

but no significant relationship with the property crime rate. The opposite is true of the percent of 

female-headed households. Property crime has an elasticity of -0.192 with respect to the percent 

of female-headed households. The proportion of new immigrants does not have a significant 

relationship with either crime rate. 

The variables dealing with racial composition indicate that the percentage of residents 

who are black corresponds positively and significantly with both crime rates, returning the 

hypothesized relationshipThe racial diversity index has a negative and significant result for the 

violent crime rate. The negative relationship suggests that more diversity indicates more crime. 

This is the expected result.  
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Finally, all three housing characteristics have positive relationships with both crime 

ratesthat are significant at the 1 percent level. The violent crime rate and property crime rate 

have elasticities with respect to the percent of recent movers of 0.114 and 0.318, respectively. A 

1 percent increase in the vacancy rate corresponds with a 0.073 percent increase in property 

crimes and a 0.116 percent increase in violent crimes. The rental rate has elasticities of 0.267 for 

the violent crime rate and 0.203 for the property crime rate. In terms of actual crimes per 1,000 

people, these numbers all mean very small changes, but the consistency and direction of the 

relationship are important.  

d. Negative Binomial Results 

The standard in the literature is to use a Poisson or negative binomial regression to model 

crime counts with an exposure term (Kelly 2000, Osgood 2000). The models presented here have 

robust standard errors, 2 test of the likelihood ratios indicates that the negative binomial 

model is statistically preferred to the Poisson. This section first goes through the results of the 

violent crime regression and then the property crime regression for Chicago Census tracts. The 

variables of interest, poverty rate, and per capita income are explained first, followed by 

economic variables, then racial composition variables, then housing variables. The results can be 

found in Table 6.4. 

Violent Crimes 

 The regression for the violent crime count supports the main hypothesis about population 

density, while not rejecting the null hypothesis for the Gini coefficient, and leaving an 

count has an 

elasticity with respect to population density of -0.238, indicating that a 1 percent increase in 

population density from one tract to another means a 0.238 percent drop in the violent crime 

count. The Gini coefficient does not have a statistically significant relationship with the violent 

crime count. The violent crime count has an elasticity with respect to the poverty rate of 0.284 

while having an insignificant relationship with per capita income. Population has a total marginal 

effect of 0.809 after allowing for an additional population parameter with the exposure.  

 Similarly to the spatial regressions, the unemployment rate, housing value, percentage of 

new immigrants, and proportion of female-headed households do not have significant 

relationships with the violent crime count. Again, this is surprising given their expected 

contributions to the theoretical model. The high school graduation rate has a total marginal effect 
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of -0.358 and is significant at the 1 percent level. This follows the same result from the spatial 

regressions. Since there are many other variables in the model that capture income and economic 

well-being, the value of education towards socially-accepted behavior may be the major 

contribution of this factor to the theoretical model. 

 The results from this model indicate a positive relationship between the percent of blacks 

and the violent crime count. This follows the theoretical expectations and previous empirical 

results in the literature. The percent of Hispanics does not have a statistically significant 

relationship, and the percent of Asians has a negative and significant relationship with the violent 

crime count. In general, these are the expected relationships. The Racial Diversity Index has a 

positive and signficant relationship with the violent crime count, indicating that more racial 

concentration corresponds with a higher crime rate. An increase of 1 percent in the Racial 

Diversity Index corresponds with a 0.260 percent increase in the number of violent crimes. 

 The vacancy rate and rental rate both have positive and statistically significant 

relationships with the violent crime count. The violent crime count has an elasticity of 0.133 with 

respect to vacancy and 0.261 with respect to the percent of renters. These both follow the 

expected results from the theoretical model.The percent of recent movers, on the other hand, 

does not have a statistically significant relationship with the count of violent crimes.  

Property Crimes 

 The regression for the property crime count reflects many of the same results as the 

violent crime. The number of property crimes has an elasticity with respect to population density 

of -0.461, following the hypothesized negative relationship. There is no significant relationship 

between the Gini coefficient and the property crime count. Like the violent crime count 

regression, this value is negative, but is statistically insignificant. Poverty has a positive total 

marginal effect of 0.250 on the property crime count and per capita income has a total marginal 

effect of 0.346. A positive relationship for both of these variables with the property crime count 

indicates that each of them are important to the theoretical model, but possibly for different 

reasons. That is, while income may contribute to the expected returns to crime, the poverty rate 

also may indicate a level of deprivation that may drive persons to crime. Population has a total 

marginal effect of 0.807 after adding the exposure parameter to the equation. 
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 The unemployment rate, housing value, high school graduation rate, and percent of new 

immigrants all do not have significant relationships with the property crime count. These social 

and economic variables, while important to the theoretical model, do not have consistent 

relationships in the data observed. The property crime count has an elasticity with respect to the 

percent of female-headed households of -0.256.This is an unexpected result given the previous 

findings of Cook (2009) and others, as well as the theoretical expectation that the percent of 

female-headed households indicates deprivation and lower social cohesion. 

