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Abstract:  

 Though a large body of literature analyzes commodity markets in general as well as the 

crude oil market, little work looks at the determinants of gasoline price shocks and which 

variables contributed to specific historical shocks. Using a structural vector autoregression 

(SVAR) model, one can determine how gasoline prices typically respond to shocks in price 

determinants, how much each variable, on average, contributes to the variation in gasoline, and 

which variables influenced gasoline prices during particular shocks. This paper proposes a 

simple SVAR model of the gasoline market and uses the model to determine what caused 

gasoline prices to decline between June 2014 and February 2015. 
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1. Introduction 

 What causes domestic gasoline prices to change? Answering this question is difficult, but 

looking for an answer is very important. The effect of a gasoline price change on firm behavior 

and policy decisions differs depending on which variable caused the shock. For example, falling 

gasoline prices due to improvements in refining technology will cause less concern to 

policymakers than a decrease in prices due to retracting aggregate demand. Determining exactly 

what causes gasoline prices to change in general may not be possible, but looking at a specific 

gasoline price change simplifies this question. 

 United States gasoline prices have experienced several significant changes throughout the 

2000s, the most recent occurring from June 2014 to February 2015. During this period, gasoline 

prices fell from an average of $3.62 to $1.98, a 45.3 percent decrease1.1Unlike other price 

decreases in this century, the price has not rebounded quickly, rising to only $2.35 as of January 

2017. One might expect low gasoline prices would lead to an expansion in production, but U.S. 

gross domestic product (GDP) has not increased much since 2014. Understanding what caused 

gasoline prices to decline will give insight into the reaction by the U.S. economy, and recent 

innovations in econometric analysis will help find an answer. 

 One recently developed econometric tool is the vector autoregression (VAR) model. This 

model treats every variable as endogenous, or affected by every other variable in the model. A 

specific type of VAR model, a structural vector autoregression (SVAR) model, allows variables 

to react contemporaneously, or instantaneously, to shocks in other variables2.2Since gasoline 

prices are highly volatile and react quickly to changes in price determinants, an SVAR model 

represents the gasoline market well. 

                                                           
1 Reported by the U.S. Energy Information Association. Dollar values reported in nominal terms. 

2 See Appendix A for a detailed description of VAR and SVAR methodology. 
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 Although countless variables affect gasoline prices, SVAR models work best with few 

variables. If each variable included in the model represents changes in numerous variables, 

together representing most gasoline price determinants, the SVAR model remains effective while 

accurately describing the gasoline market. Both Kilian (2010) and Weinhagen (2003) create 

insightful, accurate depictions of the gasoline market using SVAR models, but a model with 

fewer variables and easily understood relationships gives meaningful insights as well. The 

variables in this paper’s model represent gasoline supply, gasoline-specific demand, aggregate 

demand, and gasoline price. The model estimates that, in the short-run, gasoline supply causes 

72% of the variation in gasoline prices while the two demand variables make no contribution. In 

the long run gasoline supply contributes to 66% of the variation in gasoline prices while the two 

demand variables each contribute to roughly 6% of the variation3.3 

 With these estimates, one would expect a positive gasoline supply shock as the cause of 

the 2014 drop in gasoline prices. The U.S. did not experience any adverse shocks to its GDP or 

unemployment rate during this time, but crude oil prices, a significant factor of gasoline 

production, experienced substantial changes. Throughout the second half of 2014, world crude 

oil prices experienced a 54% decrease. This decrease contributed to a positive supply shock in 

the gasoline market, which, according to a simple SVAR model, accounted for 88% of the 

decline in gasoline prices from June 2014 to February 2015. 

 The remainder of the paper will proceed as follows. Section 2 discusses developments in 

commodity, oil, and gasoline market research. Section 3 outlines the two primary theoretical 

approaches to modelling gasoline prices, which approach this paper’s model will use, and how 

this paper’s model is simpler than current gasoline market SVAR models. Section 4 reviews 

                                                           
3 The remaining 28% of short run variation and 22% of long run variation attribute to variables not captured by this 

model, such as inventory costs and uncertainty. 
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current SVAR models of the gasoline market.  Section 5 explains which variables are included in 

the model and why. Section 6 describes the pre-estimation results for this paper’s model. Section 

7 illustrates how the model defines contemporaneous relationships. Section 8 discusses the 

impulse response function, forecast error variance decomposition, and historical decomposition 

results as well as the interpretations of these results. Section 9 provides concluding remarks. 

 

2. Commodities, Oil Prices, and the Gasoline Market 

 In order to understand the factors that influence gasoline prices, one must understand 

literature pertaining to commodity markets, the global crude oil market, and the U.S. gasoline 

market. Gasoline is a storable commodity, so literature pertaining to commodities will help one 

determine the formation of gasoline prices. Also, since crude oil is the primary input to gasoline 

production, crude oil literature helps explain a large aspect of gasoline supply. A substantial 

body of research exists which examines commodity markets and the global crude oil market, but 

most relevant literature analyzes price formation in the commodity and crude oil market, 

historical oil price shocks, and macroeconomic consequence of oil price shocks. 

 Research on commodity price formation identifies the marginal convenience yield price 

volatility and as factors attributing specifically to commodity price changes. The marginal 

convenience yield is a measure which corresponds to the convenience of being able to sell 

inventories in the present or waiting to sell them in the future. Pindyck (2001) explains that spot 

prices and the marginal convenience yield are positively correlated. He determines that gasoline 

inventory owners pay, on average, 8.1% of their revenues each month for the benefit of having 

physical inventories. Pinyck also finds a positive correlation between volatility and commodity 

prices. Cashin and McDermott (2002) determine exchange rate fluctuations following the end of 
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the Breton Woods exchange agreement caused a period of high commodity price volatility 

during the 1970s. Iacoviello, Schiantarelli, and Schuh (2011) conclude that commodity prices 

were less volatile from 1984-2007 as compared to 1960-83, though a decrease in inventory 

shocks during the former period did not attribute to the change in price volatility. These findings 

suggest commodity prices are positively correlated with the convenience yield as well as 

volatility, though these variables have not influenced commodity prices as much between 1984 

and 2007 as opposed to 1960-83. 

 In the crude oil market, macroeconomic variables influence prices more than commodity-

specific factors. Kilian (2009) identifies demand variables as the major cause of crude oil price 

shocks. These demand variables include global aggregate demand and precautionary demand 

(shifts in future price expectations caused by political conflicts, perceived future availability of 

crude oil, etc.). Hamilton (2009) also determines price speculation and global economic activity 

as determinants of crude oil prices, but he also concludes supply factors, such as production 

constraints or expanses by the Organization of Petroleum Exporting Countries (OPEC), may 

cause variation in crude oil prices during particular periods. When crude oil price shocks occur, 

one should analyze movements in these macroeconomic variables to determine the underlying 

cause of the price shock. 

