
College of Saint Benedict and Saint John's University College of Saint Benedict and Saint John's University 

DigitalCommons@CSB/SJU DigitalCommons@CSB/SJU 

Computer Science Faculty Publications Computer Science 

11-2022 

Research Software Science: Expanding the Impact of Research Research Software Science: Expanding the Impact of Research 

Software Engineering Software Engineering 

Michael A. Heroux 
College of Saint Benedict/Saint John's University, mheroux@csbsju.edu 

Follow this and additional works at: https://digitalcommons.csbsju.edu/csci_pubs 

 Part of the Software Engineering Commons 

Recommended Citation Recommended Citation 
Heroux MA. 2022 Research software science: Expanding the impact of research software engineering. 
Computing in Science & Engineering 24(6): 22-27. https://doi.org/10.1109/MCSE.2023.3260475 

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, 
in any current or future media, including reprinting/republishing this material for advertising or promotional 
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works. 

https://digitalcommons.csbsju.edu/
https://digitalcommons.csbsju.edu/csci_pubs
https://digitalcommons.csbsju.edu/csci
https://digitalcommons.csbsju.edu/csci_pubs?utm_source=digitalcommons.csbsju.edu%2Fcsci_pubs%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.csbsju.edu%2Fcsci_pubs%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/MCSE.2023.3260475


CiSE: Lorena Barba
Editor: Jeffrey C. Carver, carver@cs.ua.edu

Research Software Science:
Expanding the Impact of
Research Software
Engineering

Michael A. Heroux
Saint John’s University, Sandia National Laboratories

Abstract—Software plays a central role in scientific discovery. Improving how we develop and
use software for research can have both broad and deep impacts on a spectrum of challenges
and opportunities society faces today. The emergence of the Research Software Engineer (RSE)
as a role correlates with the growing complexity of scientific challenges and the diversity of
software team skills. In this paper, we describe research software science (RSS), an idea related
to RSE, and particularly suited to research software teams. RSS promotes the use of scientific
methodologies to explore and establish broadly applicable knowledge. Using RSS, we can
pursue sustainable, repeatable, and reproducible software improvements that positively impact
research software toward improved scientific discovery.

RESEARCH SOFTWARE ENGINEER (RSE)
has emerged as an identity for many members
of the research software community [13], [15].
For many years, RSE functions were needed on
scientific teams but only recently has there been
the growth in awareness of the importance of
these skills and the people who possess them,
leading to a long-overdue and explicit recognition
that RSE staff require stable career paths and
communities of their own, beyond solely being
part of a particular scientific team.

RSE job functions rely on the premise that
there are better and worse ways to produce soft-

ware for use in scientific research. Often, RSEs
read the existing software engineering literature to
keep informed about, adapt, and adopt evolving
practices and tools. They also carry techniques
and experience from project to project. These
translational strategies are intrinsically valuable
and are a part of the fundamental value proposi-
tion that RSEs bring to the scientific community.

In this paper, we present the concept of
research software science (RSS): applying the
scientific method to understanding and improving
how software is developed and used for research
(Figure 1). We argue that RSS is an important

Computing in Science and Engineering Published by the IEEE Computer Society © 2023 IEEE 1



CiSE Special Issue on the Future of Research Software Engineers in the US

Figure 1. Research software science (RSS) is proposed as a complementary approach to RSE efforts for improving how
software is developed and used for research. RSS leverages the inherent appreciation for scientific methodologies present
in the research community, providing another source of information for RSE practitioners to leverage.

complement to RSE efforts, providing another
avenue to enhance the impact of RSE efforts
beyond translational activities. Furthermore, RSS
leverages the innate scientific sensibilities of the
research communities to which RSE members
belong. In other words, while it is appropriate
to apply a scientific approach to understanding
and improving how any kind of software is de-
veloped and used, it is particularly apt to use
this approach for research software. Finally, by
emphasizing a scientific approach to improving
software activities, research funding organizations
and research institutions can more readily justify
investments in advancing how their sponsored
software projects improve the practice of devel-
oping and using software for research, as can
be seen by the recent US Department of Energy
sponsorship of the Workshop on the Science of
Scientific-Software Development and Use [1] in
December 2021.