 The variables dealing with racial composition have similar results to their relationships 

with the violent crime count. The percent composition of blacks corresponds positively with the 

count of property crimes. Neither the percent composition of Hispanics nor the percent 

composition of Asians has a statistically significant elasticity. The property crime count has an 

elasticity with respect to the Racial Diversity Index of 0.301 and is statistically significant. This 

again indicates that more homogeneity corresponds with more crime. 

 The property crime count has an elasticity with respect to the vacancy rate of 0.105, 

following expected positive theoretical relationship. There is also an elasticity with respect to the 

percent of recent movers of 0.321, indicating that a 1 percent increase in the percent of recent 

movers from one area to another relates with a 0.321 percent drop in the number of property 

crimes. The percent of renters does not have a significant relationship with the property crime 

count, unlike for the violent crime count. 

 Together, the results for violent crime and property crimes in Chicago show that density 

negatively and significantly influences crime rates. This suggests that density positively 

influences the probability of apprehension, rather than decreasing it as Glaeser and Sacerdote 

(1999) showed in their city-level studies. This look at Census tracts is more revealing of density 

on a human scale. An important distinction between property crimes and violent crimes is the 

relationship with per capita income. Property crimes are positively related to income while 

violent crimes are negatively related. This indicates that the positive influence of income on the 

benefits to crime outweighs its impact on the opportunity costs. This could be an issue arising 

from the fact that this measure of income simultaneously captures the income of victims and 

perpetrators. 
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 These results make valuable contributions to an understanding of crime rates and the way 

the economic theory of crime works in Chicago neighborhoods. To generalize this model and 

comprehend the conclusions as robust, a comparison to results from other cities is valuable. 

Table 6.4: Negative Binomial Regressions with Population Exposure for Chicago 

N= 800 Total Violent Crimes Total Property Crimes 
VARIABLE  SE  SE 

log.DENSITY -0.483 0.177** -0.668 0.155** 
log.DENSITY * log.POVERTY 0.084 0.051 0.071 0.044 
log.POVERTY -0.447 0.425 -0.365 0.367 
log.GINI -0.209 0.164 -0.330 0.160 
log.PCINC 0.026 0.114 0.346 0.114** 
log.POP -0.191 0.029** -0.193 0.030** 
log.UNEMP 0.020 0.048 0.038 0.051 
log.HSVALU 0.009 0.018 0.003 0.010 
log.HSGRAD -0.358 0.129** 0.183 0.129 
log.FHH -0.034 0.060 -0.256 0.069** 
log.NEWIMM -0.009 0.040 0.056 0.036 
log.PCBLK 0.252 0.025** 0.151 0.025** 
log.PCHISP 0.048 0.029 0.051 0.028 
log.PCASN -0.071 0.032* -0.032 0.032 
log.RDI 0.260 0.118* 0.301 0.108** 
log.VACANT 0.133 0.032** 0.105 0.030** 
log.MOVER 0.122 0.077 0.321 0.091** 
log.PCRENT 0.261 0.061** 0.168 0.071 
Constant -1.974 1.853 -4.276 1.865* 

 0.184 0.014** 0.185 0.014** 
Test of  2 1.3 E04** 8.8 E 04** 
*Significant at the 5% level, **Significant at the 1% level 
Goodness-of-F it Measures Total Violent Crimes Total Property Crimes 

Pseudo R2 0.1202** 0.0739** 
 

Table 6.4a: Total Marginal E ffects 

 
Violent Crime Property Crime Sample Mean 

Density -0.238** -0.461** 7130.840 
Poverty 0.284** 0.250** 22.450 
  

e. T esting Against O ther C ity Data for Robustness 

 This section presents a comparison of the negative binomial results from Dallas, Houston, 

and Los Angeles in table 6.5. The focus here is only on the two variables of interest and the 

poverty rate and per capita income. Overall, the expected negative relationship between density 
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and the crime counts holds. The results for the Gini coefficient are ambiguous and may indicate 

that this relationship depends more on the individual city. The poverty rate and per capita income 

also have differing results. The discussion moves through each of the variables for all three cities 

at once, first focusing on violent crimes, then property crimes.   