 The most recent oil price shock occurred in 2014, and researchers examined which 

variables led to the price shock. Baffes et al. (2015) and Baumeister and Kilian (2016) both 

extensively analyzed this oil price decline. Baffes et al. observed both short-term and long-term 

variables contributed to declining oil prices. The short-term variables included an appreciation of 

the U.S. dollar, unexpected increases in U.S. oil production, unexpectedly low global aggregate 

demand, and a response by OPEC to maintain current oil production levels. The long-term 
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variables included steady increases in non-OPEC oil production and improvements in oil 

exploration technologies. Baumeister and Kilian found that half of the decline was predictable by 

June 2014. Adverse global demand shocks and positive oil supply shocks in the first half of 2014 

attributed to this predicted decline. The unanticipated declines resulted from a shock to oil price 

expectations, which lowered inventory demand beginning in June 2014, and low global 

economic productivity in December 2014. Thus, a combination of supply and demand factors 

attributed to this negative price shock. 

 Many have researched how macroeconomic variables respond to crude oil shocks, but 

their conclusions are conflicting. Morey (1993) as well as Jiménez-Rodríguez and Marcelo 

(2004) estimate the crude oil elasticity of U.S. GDP as -0.0551 and -0.04648, respectively. In 

other words, a one percent increase in the price of crude oil was estimated to cause roughly a 

0.05 percent decrease in U.S. GDP. Morey as well as Lee, Ni, and Ratti (1995) identify 

asymmetric responses to crude oil price shocks. Morey finds U.S. GDP responds significantly to 

an increase but not an equal decrease in crude oil prices. Lee, Ni, and Ratti conclude U.S. GDP 

responds more significantly to a crude oil price shock during a time of relative price stability 

than to a shock occurring during a period of price volatility. Barsky and Kilian (2004), however, 

find no evidence to support a significant response in U.S. GDP to crude oil shocks, and Kilian 

and Vigfusson (2011) rule out asymmetric responses to oil price shocks. With these conflicting 

findings, future research will be important in answering how macroeconomic variables respond 

to crude oil price shocks. 

 Likewise, research on the response of gasoline prices to crude oil price shocks has 

reached differing conclusions. Borenstein, Cameron, and Gilbert (1997) observe gasoline prices 

responding in greater magnitude to oil price increases than decreases, hypothesizing the 
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asymmetry is a result of temporary market power in the short run as well as different costs for 

adjusting inventories. Brown, Stephen, and Yücel (2000) observe asymmetry in gasoline price 

responses as well, though they do not find evidence of market power as the cause. Instead, they 

hypothesize the asymmetry results from differing consumer responses and refinery adjustment 

costs. Davis and Hamilton (2004) find the asymmetry results from the combination of menu 

costs and expected responses to price changes by consumers and competitors. On the other hand, 

Bachmeier and Griffin (2003) find little evidence of any asymmetry in wholesale gasoline prices. 

Further research will be important in answering how gasoline prices respond to oil price shocks. 

 Studies have also estimated both short-run and long-run gasoline price elasticity of 

demand, though these elasticities have not stayed constant over time. Brons et al. (2008) estimate 

the average price elasticity of demand from 1949 and 2004 to be -0.34 in the short run and -0.84 

in the long run. When Hughes, Knittel and Sperling (2008) estimate elasticities from two 

different periods, they find the short-run elasticities differ between the periods. They estimate the 

short-run price elasticity of demand from 1975 to 1980 to be in the range of -0.21 to -0.34 versus 

a range of -0.034 to -0.077 from 2001 to 2006. Thus, there is evidence to suggest the average 

short-run price elasticity of demand decreased over time, and both short- and long-run elasticities 

reveal a negative, inelastic relationship between gasoline prices and gasoline demand. 

 Less work, however, has looked at the determinants of gasoline price movements as well 

as which variables contributed to historical gasoline price shocks. Weinhagen (2003) determines 

gasoline price shocks contributed most to variation in gasoline prices, but he does not include 

historical analyses of specific gasoline shocks. Kilian (2010) includes a historical analysis of 

gasoline price determinants, but his model is a joint model of the crude oil market and gasoline 

market. A model focusing specifically on the gasoline market should give clearer insights into 
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the interactions of the variables that influence gasoline price. This paper serves to develop an 

understanding of which variables, on average, contributed to gasoline price movements as well 

as which variables influenced gasoline prices during specific historical price shocks, such as the 

2014 gasoline price shock. 

 

3. Modeling Gasoline Prices 

 There are two primary theoretical approaches to modeling gasoline prices. The first 

approach is a commodity pricing approach. Pindyck (2001) explains the dynamics of commodity 

pricing models, which demonstrate the relationship between inventory levels, volatility, and 

commodity prices. When prices are volatile, consumption and production of the commodity 

tends to be volatile as well, so the demand for inventories increases as inventory owners increase 

their inventories to buffer against these fluctuations. This increased demand for storage then 

leads to an increase in price. Commodities differ from typical consumer goods in two ways. 

Firstly, since inventory owners wish to keep a certain level of inventories, they impose demand 

in addition to consumer demand when market changes occur. Secondly, commodities can be 

used in two different ways, either as a consumption good or a store of value. Thus, the market for 

commodities can be split into two submarkets, the cash market and the storage market. 

 The cash market determines the spot price, or immediate price, of the commodity while 

the storage market determines the futures price, or the price of delivering a commodity at an 

agreed future date. When commodity prices are high, in general, the cost of storage will be 

higher. Likewise, increases in oil price volatility increases the demand for inventories, for those 

who own inventories can decide whether to use the stored gasoline as an asset or sell to 

consumers. This results in the marginal convenience yield. The marginal convenience yield, 
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price expectations, and inventory levels all affect commodity prices in addition to supply and 

demand factors. 

 Since finished gasoline is a storable commodity, gasoline prices are affected by 

commodity market factors. Price transition dynamics for commodities differ from standard 

consumable goods because inventory owners, like consumers, demand gasoline. For example, if 

there is a temporary increase in gasoline consumption, inventories suppress some of the price 

increase by selling some of their gasoline inventory and allowing their inventories to decrease. 

When gasoline consumption returns to its previous level, inventory owners will demand gasoline 

to refill their inventories. This will cause the price to decrease more slowly back into 

equilibrium. Conversely, if inventory owners expect the demand to be permanent, inventory 

owners will increase their own demand for gasoline in the short run. Thus, the price of gasoline 

will increase due to increased consumer demand as well as increased inventory demand. When 

the quantity demanded by consumers decreases in response to the additional price increase, 

inventory owners will replenish their reserves, and the price will slowly decrease to the new, 

higher consumer demand equilibrium. Once the market is in equilibrium, however, the 

commodity-pricing model yields the same price and quantity as the supply and demand model. 

The advantage of the commodity-pricing model is that it describes the gasoline market more 

accurately than a supply and demand model. The transition dynamics and relationships among 

variables, however, are less straightforward. 

 The second approach is a standard supply and demand model. Since gasoline is a 

consumer good, one can model the gasoline market like any other consumer good using a supply 

and demand model. This model includes variables that affect the supply of gasoline (such as 

crude oil price and availability, refining costs and capacities, and transportation costs) along with 
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variables that affect the demand for gasoline (such as the number of domestic vehicles in use and 

aggregate demand, for gasoline is an input of many other goods). This modeling approach 

focuses on the cash market of commodities. One advantage of supply and demand models is that 

researchers can determine if a change in one variable will have a positive or negative effect on 

price. For example, since crude oil is a factor of gasoline production, an increase in the price of 

crude oil should cause gasoline prices to increase. A second advantage is straightforward 

interpretation. The laws of supply and demand, as well as transition dynamics, which govern this 

model are easy to understand. This allows clear understanding of the relationships and 

interactions among variables in the model.  