Background
The development and use of software are

fundamental to numerous areas of scientific re-
search [6], [5]. Many scientists write, modify, and
use software to gain insight and prove scientific
results. At the same time, formal software engi-
neering techniques and knowledge that are widely
adopted in other software development domains

are not as commonly used in research software
projects. In our experience and as reported in
Carver et. al. [2], research software development
approaches are more informal, particularly in the
upstream activities of requirements, analysis, and
design.

One challenge to investing in improved soft-
ware practices and processes for science is the
perception by some that a focus on improving
software skills falls under the category of engi-
neering, not science. There is a perception that
software engineering—refining repeated practices
for more efficiency—is not something that a sci-
entific research funding portfolio should support
as a fundamental element.

From this perspective, the best that research
software teams can do is spend modest amounts
of time learning practices from the mainstream
software engineering literature and use them un-
changed or with modest adaptation in their own
software development. While the RSE movement
is improving the situation for larger scientific
teams, in our experience, the current status results
in only moderate success—and sometimes even
failure. Best practices distilled from larger, more
mainstream software domains may be ill-suited
for research software teams.

The growth of the RSE community is a strong
sign that these perceptions are changing, and

2 Computing in Science and Engineering



software engineering is increasingly recognized
as an essential skill set on a diverse scientific soft-
ware team. Even so, there is another opportunity
to improve our ability to develop software and
improve its usability.

In this article, we propose that the scientific
method—which is central to scientific efforts us-
ing research software—can also be used to study
and improve the development and use of research
software. Looking at the development and use
of software for research through a scientific lens
enables us to apply a scientific approach to under-
stand and improve software as a tool for research.
In other words, research software development
and use are the subjects of our scientific study.

Research Software Science: Definition
Research software science (RSS) is de-

fined [4] as applying the scientific method to
understanding and improving how software is
developed and used for research. RSS involves
the use of formal observation and experimentation
to obtain and disseminate knowledge through re-
peatable and reproducible processes. Understand-
ing and improving software development and use
involves obtaining data to detect correlation, de-
signing experiments to identify cause and effect,
and publishing results for broad impact.

Funding agencies and software engineering
Numerous members of the research software
community have expressed concern that software
products receive insufficient direct funding for
sustainability. Funding efforts by the US Na-
tional Science Foundation (NSF) acknowledge
this problem with specific programs for software
support such as the CSSI program [3] and insti-
tutes such as MolSSI [10]. The US Department
of Energy has had similar efforts, for example,
the SciDAC program [12] and the Exascale Com-
puting Project [11]. However, the fundamental
issue that NSF, DOE and others face is that they
are primarily scientific agencies, limiting their
abilities to provide sustained software engineering
funding.

RSS and software funding and recognition
By cultivating RSS as a scientific approach that
complements an engineering approach, we can
more easily highlight that software engineering
studies are often scientific. Explicitly focusing

on a scientific approach to improving research
software gives scientific funding agencies unam-
biguous opportunities to fund this kind of work,
promoting further advancements in scientific soft-
ware work. Furthermore, elevating the status of
software engineering to a scientific discipline will
help to attract more software engineering talent
to the research software community and increase
respect for software work within research orga-
nizations, key challenges identified in Maimone
et. al. [7].

Science applied to research software
As stated above, the primary objective of

research software science is to apply the scientific
method to understanding the development and use
of research software. This pursuit has strong tech-
nical, social, and cognitive components. While
many people have realized the importance of the
technical component of research software devel-
opment and use, fewer people have focused on
the social and cognitive elements, and even fewer
have applied a scientific approach to studying and
improving research software team interactions or
the concerns of individual members.

Technical component:
Software is used in the majority of research
pursuits [6]. Examples include modeling and
simulation of scientific theories; the gathering,
analysis, and understanding of scientific data; and
related pursuits. These research activities typi-
cally require years of education in a research
domain and ongoing community engagement to
contribute to and keep abreast of discoveries
and approaches. For example, to develop and
use computational fluid dynamics (CFD) research
software, one must complete years of study in
mathematics, physics, and engineering and then
continue the study of CFD and related fields even
when developing and using the software.