 The violent crime count has a negative relationship with population density in Dallas and 

Los Angeles, but does not for Houston. The elasticity of the violent crime count with respect to 

population density for Houston is positive but not statistically significant. Dallas and Los 

Angeles both have negative relationships, but only Los Angeles has a statistically significant 

elasticity at -0.147.  

 The Gini coefficient has statistically significant relationships with the violent crime count 

for Los Angeles and Houston, but not for Dallas. Both Dallas and Chicago had negative but 

insignificant relationships between violent crimes and the Gini coefficient. However, the 

elasticities of the violent crime count with respect to the Gini coefficient for Los Angeles and 

Houston are 0.553 and 0.518, respectively. Not only are these relationships positive, as the 

theoretical model and previous empirical findings suggest, but they are also of large magnitude 

with both indicating that a 1 percent increase in the Gini coefficient corresponds with greater 

than a 0.5 percent increase in the violent crime count.  

 The poverty rate has positive relationships with the violent crime counts across all cities 

as expected. The relationship is significant for Dallas with an elasticity of 0.468 of the violent 

crime count with respect to the poverty rate and for Houston at 0.264. Per capita income, on the 

other hand, has more ambiguous results. Recall that the relationship between the violent crime 

count and per capita income for Chicago was positive but insignificant. This is also true for 

Dallas. Los Angeles, however has an elasticity of the violent crime count with respect to per 

capita income of -0.545. This is more in line with the theoretical expectation that lower per 

capita income indicates more deprivation and thus more crime than indicating a higher expected 

return to crime.  

 Turning to the results for property crime, the results from Dallas, Los Angeles, and 

Houston all indicate that population density and property crime relate negatively and 

significantly. This provides a firm rejection of the null hypothesis about the relationship between 
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population density and property crime, suggesting the positive result from Glaeser and Sacerdote 

(1999) should be reconsidered. 

 The Gini coefficient generally maintains an insignificant relationship as it did for 

Chicago. However, in Los Angeles, the property crime count has an elasticity with respect to the 

Gini coefficient of 0.603. Los Angeles stands as the only city for which the relationship between 

the Gini coefficient and both property and violent crimes shows the expected positive 

relationship.  

 The results for the poverty rate indicate differences among cities as well. The relationship 

between the property crime count and poverty is positive everywhere, but only for Dallas is there 

property crime counts. Dallas has a significant elasticity of the property crime count with respect 

to per capita income of 0.473 while Los Angeles has a statistically significant elasticity of -

0.535. Houston does not have a statistically significant result. Both the violent and property 

crime counts for Los Angeles have negative relationships with per capita income, but no 

significant relationships with poverty. However, for Chicago and Dallas in particular, the 

positive relationships for both variables with both crime counts shows there is both theoretical 

and statistical value to including both in the model because this suggests they do not act 

collinearly. Additionally, including both variables in the model improved the goodness-of-fit. 

 With an understanding of how the variables of interest relate in different cities and by 

different crime, one can draw conclusions about ways to combat crime and take the study of 

crime farther. While the results for population density are consistent and robust, the other results 

here indicate that a look at different cities individually is important to a study of crime before 

making broad-based policy prescriptions.  

Table 6.5  

 
Dallas Los Angeles Houston 

 
Violent Property Violent Property Violent Property 

 
 S.E .  S.E .  S.E .  S.E .  S.E .  S.E . 

log.DENSITY -0.102 0.080 -0.149 0.071* -0.147 0.037** -0.408 0.043** 0.055 0.060 -0.264 0.068** 

log.GINI -0.252 0.354 -0.218 0.308 0.553 0.169** 0.603 0.187** 0.518 0.208** 0.277 0.231 

log.POVERTY 0.468 0.132** 0.217 0.102* 0.088 0.083 0.095 0.088 0.264 0.115* 0.037 0.125 

log.PCINC 0.267 0.246 0.473 0.208* -0.545 0.123** -0.535 0.115** -0.043 0.119 0.029 0.135 

*Significant at the 5% level, **Significant at the 1% level 
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V I I . Conclusions and Public Policy Implications  

Tying all the theory and observations together, one can understand the greater potential 

applications and impact of this study. The models indicate that population density has a negative 

and significant relationship with crime rates. Residential stability appears to be an important 

factor in crime reduction based on the evidence from the vacancy rates, percent of recent movers, 

and rental rate results. It should be noted, however, that the vacancy rate might be endogenous 

with the crime rates. That is, as crime increases in a neighborhood, people will move away from 

that neighborhood, leaving vacant homes behind. Each of these variables can be heavily 

influenced by different local economic development and urban planning strategies.  