 SVAR models can utilize either approach, but a model using the supply and demand 

approach reduces the complexity involved in interpreting transition dynamics. This paper aims to 

use variables with simpler relationships than previous literature, and using a supply and demand 

approach helps achieve this aim due to the simpler transition dynamics. Also, SVAR models 

treat relationships among the variables as a relationship of shocks rather than levels or quantities. 

Since shocks do not typically originate in the market for storage, as Iacoviello, Schiantarelli, and 

Schuh (2011) suggest for the period from 1984 to 2007, including a variable to capture storage 

shocks in an SVAR model that accounts for inventory determinants makes little sense. One could 

include a variable to capture changes in price volatility, though it would be difficult to argue the 

contemporaneous relationships among the variables. Thus, this paper’s empirical model is based 

on the theoretical supply and demand model. 

 

4. Current SVAR Gasoline Models 
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 Economists, over the last two decades, have utilized different forms of vector auto 

regression (VAR) models to determine how certain factors affect the price of gasoline in the 

United States (see, e.g., Kilian 2010; Weinhagen 2003). Christopher Sims (1980) was the first to 

promote the use of VAR models in macroeconomic analysis, and Stock and Watson (2001) have 

shown VAR models to be an accurate data analysis and forecasting tool. VAR models can be of 

three forms: reduced form, recursive, and structural. Reduced form and recursive VAR models 

do not require economic theory in determining the model (see Sims 1980), but these forms do 

not account for contemporaneous relationships among the variables (see Stock and Watson 

2001). SVAR models, however, can account for these types of relationships, though one must 

identify these relationships using economic theory. An SVAR model is most appropriate to 

model U.S. gasoline prices because gasoline prices react quickly to changes in oil prices (see 

Emmons and Neely). 

 Both Kilian (2010) and Weinhagen (2003) modeled U.S. gasoline prices using supply and 

demand variables in SVAR models. Kilian constructed a joint model combining the crude oil 

market and U.S. gasoline market. His model traced changes in global oil production, global real 

economic activity, real price of crude oil, real U.S. price of gasoline, and U.S. gasoline 

consumption, where shocks in the variables represented shocks in oil supply, aggregate demand, 

oil-market specific demand, U.S. supply of gasoline (represented as refinery shocks), and 

gasoline demand, respectively. In the short run, Kilian recognized refining shocks (shocks to the 

U.S. supply of gasoline) as the leading factors attributing to U.S. gasoline price shifts. In the long 

run, he observed oil-specific demand shocks and shocks to the global business cycle contributed 

most. 
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 Weinhagen (2003) constructed a model which focused specifically on the U.S. gasoline 

market. His model tracked changes in the producer price index (PPI) for crude oil, PPI of 

gasoline, consumer price index (CPI) for gasoline, U.S. gasoline consumption, and U.S. 

industrial production. Shocks incurred by each variable do not have additional interpretations4. 

4Weinhagen did not analyze variable shocks in the short-run or long-run but over a one-year 

period. He estimated that, during an average year, shocks in the PPI for crude oil and gasoline 

contributed most to variations in gasoline price. 

 Though Kilian (2010) and Weinhagen (2003) constructed their models differently, 

neither found gasoline demand variables, such as gasoline consumption and U.S. industrial 

production, as a major determinant of gasoline prices. These estimates, however, represent an 

average contribution based on observations over the entire dataset. For specific gasoline price 

shocks, the variables contribute in varying degrees. 

 

5. A Simplified Gasoline Model 

 The variables in this paper’s empirical model represent innovations in gasoline supply, 

gasoline-specific demand, aggregate demand, and the price of gasoline. Kilian (2009) inspires 

this approach with his oil market model. His model includes three variables: global oil 

production, global economic activity, and the price of crude oil. Shocks in these variables 

correspond with shocks in oil supply, aggregate demand, and oil-specific demand, respectively. 

Kilian associates shocks in the price of crude oil apart from changes in oil supply and demand as 

shocks to oil-specific demand. The price of gasoline could represent shocks in gasoline-specific 

demand, but gasoline consumption more accurately embodies changes in gasoline-specific 

                                                           
4 For example, a shock to the CPI for gasoline corresponded with a shock to the consumer price of gasoline. 
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demand. Shocks incurred by the price of gasoline in this paper’s model apart from shocks in 

other variables will correspond with unobserved variable shocks, such as shocks in price 

volatility and future price uncertainty. Compared to current SVAR models of the gasoline 

market, this paper’s model includes one fewer variable, and one can understand relationships 

among the variables with the help of a basic supply and demand model. To establish the 

empirical model, one must identify variables to capture shocks in gasoline supply, gasoline-

specific demand, aggregate demand, and the price of gasoline. 

 Understanding gasoline’s supply chain is essential to determine which variables capture 

gasoline supply shocks. The Depro et al. (2007) outlines the process from gasoline production to 

gasoline consumption. Gasoline starts out beneath the earth’s surface in the form of crude oil. 

Once extracted, firms transport the oil to a refinery. The refinery processes the crude oil into the 

finished gasoline product. Commercial inventory owners purchase the gasoline, transport the 

gasoline by pipeline or rail car, and store it in a single inventory or a series of inventories 

(terminals). These firms transport gasoline to gas stations by truck and sell the finished product 

to consumers. A supply variable is one that contributes to the production of a good or service. 

The price refineries sell their finished gasoline, the producer price of gasoline (PPI), should 

capture shocks in any supply variable, because the production of gasoline is complete once it 

leaves the refinery. Thus, the PPI for gasoline should capture gasoline supply shocks. 

 While a singular shock represents all supply, two different variables represent demand 

shocks. Since gasoline is a consumer good as well as an input in the production for many goods 

and services, separating demand shocks into two different categories is appropriate. Researchers 

typically use U.S. gross domestic product (GDP) as a measure of aggregate demand; however, 

since this paper’s model uses monthly data and GDP reports come out quarterly, the model must 



Spillum 16 

 

find a different variable. The Federal Reserve Bank of St. Louis reports the Industrial Production 

Index monthly, which is a suitable measure of U.S. aggregate demand. Likewise, this variable 

captures shocks in aggregate demand in this paper’s model. 

 The final variable, which will capture is gasoline-specific demand, is gasoline 

consumption. Gasoline-specific demand accounts for all demand for gasoline which is not a 

result of aggregate demand. One way to measure this demand is by calculating the number of 

gallons of gasoline consumed within the United States. Since monthly gasoline consumption data 

is not readily available, one can estimate gasoline consumption by finding the monthly amount 

of gasoline produced within the United States, adding in monthly gasoline imports, and 

subtracting out monthly gasoline exports. The model assumes consumers consume all gasoline 

imported or produced in the United States, since this model does not include gasoline 

inventories. This variable should capture an unexpected shock in the amount of gasoline 

consumed within the United States when an aggregate demand shock does not occur. 