Social component:
Development and use of scientific software are
typically a team effort, increasingly involving
more people and more diverse roles. In the case
of CFD, a team may collaborate with a structural
dynamics simulation team to study aeroelasticity–
the coupled study of CFD and structural dynam-
ics to account for the inter-dependence of how
blades bend and airflow behavior changes–in the

March/April 2023 3



CiSE Special Issue on the Future of Research Software Engineers in the US

modeling of wind turbines. Together these teams
may need to use advanced parallel computers,
requiring additional skills on the team. As teams
grow by aggregation of skills, the interactions,
workflows, and tools that are used will play
a large part in the effectiveness of a research
software team. Furthermore, scientific software
teams are often composed of both developers and
users [6].

Cognitive component:

Improving our approaches to developing and us-
ing research software typically requires learning.
In our experience, scientists tend to enjoy solv-
ing problems. Framing change as a problem or
puzzle to be solved can be effective in engag-
ing scientists. Posing improvement goals in a
descriptive, more than prescriptive, way enables
scientists to be part of the creative process. More
generally, leveraging knowledge from cognitive
sciences can improve our ability to understand
how developers and users of research software
approach their work and interact with each other.

Social and cognitive sciences focus
Applying the scientific method to research

software teams necessarily involves the social
and cognitive sciences. Observations, interviews,
data mining, and similar techniques provide the
raw materials for analyzing and gaining an un-
derstanding of important correlations—and ul-
timately, one hopes, identifying cause and ef-
fect—between behaviors, situations, and out-
comes.

While the software engineering literature ad-
dresses the social and cognitive elements of soft-
ware development and use, research software
teams take on considerable risks by adopting pub-
lished team practices without scrutiny or adap-
tation. In our experience, many published team
practices are not sufficiently informed by the
dynamics and requirements of research software
development and use. To better understand when
and how existing software methodologies are
appropriate and to develop new approaches for
research software, we need the skills and tools of
social and cognitive sciences applied to research
software teams and individuals.

RSS not just an extension of RSE
As mentioned, the software engineering lit-

erature provides ample material dedicated to the
social and cognitive elements of software teams.
Some of this literature is scientific in nature,
but much of it is anecdotal, based on years of
experience from seasoned software professionals.
These writers produce generalized recommenda-
tions from specific experiences, often with benefit
to other developers and users.

It is reasonable to argue that RSS is a mod-
est extension of RSE. There is some truth to
this, especially to the extent RSE team members
experiment with new mental models, tools, and
processes. However, in our experience, this exper-
imentation is seldom a formal, repeatable, or re-
producible process designed to generate sharable
knowledge. Instead, we believe it is fruitful to
consider RSS as a new identifiable element within
an existing RSE organization. Figure 2 shows a
notional research-develop-deploy pipeline where
the challenges of supporting research software
within the deploy phase inform the questions in
the research phase that are then used to inform
the develop phase and lead to new deployable
capabilities.

Fred Brooks, author of the popular book The
Mythical Man-Month is often quoted as saying,
“A scientist builds in order to learn; an engineer
learns in order to build.” Engineers want an im-
proved tool or process. They identify a few possi-
bilities, test, select the best, and move on. There
is only incidental team memory and little focus
on dissemination. Scientists want to understand
underlying principles, correlation, and cause-and-
effect. They design studies, capture data, analyze
results and publish.

The software engineering community cer-
tainly performs research, but this research is not
always directly applicable to research software.
Furthermore, especially in the research commu-
nity, we should call this kind of work what it is:
science.

Why now: Multidisciplinary direction of
science

Many important efforts in science require
strong multidisciplinary teams. As noted in the
aeroelasticity example above, we see that research
software is increasingly incorporating multiscale

4 Computing in Science and Engineering



Figure 2. One model for integrating research software science staff into an existing research software engineering team is
to consider a research-develop-deploy pipeline. Opportunities for improving the development and use of research software
approaches come from understanding the challenges faced in deploying existing software products. These challenges
become the research problems for study and later become new approaches to develop and deploy.

Figure 3. Early use of software for scientific discovery was generally small-scale, developed by a team of domain scientists.
As efforts proceeded, the need for new mathematics and more efficient computer science algorithms and data structures
emerged. As software products grew in size, complexity and coupling, the need for data management and software
engineering expertise emerged. Presently, the growing complexity of scientific software projects increases the value of
investing in cognitive and social sciences.

and multiphysics features, equation-driven and
data-driven approaches, involving modeling, sim-
ulation, and data analysis. Adding a scientific
approach to understanding the development and
use of research software establishes one more
dimension in the pursuit of better scientific ap-
proaches and is especially appropriate given the
growing diversity of scientific teams and the need
to understand and optimize team interactions and

output. Historically, we can see the expansion
of skillsets needed by leading research software
communities, as shown in Figure 3.