From these results and inferences, one can look to the literature on crime reduction and 

urban planning to see how each of the determinants of crime can be controlled. While these are 

not all direct conclusions from the statistical results, it is important to consider the 

interrelatedness and nuances of factors in urban life. Statistical models and economic theory 

cannot tell us everything about crime reduction and merely point us in the right direction to 

identify policies that reduce crime and improve urban life. 

Income Inequality  

 The lack of any significance in most cases for the Gini coefficient may offer some 

larger 

geographical extent before they start to have significant relationships with crime rates. While a 

Census tract may be too small of an area to observe this inequality, grouping five or more 

together may show the differences. This confirmation is an important contribution to the 

literature that also warrants further study into how income inequality among tracts or other 

observational levels relates to crime as opposed to how income inequality within these 

observational units relates to crime. 

Residential Stability 

 Vacancy rates as a measure of neighborhood decay signal a general need to revitalize a 

neighborhood. Drawing investment into housing and commercial development in neighborhoods 

plagued with high crime is a difficult task, but if cities can influence strategic investment in areas 

with high vacancy, they may be successful in reducing crime there as well. Ehrenhalt (2012) 

advocates the use of mixed-use zoning as a strategy for reducing vacancy. Euclidean zoning that 

separates businesses from residences may lead people to move away from residential areas that 
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lack easily accessible commercial amenities. This conflicts with what Cisneros (1996) and 

Newman (1973, 1996) stress as the importance of distinguished space to defensible space 

creation. Paulsen (2013) advocates for planning that balances usage diversity with intensity to 

design safe spaces that encourage community engagement in safety and crime prevention. 

 Moderating the percent of recent movers and rental rate is a more difficult question. 

Redevelopment or revitalization of a neighborhood means new residents who are recent movers. 

On the other hand, there may be endogeneity involved with this variable that complicates the 

relationship. That is, people may be more likely to move in and out of high crime neighborhoods 

more quickly than other neighborhoods, rather than crime being influenced by the number of 

people who moved recently. Further study similar to Kreager, Lyons, and Hays (2010) 

examining the distinction between tracts that have a long-term trend of turnover versus those that 

are undergoing revitalization could be helpful to understanding this difference.  

 Paulsen (2013) and Newman (1996) both elaborate on the construction of tall apartment 

towers as problematic for crime. The defensible space principle of a sense of ownership does not 

necessarily require reduction in the rental rate. Instead, individuals could feel a sense of 

ownership over areas with more clearly delineated responsibility for space in arrangements that 

use more of the possible space in a lot rather than a tall tower and a large, open, public space 

with no particular custodian. Densely developed row houses are a commonly proposed 

alternative to apartment towers. 

decrease the supply of criminal opportunities and also increase the probability of arrest, thereby 

overall decreasing the supply of criminal offenses. 

Population Density 

 The negative relationships between density and the crime rates observed in the regression 

models of this study contradict the findings of numerous studies done at the city or county level 

such as Glaeser and Sacerdote (1999) and Cook (2009). The hypothesis about the impact of 

cts theirs. However, 

this does not mean these results are totally opposed. In fact, a simple look at descriptive statistics 

shows that Chicago is about three times as dense, on average, as Dallas and Houston. It also has 

higher average and median crime rates. The difference in the size of analysis unit matters. This 

study, performed at the Census tract level, discerns the relationship between population density 

and crime rates as it occurs on a human scale. Individuals have an incentive to look after their 
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own neighborhood. More individuals looking after a neighborhood increases the number of eyes 

on the street and increases the probability of arrest. The other studies compare dense cities to less 

dense cities rather than dense and less dense areas within the same city. Since responsibility is 

more diffused on a city level, density might not have the same effect on the probability of arrest.  

 Housing and development laws can regulate population density. Dense areas that place 

people far from the streets and high in towers will create different incentives than dense areas 

that put people where they can easily see their streets. Cisneros (1996) points out how the latter 

example acts as defensible space. T

about how housing should be developed to put people in frequent and easy contact with the 

str - . Some 

policies that urban planners might consider to create this defensible density are building codes 

and lot development ordinances that encourage residences to be built closer to the street and 

discourage apartment towers more than a few stories high. 

 The density-crime relationship is one of the most interesting associations to look at from 

an economic perspective. The negative association between density and crime rates found across 

all regressions in this study rejects the null hypothesis and opens up the possibility for new 

discussion the role of density in either increasing or decreasing the probability of apprehension.  

