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Abstract

We study an impartial avoidance game introduced by Anderson and Harary.
The game is played by two players who alternately select previously unselected
elements of a finite group. The first player who cannot select an element without
making the set of jointly-selected elements into a generating set for the group
loses the game. We develop criteria on the maximal subgroups that determine
the nim-numbers of these games and use our criteria to study our game for
several families of groups, including nilpotent, sporadic, and symmetric groups.

Keywords: impartial game, maximal subgroup.

msc: 91A46, 20D30.

1 Introduction

Anderson and Harary4 introduced a two-player impartial game called Do Not
Generate. In this avoidance game, two players alternately take turns selecting
previously unselected elements of a finite group until the group is generated by the
jointly-selected elements. The goal of the game is to avoid generating the group,
and the first player who cannot select an element without building a generating set
loses.

In the original description of the avoidance game, the game ends when a gen-
erating set is built. This suggests misère-play convention. We want to find the
nim-values of these games under normal-play, so our version does not allow the
creation of a generating set—the game ends when there are no available moves.
The two versions have the same outcome, so the difference is only a question of
viewpoint.

1College of Saint Benedict and Saint John’s University, bbenesh@csbsju.edu
2Northern Arizona University, Dana.Ernst@nau.edu
3Northern Arizona University, Nandor.Sieben@nau.edu
4Anderson and Harary, 1987, “Achievement and avoidance games for generating abelian groups”.
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The outcomes of avoidance games were determined for finite abelian groups
in Anderson and Harary (1987)5, while Barnes provided a criterion for determining
the outcome for an arbitrary finite group. He also applied his criterion to determine
the outcomes for some of the more familiar finite groups, including abelian, dihe-
dral, symmetric, and alternating groups, although his analysis is incomplete for
alternating groups.

The fundamental problem in the theory of impartial combinatorial games is
finding the nim-number of the game. The nim-number determines the outcome of
the game and also allows for the easy calculation of the nim-numbers of game sums.
The last two authors6 developed tools for studying the nim-numbers of avoidance
games, which they applied to certain groups including abelian and dihedral groups.

Our aim is to find Barnes-like criteria for determining not only the outcomes
but also the nim-numbers of avoidance games. We start by recalling results from
Ernst and Sieben on cyclic groups and groups of odd order, and then we reformulate
Barnes’ condition in terms of maximal subgroups (Proposition 6) in the case of
non-cyclic groups. This allows us to determine the nim-numbers of the avoidance
games for non-cyclic groups that satisfy Barnes’ condition (Proposition 9). Then we
combine this with the results of Ernst and Sieben (2014) for cyclic groups to get a
complete classification (Theorem 1) of the possible values of the avoidance game.
Next, we reformulate our classification in terms of maximal subgroups (Corollary 5),
and we also provide a practical checklist for determining the nim-number corre-
sponding to a given group (Proposition 7). We then apply our theoretical results
for several families of groups in Section 7, which is followed by a section whose
main result is about quotient groups (Proposition 18). We end with several open
questions in Section 9.

Our development is guided by the following intuitive understanding of the
game. At the end of an avoidance game, the players will realize that they simply
took turns selecting elements from a single maximal subgroup. If they knew in
advance which maximal subgroup was going to remain at the end of the game, then
the game would be no more complicated than a simple subtraction game7 on a
single pile where the players can only remove one object on each turn. The first
player wins if that maximal subgroup has odd order and the second player wins
otherwise. Therefore, the game is a really a struggle to determine which maximal
subgroup will remain at the end. Viewed this way, the second player’s best strategy
is to select an element of even order, if possible. It is intuitively clear that the first
player has a winning strategy if all of the maximal subgroups have odd order, and
the second player has a winning strategy if all of the maximal subgroups have even
order.