 

6. Pre-estimation Tests 

 The variables included in the model are the PPI of gasoline, U.S. gasoline consumption, 

U.S. industrial production index, and the U.S. consumer price index (CPI) for gasoline. Each 

variable is seasonally adjusted and measured by month from January 1979 to December 2015. In 

addition, each variable was converted into percentage growth form by taking a first difference of 

logs and multiplying the result by 100. This transformation is imposed on the data to interpret 

changes in the model as percent changes as well as to make the estimation process stationary. 

According to Woolridge (2008), a process is stationary if the joint distribution for a collection of 

adjacent time indices is equal to an equal size collection of adjacent future time series. In other 
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words, the mean, variance, autocorrelation, and other measures of the distribution remain equal 

over time. This ensures that the estimates obtained from the OLS estimation of the SVAR model 

are valid. 

 To ensure a process is stationary, one can apply the Augmented Dickey-Fuller Test on 

the dataset. The Augmented Dickey-Fuller test performs a t-test on the coefficients of the lagged 

variables. If any of the estimated coefficients are equal to one, which means the current value of 

a variable is perfectly correlated with a certain lag, then there is evidence to suggest the process 

is nonstationary. In the t-test, the null hypothesis is that the process is nonstationary, or the 

estimated coefficients are equal to one. Thus, rejecting the null hypothesis will give evidence that 

the dataset is in fact stationary. A test statistic is statistically significant at the 1% level if the test 

statistic is less than -3.983. Table 1 displays the results of the Dickey-Fuller test.  

Table 1.     Dickey-Fuller Test Statistic 
          

Variable PPI Gasoline Consumption Industrial Production CPI Gasoline 

Test Statistic -7.05 -6.56 -5.714 -6.943 

     
NOTES: The 1% critical value is -3.983. 

   
Since each test statistic is less than the 1% critical value, there is little evidence to suggest the 

process is nonstationary. Thus, there is evidence to suggest the parameter estimates are accurate. 

 A second test, the Score Test (or Lagrange Multiplier Test), will ensure serial correlation 

(autocorrelation) does not exist among the residuals. When a correlation exists among variables a 

given interval apart, there is serial correlation. Serial correlation does not affect the unbiasedness 

or consistency of the model, but it does influence the model’s efficiency. In other words, the p-

values of the estimated coefficients in a model with serial correlation are smaller than the true p-
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values. Thus, one may reject the null hypothesis when it should not be rejected. In monthly, non-

seasonally adjusted data, serial correlation will most likely occur among variables that are 12 

steps apart. Woolridge (2008) states that serial correlation is especially present in models with 

lagged variables and can result in inconsistent OLS estimations. The SVAR model used in this 

paper will have a lag order of 12, so it is important to test for serial correlation among the error 

terms. The null hypothesis of the Score Test is that autocorrelation does not exist in the model, 

and this paper’s model failed to reject the null hypothesis for lag order up to 12 (see Appendix 

B). Thus, there is little evidence to suggest this model exhibits serial correlation. 

 

7. Model Identification 

 To reduce the number of unknown parameters in the model, contemporaneous 

relationships among variables are restricted. The following is a matrix representation of the 

model’s contemporaneous relationships: 

(

 
 

𝑒𝑡
𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟 𝑃𝑟𝑖𝑐𝑒 𝐼𝑛𝑑𝑒𝑥

𝑒𝑡
𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

𝑒𝑡
𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

𝑒𝑡
𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟 𝑃𝑟𝑖𝑐𝑒 𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒

)

 
 

= [

𝛽11 0 0 0
𝛽21 𝛽22 0 0
𝛽31 𝛽32 𝛽33 0
𝛽41 𝛽42 𝛽34 𝛽44

]

(

 
 

𝜀𝑡
𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒 𝑆𝑢𝑝𝑝𝑙𝑦 𝑆ℎ𝑜𝑐𝑘

𝜀𝑡
𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒−𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝐷𝑒𝑚𝑎𝑛𝑑 𝑆ℎ𝑜𝑐𝑘

𝜀𝑡
𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝐷𝑒𝑚𝑎𝑛𝑑 𝑆ℎ𝑜𝑐𝑘

𝜀𝑡
𝑈𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑆ℎ𝑜𝑐𝑘 )

 
 

 

Displaying these relationships in expanded form helps reveal the meaning of the 

contemporaneous relationships: 

𝑒𝑡
𝑃𝑃𝐼     = 𝛽11𝜀𝑡

𝐺𝑆 

𝑒𝑡
𝐶𝑂𝑁𝑆 = 𝛽21𝜀𝑡

𝐺𝑆 + 𝛽22𝜀𝑡
𝐺𝐷 

𝑒𝑡
𝐼𝑁𝐷    = 𝛽31𝜀𝑡

𝐺𝑆 + 𝛽32𝜀𝑡
𝐺𝐷 + 𝛽33𝜀𝑡

𝐴𝐷 

𝑒𝑡
𝐶𝑃𝐼    = 𝛽41𝜀𝑡

𝐺𝑆 + 𝛽42𝜀𝑡
𝐺𝐷 + 𝛽43𝜀𝑡

𝐴𝐷 + 𝛽44𝜀𝑡
𝑈𝑉 
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where 𝑒𝑡
𝐶𝑃𝐼, 𝑒𝑡

𝐼𝑁𝐷, 𝑒𝑡
𝐶𝑂𝑁𝑆, and 𝑒𝑡

𝑃𝑃𝐼 correspond to the estimated residual (the difference between 

the predicted value of the dependent variable and the actual value of the dependent variable) in 

the U.S. consumer price index for gasoline, the level of U.S. industrial production, the level of 

gasoline consumption in the U.S., and the producer price of gasoline, and 𝜀𝑡
𝐺𝑆, 𝜀𝑡

𝐺𝐷 , 𝜀𝑡
𝐴𝐷 , 𝜀𝑡

𝑈𝑉 

correspond to unexpected shifts in gasoline supply, gasoline demand, aggregate demand, and 

unobserved variables, respectively. 

 This form has important meaning in an SVAR model. In SVAR models, the relationships 

among variables are modeled as a relationship of shocks. Thus, an SVAR model models 

fluctuations in estimated residuals for a specific period as a function of unexpected variable 

shocks occurring during the same period, a theoretical assumption in SVAR methodology. After 

estimating the model by OLS and obtaining the predicted residuals, one can decompose the 

residuals into the contribution of each unexpected variable shock by inverting the beta matrix 

and multiplying the inverted beta matrix by the residual vector. Thus, one can use this 

mechanism to identify which variable shocks caused unpredicted changes in the model’s 

variables during specific periods. 

 The identification relationships were made under the following economic assumptions: 

(1) the consumer price of gasoline reacts quickly to shocks in gasoline supply, aggregate 

demand, and gasoline-specific demand; (2) industrial production will react to disturbances in 

gasoline supply, for gasoline is an input to a large number of goods and services, as well as 

gasoline-specific demand, since gasoline-specific demand is a subset of aggregate demand; (3) 

the quantity of domestic gasoline consumption will only react quickly to changes in gasoline 

supply because shocks in this variable will represent demand for gasoline apart from aggregate 

demand. Researchers, such as Hughes et al. (2008), have shown gasoline demand to be inelastic 
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in the short-run and therefore will not react quickly to changes in gasoline prices, and Aczel and 

Fullam (1986) have shown gasoline consumption can change dramatically to gasoline supply 

shocks; (4) the PPI of gasoline react contemporaneously with its own shocks because supply 

variables in the gasoline supply market tend to react slowly to changes in demand variables. For 

example, it takes time to increase oil production or reopen refineries. 