Trends in scientific software that
increase the value of RSS

The technology community is seeing the
growing importance of considering human fac-
tors in product development [14]. In addition,
software design and development platforms are

March/April 2023 5



CiSE Special Issue on the Future of Research Software Engineers in the US

becoming increasingly sophisticated, reducing the
cost of creating products. For example, artificial
intelligence (AI)-based tools that assist in gen-
erating source code, testing infrastructure, and
more, are available to assist in producing soft-
ware.

With the increased emphasis on improving
the usability of software and the reduced cost of
producing it, skills in eliciting and analyzing re-
quirements, and user-centered design become rel-
atively more important than development skills.
More time will be spent on the upstream and
higher-level activities of what the product should
be than on making the product. Because of these
trends, we have an opportunity to place more
emphasis on purpose and design, resulting in soft-
ware systems adapted to fit scientists, broadening
usability, accessibility, and impact.

As part of the trends we observe, software
engineering practices such as focusing on user
experience (UX) can make more sense in the
research software development process to address
the growing size and complexity of scientific
teams and environments. Research software sci-
ence can play a large role in guiding these UX
activities, providing a scientific foundation for
long-term and sustainable impact. One notable
UX opportunity for scientific software is to study
the dynamics of teams where the users are also
the primary developers, a common situation for
research software teams but an atypical situation
for most UX methodologies.

Conclusion
Development and use of research software are

rich and dynamic pursuits, worthy of scientific
study in their own right. Viewing the pursuit of
better research software as a scientific problem
opens the door to applying scientific approaches
to assist in making our software development and
use even more effective and efficient. Cultivating
the concepts of RSS should facilitate direct fund-
ing for software efforts by research organizations
such as NSF and DOE and help elevate respect for
software efforts at research institutions. Finally,
RSS should lead to a qualitative improvement in
the development and use of research software,
just as the scientific method has led to a qual-
itative improvement in many other fields.

Acknowledgment
The original idea of Research Software Sci-

ence presented in this article was first delivered as
a white paper at the 2019 Collegeville Workshop
on Sustainable Scientific Software (CW3S19) [8],
then revised and extended for a blog post [4],
cross-posted on the BSSw and URSSI websites.
We thank St. John’s University for the on-site and
virtual resources used to conduct the Collegeville
Workshops on Scientific Software [9] that were
the genesis of the concept of Research Software
Science.

REFERENCES
1. David E. Bernholdt, John Cary, Michael Heroux, and

Lois Curfman McInnes. The Science of Scientific-

Software Development and Use. brochure from the ba-

sic research needs workshop, https://doi.org/10.2172/

1846008, 1 2022.

2. Jeffrey C Carver, Nick Weber, Karthik Ram, Sandra

Gesing, and Daniel S Katz. A survey of the state of

the practice for research software in the united states.

PeerJ Comput Sci, 8:e963, May 2022.

3. National Science Foundation. Cyberinfrastructure

for Sustained Scientific Innovation (CSSI). https://

beta.nsf.gov/funding/opportunities/cyberinfrastructure-

sustained-scientific. Accessed: February 20, 2023.

4. Mike Heroux. Research Software Science: A Scientific

Approach to Understanding and Improving How

We Develop and Use Software for Research. blog

article in Better Scientific Software, online, https:

//bssw.io/blog posts/research-software-science-a-

scientific-approach-to-understanding-and-improving-

how-we-develop-and-use-software-for-research,

September 25 2019.

5. Simon Hettrick. software-

saved/software in research survey 2014: Software in

research survey, Feb 2018.

6. Software Sustainability Institute. It’s impossible to

conduct research without software, say 7 out of 10 uk

researchers. https://www.software.ac.uk/blog/2014-12-

04-its-impossible-conduct-research-without-software-

say-7-out-10-uk-researchers, 2014. Accessed 22 Feb

2023.