Conclusions 

The ambiguous results for the Gini coefficient in comparison to other studies suggest that 

the level of measurement for inequality is an important consideration. The level of measurement 

is also something important to consider in the differences between individual criminal actors and 

victims compared to aggregated individuals. This is particularly of concern in considering the 

behaviors of individuals of different income levels. Aggregating individuals by a measure of per 

capita income or poverty rate certainly limits the understanding here. The negative and 

significant relationship between density and crime rates also suggests that policymakers need to 

consider not only how city or county level density relates to crime, but also how density within 

neighborhoods relates to it.  

 This study presents important findings about population density and residential stability 

upon which policymakers and researchers can build. The hypothesized negative relationship 

between population density and crime rates proves true. The hypothesized positive relationship 

between income inequality and crime rates proves true only in a few instances, and not in 
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Chicago, the city primarily analyzed here. Policymakers can find value in this information about 

crime rates on the Census tract level in order to combat crime using neighborhood-oriented 

policies related to urban design.  

V I I I . L imitations and Considerations for Future Study  

There are a number of limitations in this study. First, the lack of time-series data on this 

topic prevents researchers from assembling a panel data set that would allow researchers to 

examine how changes in racial composition, vacancy rates, and other variables over time 

correspond with changes in crime at the neighborhood level. A time-series study would also help 

determine whether or not there are endogeneity problems with vacancy or the percent of recent 

movers. Additionally, expanding the study to more cities would allow closer examinations of 

patterns across different types of cities. Differences in urban development patterns over time and 

differences between older, industrial cities versus newer, car-oriented cities could be particularly 

telling. Racial composition also varies widely across cities and more specific results might 

emerge from an expanded study. 

A qualitative look at neighborhoods would be important to understand the planning 

paradigms and housing trends present in the city of Chicago. Data do not tell us everything about 

how humans live and how neighborhoods are 

character and history is as important as understanding its demographic characteristics. This also 

would allow a researcher to understand how policies could actually be implemented in an area. 

Sometimes existing physical infrastructure or lack of civic engagement hinders the planning and 

policy process. Another important step for better understanding the quantitative results in terms 

of policy is a close examination of details like the differences between high percentages of recent 

movers due to revitalization versus a historically high rate of residential turnover.  

Aspects of urban life are highly intertwined and it can be difficult to differentiate the 

impact of certain factors just by looking at a regression result. Policymakers must always keep in 

mind the limits of neoclassical economic theory and statistical models and consider broader 

perspectives based in the realities and peculiarities of individuals lives.  
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Appendix 

Gini Sensitivity T est 

This sensitivity test is referred to in Section IV. The assumptions on the upper and lower groups 

of the income distribution for grouped household income data are varied to examine the variation 

of the coefficient with different assumptions. The lower bound is the assumed group mean for 

the Less than $10,000 group and the upper bound is the assumed mean for the Greater than 

$200,000 group.  

Table A .1: Gini Coefficient Sensitivity T est  
Lower Bound Upper Bound Mean Median SD Percent Change from Mean 

5000.00 750000.00 0.406 0.398 0.102 - 
0.00 200000.00 0.454 0.430 0.107 11.89 
0.00 1500000.00 0.414 0.404 0.202 2.16 

9999.00 200000.00 0.351 0.365 0.178 -13.38 
9999.00 1500000.00 0.351 0.365 0.178 -13.38 

 

Post-estimation and Diagnostic T ests 

The Breusch-Pagan test confirmed the presence of heteroskedasticity in the two OLS 

specifications. The problem of heteroskedasticity in an OLS is the violation of the assumption 

that the error terms are normally distributed. This issue is easily corrected by generating robust 

standard errors. The results reported in Table 6.1 were not generated using robust standard 

errors. The  

Breusch-Pagan test (Table 6.1b) indicates a 2 value of 

38.53 for the violent crime regression and of 88.82 for 

the property crime regression.12 This rejects the null 

hypothesis that there is constant variance in the error 

terms (homoscedasticity), indicating that there is 

heteroskedasticity. Choosing to regress with robust standard errors does not change the 

coefficients of the model, but does impact the standard errors and significance. This is evident by 

comparing the coefficients and standard errors of the non-robust negative binomial models in 

Table 6.1 to the robust results for property crime in Table 6.3 and violent crime in Table 6.4. 

                                                 
12 Note that this 2 statistics differs from the goodness-of-fit measure in the Poisson regressions. 

Table A .2: Breusch-Pagan T est 

 2 
Violent Crime 38.53** 

Property Crime 88.82** 
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 The Ramsey omitted variable test (Table 6.1c) 

indicates whether there may be a bias due to an 

omitted variable in the model. The F-statistic of 16.77 

for the violent crime OLS regression and 4.63 for the 

property crime OLS for Chicago indicates that there is 

an omitted variable in each model.13 Omitted variable bias causes the coefficients of one or more 

of the independent variables to inflate because it 

captures the impact of an omitted variable. After 

exhausting possible combinations of variables 

available in the dataset, no combination seemed to 

help bring these values down. The problems from 

omitting a variable may be overshadowed by the 

benefits from reducing the multicollinearity present 

in the model by removing it. This brings up another 

issue. 