 An example of a gasoline supply shock will help give context to the relationships among 

the variables in the model. Figure 1 shows the impact of an adverse gasoline supply shock on the 

other variables. Before the supply shocks, price and quantity are at 𝑃0 and 𝑄0. The supply curve 

is horizontal since supply is fixed in the immediate short-run. An adverse supply shock will 

cause supply to shift upwards. At the same time, due to the identification of simultaneous 

relationships, changes in both aggregate demand and gasoline-specific demand will cause 

demand to shift left. This results in an increase in price from 𝑃0 to 𝑃1 and a decrease in quantity 

from 𝑄0 to 𝑄1. 

 Figure 1: Impact of a Gasoline Supply Shock on the Gasoline Market 
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8. Model Estimation  

 Once identified, the model parameters were estimated by OLS (see Appendix C for 

results). Using the estimated parameters of the model, impulse response functions (IRF) and 

forecast error variance decomposition (FEVD) verify the performance of the model. If valid, the 

results of these analyses should mirror Weinhagen’s (2003) results. Impulse response functions 

trace the impact of a one-standard deviation shock in one variable and the effect of this shock on 

other variables over a specified number of time steps5.5In other words, IRF analysis begins by 

assuming all variables are at their mean values. Then, a one-standard deviation shock occurs in a 

variable, the impulse variable, represented by a one-standard deviation change in 𝜀1
𝑖 , or the first 

period error term of the impulse variable i. Any variable which reacts contemporaneously with 

this variable will experience some shock, calculated in using the β estimates in the identification 

equations. This will result in the zero period responses. These responses are then used to estimate 

the next period responses by all the other variables, since all variables respond to shocks in other 

variables after one period (one month). This process repeats, and responses by all variables are 

recorded for all subsequent periods up to a specified number. Since it is helpful to look at the 

total change in a variable caused by a shock to the other variable, one can calculate the 

cumulative impulse response function by adding the current period response to the sum of the 

responses from all previous periods. 

 Appendix D contains cumulative impulse response functions for this model. These results 

suggest unexpected shocks in the consumption of gasoline have a statistically significant impact 

on gasoline prices only in the initial period, and this impact is not very large. This suggests that 

                                                           
5 The time-step used in this analysis was a 12-month period. 
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shocks in gasoline-specific demand do not contribute much at all to fluctuations in the price of 

gasoline. Furthermore, industrial production does have a statistically significant impact on the 

price of gasoline after two periods, and this impact remains statistically significant over the next 

nine periods. The size of the impact is not extremely large, but these results suggest an 

interesting dynamic between aggregate demand and the price of gasoline. When the U.S. 

experiences an increase in industrial production, this change has a lagged influence on the price 

of gasoline, i.e. it takes time for gasoline prices to respond to changes in aggregate demand. 

Supply shocks have a statistically significant impact on gasoline prices throughout the entire 

observation period, and the impact is rather large. This suggests that prices do not return to 

equilibrium quickly after a supply shock occurs. Instead, it seems supply variables do not return 

to previous levels quickly, so equilibrium price itself moves. Unobserved shocks, on the other 

hand, impact gasoline prices only temporarily, with prices returning to equilibrium after a period 

of four to five months. These results are consistent with Weinhagen’s (2003) impulse response 

analysis, giving evidence to the validity of this paper’s simpler model. 

 These findings are embedded in the forecast-error variance decomposition (FEVD) 

results. FEVD decomposes the variance of a variable into contributions from shocks in other 

variables. This is done by calculating the forecast error during each period, equal to the model’s 

predicted values �̂�𝑖 minus the actual value 𝑦𝑖, squaring the differences to obtain the forecast error 

variances (since mean forecast error is equal to zero) and using the β estimates to determine how 

much shocks in each variable contributed to the forecast error variance over a specified period. 

These contributions are then averaged to obtain how much shocks in one variable attributed to 

the variation in another variable. In principle, this analysis reveals how much shocks in each of 

the variables contribute to the variability of one variable over a given period. Table 2 contains 
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the FEVD for all variables over a 12-month horizon, and Appendix E contains the FEVD results 

for gasoline price for a number of different time horizons.  

Table 2.  Forecast Error Variance Decomposition (FEVD) 

FEVD Variable Percent of forecast error variance due to shocks in: 

 Supply 
Gasoline-Specific 

Demand 

Aggregate 

Demand 

Unobserved 

Shocks 

 

Supply 

 

88.65 

 

3.96 

 

2.80 

 

4.59 

 

Gasoline-Specific 

Demand 

 

1.23 

 

93.29 

 

4.18 

 

1.30 

 

Aggregate Demand 

 

2.94 5.82 89.87 1.36 

Unobserved Shocks 67.15 4.73 5.17 22.94 

 NOTES: Values represented as a percent of total variation. Time horizon for each result is 12. 

This analysis attributes 67.15% of the variance in gasoline prices, during a 12-month period, to 

shocks in supply. Therefore, during an average year, shocks in gasoline supply attribute to over 

half of the variation in gasoline prices. On the other hand, shocks in gasoline-specific demand 

and aggregate demand together account for only 10% of the variation in gasoline prices during 

an average year. These results are consistent with Weinhagen (2003), who found supply 

variables to contribute a total of 74% and demand variables to contribute a total of 2.5% to the 

variation in gasoline prices over an average year6.6 

 The 12-month FEVD results lead to a couple important observations. Firstly, consistent 

with the IRF results, gasoline-specific demand and aggregate demand seem to influence gasoline 

prices very little in an average year. If demand shocks are only temporary, inventory owners 

allow their reserves to decrease to accommodate the demand shock rather than purchasing more 

                                                           
6 Weinhagen’s (2003) model identified contemporaneous relationships differently than the model in this paper, so 

one would expect FEVD results for the two models to differ. 
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inventories. This reduces the size of the demand shock on the market. Prices, then, do not 

respond as much to temporary demand shocks. After demand returns to equilibrium, the price of 

gasoline will slowly return to equilibrium as inventories return to their pre-shock levels. Thus, it 

makes sense that demand variables do not contribute much to variation in gasoline prices. 

Secondly, the results from multiple horizons suggest supply shocks and unobserved shocks have 

a large impact on prices in the early horizons with their impact decreasing over longer horizons. 

Demand shocks, on the other hand, have little to no impact on gasoline prices over short periods 

while their impact increase over longer periods. Thus, demand shocks have a lagged influence on 

gasoline prices. Lastly, since the results are consistent with previous literature, this paper’s 

simpler model should be a valid tool for analyzing specific price shocks, like the 2014 gasoline 

price shock. 

  To determine which variables contributed to the decline in gasoline prices in 2014, the 

model undergoes historical decomposition. Historical decomposition decomposes shocks, i.e. the 

error terms 𝑒𝑡
𝑖, in one variable into the contribution of each variable to that shock. This is done 

for each month during the observation period, and summing the next period decomposition with 

the sum of the previous period decompositions reveals the portion of the shock caused by shocks 

in each variable over a certain horizon. Appendix F contains the cumulative historical 

decomposition of gasoline prices over the entire observation period. One will notice that gasoline 

supply shocks contribute to gasoline price shocks much more than any of the other three shocks. 