7. Christina Maimone, Scott Yockel, Timothy Middelkoop,

Ashley Stauffer, and Chris Reidy. Characterizing the

US Research Computing and Data (RCD) Workforce.

In Practice and Experience in Advanced Research

Computing, PEARC ’22, New York, NY, USA, 2022.

Association for Computing Machinery.

6 Computing in Science and Engineering

https://bssw.io
https://urssi.us
https://doi.org/10.2172/1846008
https://doi.org/10.2172/1846008
https://beta.nsf.gov/funding/opportunities/cyberinfrastructure-sustained-scientific
https://beta.nsf.gov/funding/opportunities/cyberinfrastructure-sustained-scientific
https://beta.nsf.gov/funding/opportunities/cyberinfrastructure-sustained-scientific
https://bssw.io/blog_posts/research-software-science-a-scientific-approach-to-understanding-and-improving-how-we-develop-and-use-software-for-research
https://bssw.io/blog_posts/research-software-science-a-scientific-approach-to-understanding-and-improving-how-we-develop-and-use-software-for-research
https://bssw.io/blog_posts/research-software-science-a-scientific-approach-to-understanding-and-improving-how-we-develop-and-use-software-for-research
https://bssw.io/blog_posts/research-software-science-a-scientific-approach-to-understanding-and-improving-how-we-develop-and-use-software-for-research
https://www.software.ac.uk/blog/2014-12-04-its-impossible-conduct-research-without-software-say-7-out-10-uk-researchers
https://www.software.ac.uk/blog/2014-12-04-its-impossible-conduct-research-without-software-say-7-out-10-uk-researchers
https://www.software.ac.uk/blog/2014-12-04-its-impossible-conduct-research-without-software-say-7-out-10-uk-researchers


8. Michael A. Heroux. 2019 Collegeville Workshop

on Sustainable Scientific Software, 2019. https://

collegeville.github.io/CW3S19/.

9. Michael A. Heroux. Collegeville Workshops Home

Page, 2022. https://collegeville.github.io/Workshops/.

10. MolSSI. The Molecular Sciences Software Institute.

https://molssi.org. Accessed: February 20, 2023.

11. Department of Energy. DOE Exascale Computing

Project. https://exascaleproject.org/. Accessed: Febru-

ary 20, 2023.

12. Department of Energy. DOE Scientific Discov-

ery through Advanced Computing (SciDAC) Program.

https://www.scidac.gov/. Accessed: February 20, 2023.

13. Society of Research Software Engineering. RSE Soci-

ety Homepage, 2022. https://society-rse.org.

14. Gillian Tett. Anthrovision: A New Way to See in Busi-

ness and Life. Avid Reader Press/Simon & Schuster,

New York, NY, 2021.

15. The United States Research Software Engineer Asso-

ciation. US-RSE Homepage, 2022. https://us-rse.org.

Michael A. Heroux is a Scientist in Residence
at St. John’s University, MN, a Senior Scientist at
Sandia National Laboratories, and Director of Soft-
ware Technology for the US Department of Energy
(DOE) Exascale Computing Project (ECP). He is the
founder of the Trilinos scientific libraries, Kokkos per-
formance portability libraries, Mantevo miniapps and
HPCG Benchmark projects, and is presently leading
the Extreme-scale Scientific Software Stack (E4S)
project in DOE, a curated collection of HPC software
targeting leadership platforms. Mike is a Fellow of
the Society for Industrial and Applied Mathematics
(SIAM), a Distinguished Member of the Association
for Computing Machinery (ACM), and a Senior Mem-
ber of IEEE. Contact him at mheroux@csbsju.edu.

March/April 2023 7

https://collegeville.github.io/CW3S19/
https://collegeville.github.io/CW3S19/
https://collegeville.github.io/Workshops/
https://molssi.org
https://exascaleproject.org/
https://www.scidac.gov/
https://society-rse.org
https://us-rse.org

	Research Software Science: Expanding the Impact of Research Software Engineering
	Recommended Citation

	Background
	Research Software Science: Definition
	Science applied to research software
	Social and cognitive sciences focus
	RSS not just an extension of RSE
	Why now: Multidisciplinary direction of science
	Trends in scientific software that increase the value of RSS
	Conclusion
	Acknowledgment
	REFERENCES
	Biographies
	Michael A. Heroux