Multicollinearity exists if two or more 

independent variables are highly correlated with 

one another. The original model used for this paper 

included per capita income for each tract. This 

variable was expected to be highly collinear with 

other variables. A number of other variables were 

also found to be collinear. A Variance Inflation 

Factor (VIF) test is commonly used to measure the 

increase in variance caused by collinearity. Any 

time the VIF for any one variable is greater than 

10, the variable has collinearity with others in the 

model. 

The VIF test remains the same across all 

regressions, so long as the independent variables included are the same. One could expect that 

the multiplicative interaction term of the log of density times the log of poverty is collinear with 
                                                 
13 These F-statistics differ from those used to assess goodness-of-fit in an OLS model. 

Table A .3: Ramsey T est 

 F-stat 
Violent Crime 16.77** 

Property Crime 4.63* 

Table A .4: Variance Inflation Factors 

Variable VIF 

log.DENSITY*POVERTY 204.46 

log.POVERTY 173.62 

log.DENSITY 20.93 

log.PERCAP 9.74 

log.PCHISP 8.59 

log.FHH 6.07 

log.NEWIMM 6.07 

log.PCBLK 5.97 

log.RDI 5.08 

log.HSGRAD 4.43 

log.PCASN 3.73 

log.UNEMP 3.70 

log.PCRENT 3.15 

log.MOVER 2.31 

log.GINI 1.74 

log.POP 1.56 

log.VACANT 1.35 

log.HSVALU 1.29 

Mean VIF 25.80 
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both poverty and density. Since this is anticipated anytime there is an interaction term, the VIF 

scores can be disregarded.  

Per capita income has a VIF score of 9.74, suggesting it is closely related to many other 

variables. In contrast, housing value, a variable which may be thought to indicate income, has the 

lowest VIF at 1.29. The researcher can provide, on request, a more thorough set of VIF scores 

showing that poverty and density do not have high VIF scores when the interaction term is 

removed from the model. The percent of whites was excluded from the model to begin with 

because it would have nearly perfect collinearity with the other percent racial composition 

variables.  

 

did. However, none of the results from the spatial lag regressions indicated that spatial 

autocorrelation impacted the models significantly.

Table A .5: Spatial Autocorrelation F igures 

 
Dallas. Houston Los Angeles 

 
Moran's I p-value Moran's I p-value Moran's I p-value 

VIOLRT -0.018 0.000 -0.006 0.087 -0.007 0.000 
PROPRT -0.014 0.000 -0.003 0.389 -0.001 0.414 
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Table A .6: Negative Binomial Regressions with Population Exposure for Dallas 

N= 800 Total Violent Crimes Total Property Crimes 
VARIABLE  SE  SE 

log.DENSITY -0.164 0.299 0.074 0.235 
log.DENSITY * log.POVERTY 0.023 0.088 -0.082 0.069 
log.POVERTY 0.296 0.671 0.835 0.521 
log.GINI -0.252 0.354 -0.218 0.308 
log.PCINC 0.267 0.246 0.473 0.208* 
log.POP -0.120 0.087 -0.143 0.074 
log.UNEMP 0.281 0.108** 0.184 0.088* 
log.HSVALU 0.024 0.014 0.008 0.021 
log.HSGRAD -0.808 0.245** -0.513 0.218* 
log.FHH -0.168 0.134 -0.267 0.108* 
log.NEWIMM -0.261 0.098** -0.262 0.074** 
log.PCBLK 0.153 0.065* 0.086 0.055 
log.PCHISP 0.003 0.091 0.073 0.070 
log.PCASN -0.071 0.060 -0.097 0.051 
log.RDI -0.376 0.199 -0.327 0.162* 
log.VACANT 0.326 0.065** 0.076 0.056 
log.MOVER 0.116 0.230 0.325 0.207 
log.PCRENT 0.289 0.118* 0.283 0.102** 
Constant -1.012 4.854 -3.448 3.405 

 0.158 0.017** 0.123 0.011** 
Test of  2 4075.02** 2.4E04** 
*Significant at the 5% level, **Significant at the 1% level 

 

Table A.6a: Total Marginal E ffects 

 
Violent Crime Property Crime Sample Mean 

Density -0.102 -0.149* 2475.41 
Poverty 0.468** 0.217* 19.03 
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Table A .7: Negative Binomial Regressions with Population Exposure for Houston 