To determine the historical decomposition during a specific period, one must simply pick a 

relevant starting date and perform the same type of summation over a specified horizon. 
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 Looking at the historical decomposition of gasoline prices in 2014 and 2015 reveals 

which factors contributed to the gasoline price decline. Figure 2 outlines shocks incurred by the 

price of gasoline between June 2014 and June 2015. 

Figure 2. Cumulative Shock to CPI, 2014-2015 

 

This represents the summation of error terms for the CPI of gasoline over the period. Since the 

sum of the error terms deviates from zero, one can conclude a price shock indeed occurred 

during this period. This is important to note, for although a gasoline prices began to decrease in 

June 2014, a significant shock in gasoline prices did not begin to occur until October of 2014. 

Thus, visible factors prior to June 2014 and price expectations by gasoline sellers contributed to 

a certain amount of expected price decreases. Economists typically define a shock as an event 

which causes significant, unexpected changes in a variable, and the gasoline price error terms 

suggest a significant price shock occurred, though only after October 2014. 

 This paper determined the contribution of each variable to this gasoline price shock using 

historical decomposition. Figure 3 outlines the cumulative contribution of each variable to the 

2014 shock in gasoline prices. Shocks to the PPI of gasoline contributed most to unexpected 

changes in the price of gasoline during this period, making up 88% of the cumulative shock.  
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Figure 3. Decomposition of CPI Shock, 2014-2015

 

Shocks to gasoline consumption and industrial production account for only 6% and 4% of this 

shock, respectively, and unobserved variable shocks contributed to the remaining 2%. It appears 

gasoline supply shocks were the primary, if not the only contributor to the 2014 gasoline price 

shock. These results are consistent with the historical evidence of the period; U.S. economic 

growth did not experience any significant changes in the second half of 2014, and world crude 

oil prices experienced a significant negative shock, causing a positive supply shock in gasoline 

supply. 

 The gasoline price shock in 2014 was a negative shock, so analyzing a positive price 

shock will give greater context to the model. Between February 1999 and June 2000, U.S. 

gasoline prices rose from an average of $0.96 per gallon to $1.62, a 69.3 percent increase. This 

period occurs in the later part of the dot-com bubble, in which technology and web company 

stocks experienced extraordinary increases in price. The U.S. economy, in general, was at the tail 

end of an extended expansionary period, in which only a minor recession occurred between 1983 
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and 20007.7On the supply side, Hamilton (2011) explained the movement of gasoline prices 

between 1999 and 2001. While Asian economies grew rapidly during the early and mid-1990s, a 

number of Asian markets experienced a financial crisis from 1997 to 1998. This caused crude oil 

prices to drop as low as $12 per barrel near the end of 1998. The crisis, however, was short-lived, 

and crude prices rebounded rather quickly, almost tripling in price in the following two years. 

 With this background, historical decomposition allows one to analyze which variables 

contributed to the increase in gasoline prices. Firstly, Figure 4 displays the cumulative shocks 

incurred by the price of gasoline. 

Figure 4. Cumulative Shock to CPI, 1999-2000 

 

The results suggest gasoline prices experienced positive shocks between March 1999 and March 

2000. Secondly, Figure 5 displays the decompositions of these price shocks. As with 2014, the 

demand variables did not contribute much to the price shocks during this time. 

                                                           
7 A short recession occurred between July 1990 and March 1991, in which unemployment reached a peak of 7.8%. 
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Figure 5. Cumulative Shock to CPI, 1999-2000 

 

Supply shocks, on the other hand, contributed to large positive shocks between March and 

September of 1999, but unobserved shocks contributed to a negative shock in the same period. 

Thus, the unobserved shocks kept the price of gasoline from rising even more. 

 With rising crude oil prices, it is no surprise supply shocks contributed most to the price 

shock. The unobserved variable shocks are no surprise as well for the following reason: When 

crude oil prices fell to $12 per barrel in November of 1998, the demand for gasoline inventories 

increased, since inventory owners knew the price of oil would rise in the near future. Thus, 

inventory owners bought up inventory to sell to consumers at a later date. When the price of 

crude oil began to rebound, causing gasoline prices to increase in March 1999, inventory owners 

had sufficient reserves and could afford to allow their inventory levels to decrease. This, as 

explained earlier, would repress a gasoline price increase. Therefore, the observed negative 

impact of unobserved shocks to the price of gasoline in this period is not surprising.  

 

9. Concluding Remarks 
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 Based on evidence from historical events and the model’s estimations, a shock in the 

supply of gasoline, specifically a shock in the price of crude oil, was the primary cause of the 

2014 gasoline price shock. Also, shocks to gasoline supply are the primary contributor of 

gasoline price variation. These results suggest a few implications. Firstly, with the expectation 

that crude oil prices will increase in the future, gasoline prices will most likely increase as well. 

This may be problematic if consumers are not able to change their consumption behaviors 

quickly and switch to products which do not rely on gasoline. Secondly, if the price of crude oil 

remains low, firms and consumers will have little incentive to invest in alternative fuel sources, 

such as electric vehicles. With the rising concern of global climate change, this may hinder 

objectives which aim to reduce air pollution. Thirdly, it is possible that factors of gasoline supply 

may contribute in opposing ways to gasoline price shocks, as they did in the 1999 gasoline price 

shock. Historical decomposition, then, reveals important information regarding the underlying 

causes of gasoline price changes. 

 The model presented in this paper serves as a simple model of the gasoline market. 

Future research can certainly add factors to the model to obtain more accurate results. Since the 

model only included one variable to represent all of gasoline supply, one may look to create a 

model which focuses more intently on gasoline supply variables. Kilian’s (2010) model is a good 

start, and others may look analyze variables which connect more closely with the U.S. gasoline 

market. Shocks to the price of gasoline caused by unobserved shocks were most likely 

influenced by commodity factors such as uncertainty and other commodity-pricing factors. One 

may wish to construct a model using the commodity-pricing approach to determine how 

inventory demand and futures prices affect the price of gasoline. Future research into accurately 
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modeling the gasoline market will aid in policy analysis as well as allow firms to make better-

informed decisions when faced with uncertainty in future gasoline prices. 
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Appendix A 

SVAR Methodology 

 A vector autoregression (VAR) model is a type of simultaneous equation model. 

Simultaneous equation models are a system of equations where each dependent variable is a 

function of every other dependent variable as well as exogenous, or external, variables. The 

following is a simple two-variable simultaneous equation model: 

(1) 𝑦1 = 𝛼1𝑦2 + 𝛽1𝑧1 + 𝑢1 

 𝑦2 = 𝛼2𝑦1 + 𝛽2𝑧2 + 𝑢2 

where 𝑦1, 𝑦2 are the dependent variables, 𝑧1, 𝑧2 are exogenous variables, and  𝑢1, 𝑢2 are the 

structural error terms8.8In this case  𝑦1 and 𝑦2 are considered endogenous variables, for their 

values are dependent on the value of the other (i.e. the two variables are correlated). Thus, 

simultaneous equation models have the advantage of allowing the inclusion of endogenous 

variable, where ordinary least squares (OLS) estimation is only valid in single-equation models 

when each independent variable is uncorrelated with the dependent variable. 