N= 800 Total Violent Crimes Total Property Crimes 
VARIABLE  SE  SE 

log.DENSITY -0.116 0.244 -0.537 0.274* 
log.DENSITY * log.POVERTY 0.059 0.077 0.095 0.088 
log.POVERTY -0.180 0.577 -0.748 0.677 
log.GINI 0.518 0.208* 0.277 0.231 
log.PCINC -0.043 0.119 0.029 0.135 
log.POP -0.189 0.058** -0.240 0.065** 
log.UNEMP 0.090 0.109 0.148 0.119 
log.HSVALU -0.045 0.095 -0.053 0.102 
log.HSGRAD -0.436 0.209* 0.045 0.237 
log.FHH -0.280 0.113* -0.213 0.126 
log.NEWIMM -0.102 0.071 -0.069 0.078 
log.PCBLK 0.165 0.042** -0.017 0.045 
log.PCHISP 0.012 0.079 -0.005 0.078 
log.PCASN -0.042 0.051 -0.002 0.054 
log.RDI -0.258 0.175 -0.290 0.175 
log.VACANT 0.160 0.073* 0.059 0.081 
log.MOVER -0.231 0.188 -0.042 0.231 
log.PCRENT 0.329 0.135* 0.567 0.165** 
Constant 3.348 3.323 5.601 3.852 

 0.139 0.016** 0.167 0.020** 
Test of  2 5041.26** 4.2 E 04** 
*Significant at the 5% level, **Significant at the 1% level 
 

Table A.7a: Total Marginal E ffects 

 
Violent Crime Property Crime Sample Mean 

Density 0.055 -0.246** 2082.26 
Poverty 0.264* 0.037 20.76 
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Table A .8: Negative Binomial Regressions with Population Exposure for Los Angeles 

N= 789 Total Violent Crimes Total Property Crimes 
VARIABLE  SE  SE 

log.DENSITY 0.064 0.125 0.155 0.141 
log.DENSITY * log.POVERTY -0.072 0.039 -0.191 0.043** 
log.POVERTY 0.694 0.326* 1.520 0.388** 
log.GINI 0.553 0.169** 0.603 0.187** 
log.PCINC -0.545 0.123** -0.535 0.115** 
log.POP -0.252 0.059** -0.313 0.068** 
log.UNEMP 0.165 0.072* 0.051 0.074 
log.HSVALU 0.001 0.019 0.002 0.017 
log.HSGRAD 0.006 0.147 -0.017 0.141 
log.FHH -0.206 0.097* -0.247 0.079** 
log.NEWIMM 0.060 0.070 0.195 0.064** 
log.PCBLK 0.214 0.029** 0.121 0.030** 
log.PCHISP -0.061 0.057 -0.373 0.056** 
log.PCASN 0.037 0.027 0.040 0.029 
log.RDI 0.075 0.112 -0.107 0.101 
log.VACANT 0.221 0.047** 0.098 0.046* 
log.MOVER -0.236 0.138 0.080 0.140 
log.PCRENT 0.204 0.075** 0.240 0.078** 
Constant 2.506 2.432 5.568 2.355* 

 0.181 0.014** 0.181 0.014** 
Test of  2 1.8 E04** 5.6 E 04** 
*Significant at the 5% level, **Significant at the 1% level 
 

Table A.8a: Total Marginal E ffects 

 
Violent Crime Property Crime Sample Mean 

Density -0.147** -0.408** 6416.23 
Poverty 0.088 0.095 22.55 
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Table A .9: Dallas Descr iptive Statistics 

N = 224      
Variable Mean S.D . Median Min Max 

Crimes 
VIOLRT 15.49 17.97 10.65 0.47 143.33 
PROPRT 77.00 59.63 63.78 18.84 519.05 
VIOL 176.06 139.53 147.00 2.00 629.00 
PROP 896.93 535.66 818.50 108.00 3579.00 
Tract Characteristics 
POP 4293.72 1922.22 4032.50 993.00 11091.00 
DENSITY 2475.41 2206.13 1983.14 189.50 22281.71 
AREA 2.63 2.99 2.06 0.35 36.57 
Economic & Social Characteristics 
POVERTY 19.03 13.30 18.28 0.59 78.61 
UNEMP 7.90 6.42 6.37 0.00 41.27 
PCINC 25294.67 22036.53 16012.00 3532.00 150000.00 
GINI 0.42 0.07 0.41 0.21 0.64 
HSVALU (000s) 120.00 110.00 81.20 0.00 1000.00 
HSGRAD 67.65 22.90 69.95 19.70 99.41 
NEWIMM 13.04 12.19 9.88 0.00 57.30 
YMALE 7.76 3.41 7.82 0.73 20.24 
FHH 16.06 11.27 14.32 0.00 66.76 
VACANT 6.75 4.69 5.73 0.00 29.33 
MOVER 53.34 15.67 50.76 25.44 91.16 
PCRENT 51.13 27.11 48.08 0.54 100.00 
Racial Composition 
PCWHT 36.45 32.57 24.52 0.00 97.96 
PCBLK 26.28 30.37 11.18 0.00 98.67 
PCASN 2.10 3.23 0.89 0.00 27.10 
PCHISP 33.76 28.63 24.40 0.00 94.43 
RDI 5967.95 1892.92 5696.17 2454.00* 9736.39 