 Estimating simultaneous equation models results in equilibrium estimates for the 

coefficients (𝛼1, 𝛼2 and 𝛽1, 𝛽2) as well as intercept terms. In order to allow for changes over 

time, one must include lagged variables in the model9.9This results in a dynamic simultaneous 

equation model. VAR models are dynamic simultaneous equation models where each variable is 

a function of each of its lags and the lags of every other variable. Thus, each variable in a VAR 

model is endogenous. 

                                                           
8 In this simplified model, and the intercept term is assumed to be zero. Also note that because 𝑧1, 𝑧2 are exogenous 

variables, they are uncorrelated with the structural error terms. 

9 For example, if our variable is 𝑦𝑡 , a lagged variable could be 𝑦𝑡−1, 𝑦𝑡−2, etc. for time period t.  
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 Christopher Sims (1980) was the first to propose a model in which each variable is 

endogenous. He believed more accurate macroeconomic estimates could be attained by 

constructing simultaneous equation models this way. In a typical simultaneous equation model, 

the decision to treat some variables as exogenous and others as endogenous is difficult to argue, 

for what real-world variable is truly uncorrelated with any other variable? The VAR model 

avoids this problem by simply allowing correlation among all variables.  

 VAR models also differ from typical simultaneous equation models in their 

identification. Identification is the method in which relationships among variables are restricted 

in order to reduce the number of parameters that require estimation, for simultaneous equation 

models contain a greater number of unknown parameters than OLS regression can estimate. 

According to Gottschalk (2001), simultaneous equation models are identified by imposing 

restrictions on the relationship between the dependent variables and the variables included in the 

model. For example, in a dynamic simultaneous equation model in which a dependent variable 

𝑦𝑡 does not react quickly to changes in an endogenous variable 𝑥𝑡, one may assume the 

coefficient of the first lagged variable 𝑥𝑡−1 is equal to zero. Restrictions are imposed until the 

number of unknown parameters of the simultaneous equation model is sufficiently small. 

 Simultaneous equation models, therefore, are typically identified without making 

restrictions to relationships among the structural error terms. In other words, structural 

disturbances are not orthogonal (statistically independent). Structural error terms in simultaneous 

equation models are treated as errors in the model due to small changes in unobserved variables, 

so it does not make sense to impose restrictions on the error parameters. VAR models, on the 

other hand, treat structural error terms as exogenous shocks in its corresponding dependent 

variable. Thus, when VAR models are identified, structural disturbances are considered to be 
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independent, which eliminates a number of necessary restrictions. In fact, any VAR model is 

able to be estimated by OLS when these restrictions are imposed. What would happen, though, if 

one wished to assume exogenous shocks in one variable simultaneously affected a number of 

dependent variables? A special form of VAR model, the SVAR, can accomplish this. 

 SVAR models have the following form: 

(2) 𝐴0𝑌𝑡 = ∑ 𝐴𝑖𝑌𝑡−𝑖
𝑝
𝑖=1 + 𝜀𝑡 

(3) 𝐸𝜀𝜀′ = ∑𝜀 =

[
 
 
 
𝜎𝜀1

2 0  0

0 𝜎𝜀2
2  0

  ⋱  
0 0  𝜎𝜀𝑛

2 ]
 
 
 
 

where each 𝐴𝑖 is an (n x n) matrix of parameters10,10𝑌𝑡 is an n-length vector of endogenous 

variables, 𝑝 is the lag order, and 𝜀𝑡 is a matrix of uncorrelated error terms, where the expected 

value of the error terms is zero. The variance-covariance matrix, 𝐸𝜀𝜀′, has a diagonal of 

variances with all other elements being equal to zero11.11In order to estimate this equation, (2) 

must be written in reduced-form, where each endogenous variable is written as a function of its 

own lags and the lags of all other variables. Thus, the reduced form of the above model is 

(4) 𝑌𝑡 = ∑ 𝐴∗𝑌𝑡−𝑖
𝑝
𝑖=1 + 𝑒𝑡 

(5) ∑𝑒 = 𝐴0
−1 ∑𝜀 𝐴0

−1′
 

where 𝐴∗ = 𝐴0
−1𝐴𝑖 and 𝑒𝑡 = 𝐴0

−1𝜀𝑡, and ∑𝑒 is the variance-covariance matrix of (4). In order 

to make this reduction, matrix 𝐴0 must be invertible, which this model assumes12.12Essentially, 

this is the condensed form of a system of equations, with n equations in total, where each 

                                                           
10 This includes the matrix 𝐴0. 

11 The error terms are assumed to be independent, so each covariance in the variance-covariance matrix is equal to 

zero. 

12 i.e. there exists a matrix 𝐴0
−1 such that 𝐴0𝐴0

−1 = 𝐴0
−1𝐴0 = 𝐼, where I is the identity matrix. 
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variable 𝑦𝑡 will be regressed on its past values as well as past values of all other variables (Stock 

and Watson, 2001). 

 To estimate all the parameters in the model, additional restrictions must be imposed on 

(2) and (3). To begin, one can restrict the diagonal elements of ∑𝜀 to equal 1. This normalizes 

the model, for ∑𝜀 is now equal to the identity matrix One must note that normalizing the model 

is only a rescaling; all relationships and functions of the model remains unchanged. A result of 

this normalization is that now ∑𝑒 = 𝐴0
−1𝐴0

−1′, which reduces the number of unknown 

parameters requiring estimation. Next, restrictions are imposed on the coefficients of 𝐴0. These 

restrictions focus on the relationship 𝑒𝑡 = 𝐴0
−1𝜀𝑡, for SVAR models depict relationships among 

economic variables as relationships of shocks. Thus, one must use a priori economic theory to 

impose restrictions among variable shocks. For example, shocks in the PPI for Gasoline react 

slowly or not at all to shocks in industrial production, so one can assume the PPI for gasoline and 

industrial production shocks are independent. To be exact, a total of  
𝑛(𝑛−1)

2
 restrictions must be 

made to 𝐴0 (See Omnia O H for a detailed explanation). A simple reduction which will exactly 

identify 𝐴0 is to make it lower triangle, or cause every entry above the main diagonal to equal 

zero. Doing so causes the relationship between 𝑒𝑡 and 𝜀𝑡 to become 

(6) 𝑒𝑡 =

[
 
 
 
 
𝛽1,1    0

𝛽2,1 𝛽2,2    

𝛽3,1 𝛽3,2 ⋱   
⋮ ⋮ ⋱ ⋱  

𝛽𝑛,1 𝛽𝑛,2 ⋯ 𝛽𝑛,𝑛−1 𝛽𝑛,𝑛]
 
 
 
 

𝜀𝑡 

After imposing these restrictions, the model can be estimated using OLS to obtain estimates for 

each 𝛽𝑖 and 𝜎𝜀𝑖

2 . 
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Appendix B 

Lagrange-Multiplier Test 

Lag Order 
Chi-squared 

Statistic 
Degrees of Freedom 

Probability of Observed Test 

Statistic 

1 12.064 16 0.73955 

2 18.009 16 0.32339 

3 22.841 16 0.11806 

4 16.918 16 0.3909 

5 17.287 16 0.36726 

6 22.882 16 0.11694 

7 23.844 16 0.09298 

8 20.012 16 0.2197 

9 15.239 16 0.50721 

10 9.4946 16 0.89166 

11 12.021 16 0.74252 

12 12.224 16 0.7284 

 NOTES: The null hypothesis is that no autocorrelation exists at the given lag order. 
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Appendix C 

𝐴0 and 𝐴0
−1 estimations with identification equations 

𝐴0 = [

0.150 0 0 0
0.005 0.499 0 0

−0.001 −0.073 1.646 0
−0.245 0.069 −0.005 0.509

]        𝐴0
−1 = [

6.669 0 0 0
−0.065 2.004 0 0
0.001 0.089 0.607 0
3.214 −0.270 0.607 1.964

] 

 

𝑒𝑡
𝐶𝑃𝐼    = 3.214𝑒𝑡

𝑃𝑃𝐼 − 0.270𝑒𝑡
𝐶𝑂𝑁 + 0.607𝑒𝑡

𝐼𝑁𝐷 + 1.964𝜀𝑡
𝑈𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑆ℎ𝑜𝑐𝑘 

 𝑒𝑡
𝐼𝑁𝐷    = 0.001𝑒𝑡

𝑃𝑃𝐼 + 0.089𝑒𝑡
𝐶𝑂𝑁𝑆 + 0.607𝜀𝑡

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝐷𝑒𝑚𝑎𝑛𝑑 𝑆ℎ𝑜𝑐𝑘
 

 𝑒𝑡
𝐶𝑂𝑁𝑆 = −0.065𝑒𝑡

𝑃𝑃𝐼 + 2.004𝜀𝑡
𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒−𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝐷𝑒𝑚𝑎𝑛𝑑 𝑆ℎ𝑜𝑐𝑘

 

 𝑒𝑡
𝑃𝑃𝐼   = 6.669𝜀𝑡

𝐺𝑎𝑠𝑜𝑙𝑖𝑛𝑒 𝑆𝑢𝑝𝑝𝑙𝑦 𝑆ℎ𝑜𝑐𝑘
 

NOTES: Statistical significance of the coefficients could not be calculated. Impulse response 

functions instead serve as a measure of whether or not a shock in one variable causes a 

significant shock in another variable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Spillum 41 

 

Appendix D 

Forecast Error Variance Decomposition of Gasoline Price 

Percent of forecast error variance in Gasoline Price due to shocks in: 

Time Horizon Supply Gasoline-Specific Demand 
Aggregate 

Demand 

Unobserved 

Shocks 

1 72.44 0.51 0.00 27.05 

2 78.24 0.45 0.22 21.09 

3 75.49 0.47 2.03 22.02 

6 70.83 0.90 4.22 24.05 

12 67.15 4.73 5.17 22.94 

Infinite 66.30 6.24 5.59 21.87 

NOTES: Values represented as a percent of total variation. The values for horizon infinite are 

approximated using a horizon of 400. 
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Appendix E 

Impulse Response Functions 

Table 1E. Mean Impulse Response Function Coefficients 

Mean Impulse Response to Supply Shock 

Response Variable 
PPI 

Gasoline 
Gasoline Consumption Industrial Production 

CPI 

Gasoline 

Period     

1 6.669* -0.065 0.001 3.214* 

2 7.953* -0.171 0.039 5.262* 

3 7.296* -0.221* 0.048 5.121* 

4 7.535* -0.336* 0.057 4.882* 

5 7.792* -0.500* 0.082 4.968* 

6 7.533* -0.424* 0.080 4.935* 

7 6.741* -0.425* 0.035 4.572* 

8 6.927* -0.358* -0.005 4.518* 

9 6.846* -0.501* -0.035 4.463* 

10 7.038* -0.531* -0.027 4.548* 

11 7.296* -0.513* -0.111 4.531* 

12 8.105* -0.470* -0.142 5.233* 

 

Mean Impulse Response to Gasoline-Specific Demand Shock 

Response 

Variable 

PPI 

Gasoline 

Gasoline 

Consumption 

Industrial 

Production 
CPI Gasoline 

Period     

1 0.000 2.004* 0.089* -0.270* 

2 0.075 0.473* 0.146* -0.162 

3 0.281 0.645* 0.173* -0.085 

4 0.176 0.747* 0.220* -0.110 

5 0.291 0.523* 0.266* -0.033 

6 0.370 0.621* 0.307* 0.264 

7 0.796 0.543* 0.333* 0.463 

8 1.699 0.196 0.327* 0.938 

9 2.118* 0.468* 0.298 1.329* 

10 1.751 0.577* 0.384* 1.120 

11 1.078 0.246 0.419* 0.604 

12 0.531 0.721* 0.401* 0.204 

NOTES: * indicates statistical significance at the 0.05 level. 
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Mean Impulse Response to Aggregate Demand Shock 

Response 

Variable 

PPI 

Gasoline 

Gasoline 

Consumption 

Industrial 

Production 
CPI Gasoline 

Period     

1 0.000 0.000 0.607* 0.005 

2 0.457 -0.102 0.697* 0.206 

3 0.949 0.320* 0.841* 0.798* 

4 1.493* 0.169 0.989* 1.415* 

5 1.785* 0.271* 1.094* 1.697* 

6 2.029* 0.179 1.122* 1.558* 

7 2.184* 0.120 1.185* 1.445* 

8 1.974* 0.195 1.191* 1.528* 

9 2.406* 0.134 1.262* 1.843* 

10 2.043 0.360 1.350* 1.619* 

11 1.719 0.219 1.401* 1.333* 

12 1.354 0.252 1.439* 1.100 

 

Mean Impulse Response to Unobserved Variable Shock 

Response 

Variable 

PPI 

Gasoline 

Gasoline 

Consumption 

Industrial 

Production 
CPI Gasoline 

Period     

1 0.000 0.000 0.000 1.964* 

2 0.800* -0.066 0.015 2.206* 

3 0.561 -0.139 0.043 1.634* 

4 0.165 -0.188 0.013 1.087* 

5 -0.179 -0.011 0.000 0.677 

6 -0.834 -0.068 -0.026 0.177 

7 -1.083 -0.089 -0.038 -0.026 

8 -1.578 -0.063 -0.074 -0.312 

9 -1.145 -0.064 -0.080 -0.290 

10 -1.623 -0.163 -0.120 -0.495 

11 -1.962 0.010 -0.099 -0.569 

12 -1.438 -0.094 -0.132 -0.289 

NOTES: * indicates statistical significance at the 0.05 level. 
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Figure 1E.  Cumulative Impulse Response Functions 

           Gasoline Supply Shock          Gasoline-Specific Demand Shock 
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        Aggregate Demand Shock      Unobserved Price Shock 

 
NOTES: IRFs impulse variable stated above columns, response variable stated left of each row 

on y-axis. Dotted lines represent a 95% confidence interval for impulse responses. Confidence 

intervals calculated using a bootstrap. 
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Appendix F 

Historical Decomposition of Gasoline Price Shocks, 1980-2015 
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