included.  
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Table A .10: Houston Descriptive Statistics 

N = 297      
Variable Mean S.D . Median Min Max 

Crimes 
VIOLRT 12.38 8.38 10.63 0.71 44.47 
PROPRT 61.42 45.15 52.38 8.50 474.84 
VIOL 187.85 150.38 154.00 6.00 954.00 
PROP 940.44 707.66 736.00 99.00 4661.00 
Tract Characteristics 
POP 5602.33 3683.63 4646.00 888.00 23960.00 
DENSITY 2082.26 1164.03 1897.15 240.00 10717.75 
AREA 3.36 3.38 2.38 0.82 35.66 
Economic & Social Characteristics 
POVERTY 20.76 12.23 20.41 0.53 70.36 
UNEMP 8.90 5.93 7.82 0.41 56.98 
PCINC 25146.15 21539.67 16241.00 5400.00 120000.00 
GINI 0.43 0.07 0.43 0.17 0.68 
HSVALU (000s) 110.00 110.00 71.70 24.80 1000.00 
HSGRAD 66.93 20.91 66.52 22.76 100.00 
NEWIMM 12.11 8.99 10.69 0.00 44.12 
YMALE 7.52 2.70 7.50 2.01 27.76 
FHH 16.05 9.59 14.16 0.55 50.71 
VACANT 8.01 4.35 6.95 0.00 27.36 
MOVER 50.07 15.08 47.83 19.87 87.44 
PCRENT 50.12 22.99 48.70 3.20 97.72 
Racial Composition 
PCWHT 31.46 29.35 19.66 0.00 95.35 
PCBLK 26.21 31.25 10.23 0.00 98.16 
PCASN 3.95 5.51 1.59 0.00 37.83 
PCHISP 36.92 27.81 30.39 0.00 96.49 
RDI 5691.82 1834.51 5376.69 2318.00* 9637.47 

included.  
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Table A .11: Los Angeles Descriptive Statistics 

N = 789      
Variable Mean S.D . Median Min Max 

Crimes 
VIOLRT 12.88 11.94 10.12 0.18 173.15 
PROPRT 33.63 39.37 26.59 0.18 800.72 
VIOL 165.59 138.97 136.00 1.00 1976.00 
PROP 418.74 311.54 350.00 1.00 3690.00 
Tract Characteristics 
POP 4417.59 1333.44 4274.00 533.00 10941.00 
DENSITY 6416.23 5247.73 4918.96 160.20 35583.20 
AREA 1.33 1.89 0.89 0.11 21.99 
Economic & Social Characteristics 
POVERTY 22.55 13.63 20.69 0.83 74.00 
UNEMP 9.83 5.22 9.08 0.75 48.12 
PCINC 20911.34 17889.69 14233.00 3988.00 140000.00 
GINI 0.44 0.07 0.43 0.12 0.71 
HSVALU (000s) 230.00 150.00 180.00 0.00 1000.00 
HSGRAD 62.47 23.55 62.11 15.50 100.00 
NEWIMM 15.65 9.74 14.02 0.71 57.13 
YMALE 7.47 3.57 7.38 0.89 42.59 
FHH 15.72 8.03 14.88 0.47 65.22 
VACANT 4.72 3.04 3.84 0.00 23.52 
MOVER 49.87 10.90 49.27 22.55 94.43 
PCRENT 60.79 26.14 64.68 0.99 100.00 
Racial Composition 
PCWHT 29.08 29.22 17.23 0.00 91.35 
PCBLK 10.50 16.61 3.87 0.00 91.65 
PCASN 9.80 10.31 6.56 0.00 81.40 
PCHISP 47.68 29.25 49.83 0.58 99.20 
RDI 5427.33 1686.40 5159.21 2335.30* 9841.57 

included.  
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