5Anderson and Harary, 1987, “Achievement and avoidance games for generating abelian groups”.
6Ernst and Sieben, 2014, “Impartial achievement and avoidance games for generating finite groups”.
7Albert, Nowakowski, and Wolfe, 2007, “Lessons in play: an introduction to combinatorial game

theory”, Section 7.6.
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2. Preliminaries

2 Preliminaries

2.1 Impartial games

We briefly recall the basic terminology of impartial games. A comprehensive treat-
ment of impartial games can be found in Albert, Nowakowski, and Wolfe (2007)
and Siegel (2013)8. An impartial game is a finite set X of positions together with
a starting position and a collection {Opt(P ) ⊆ X | P ∈ X}, where Opt(P ) is the set
of possible options for a position P . Two players take turns replacing the current
position P with one of the available options in Opt(P ). The player who encounters
an empty option set cannot move and therefore loses. All games must come to an
end in finitely many turns, so we do not allow infinite lines of play. An impartial
game is an N-position if the next player wins and it is a P-position if the previous
player wins.

The minimum excludant mex(A) of a set A of ordinals is the smallest ordinal
not contained in the set. The nim-number nim(P ) of a position P is the minimum
excludant of the set of nim-numbers of the options of P . That is,

nim(P ) := mex{nim(Q) |Q ∈Opt(P )}.

Note that the minimum excludant of the empty set is 0, so the terminal positions
of a game have nim-number 0. The nim-number of a game is the nim-number of
its starting position. The nim-number of a game determines the outcome of a
game since a position P is a P-position if and only if nim(P ) = 0; an immediate
consequence of this is that the second player has a winning strategy if and only if
the nim-number for a game is 0.

The sum of the games P and R is the game P +R whose set of options is

Opt(P +R) := {Q+R |Q ∈Opt(P )} ∪ {P + S | S ∈Opt(R)}.

We write P = R if P +R is a P-position.
The one-pile NIM game with n stones is denoted by the nimber ∗n. The set

of options of ∗n is Opt(∗n) = {∗0, . . . ,∗(n − 1)}. The fundamental Sprague–Grundy
Theorem (Albert, Nowakowski, and Wolfe 2007; Siegel 2013) states that P = ∗nim(P )
for every impartial game P .

2.2 Avoidance games for groups

We now give a more precise description of the avoidance game DNG(G) played on a
nontrivial finite group G. We also recall some definitions and results from Ernst and

8Albert, Nowakowski, and Wolfe, 2007, “Lessons in play: an introduction to combinatorial game
theory”;

Siegel, 2013, Combinatorial game theory.
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Z1

3 · Z2

Z3

Z2 × Z2

3 · Z6

Z6 × Z2

Figure 1: Subgroup lattice of A4 with the intersection subgroups circled.

Sieben (2014). The positions of DNG(G) are exactly the non-generating subsets of G;
these are the sets of jointly-selected elements. The starting position is the empty set
since neither player has chosen an element yet. The first player chooses x1 ∈ G such
that 〈x1〉 , G and, at the kth turn, the designated player selects xk ∈ G \ {x1, . . . ,xk−1},
such that 〈x1, . . . ,xk〉 , G. A position Q is an option of P if Q = P ∪ {g} for some
g ∈ G \ P . The player who cannot select an element without building a generating
set loses the game. We note that there is no avoidance game for the trivial group
since the empty set generates the whole group.

Because the game ends once the set of selected elements becomes a maximal
subgroup, the setM of maximal subgroups play a significant role in the game. The
last two authors9 define the set

I := {∩N | ∅ ,N ⊆M}

of intersection subgroups, which is the set of all possible intersections of maximal
subgroups. The smallest intersection subgroup is the Frattini subgroup Φ(G) of G,
which is the intersection of all maximal subgroups of G.

Example 1. Subgroups—even those that contain Φ(G)—need not be intersection
subgroups. The maximal subgroups of A4 comprise four subgroups of order 3 and
one subgroup of order 4, as shown in Figure 1. The subgroup H = 〈(1,2)(3,4)〉
contains the trivial Frattini subgroup Φ(A4), but no intersection of some subset
of the five maximal subgroups yields a subgroup of order |H | = 2. So, H is not an
intersection subgroup of A4.

The set I of intersection subgroups is partially ordered by inclusion. We use
interval notation to denote certain subsets of I . For example, if I ∈ I , then (−∞, I) :=
{J ∈ I | J ⊂ I}.

For each I ∈ I let

XI := P (I) \∪{P (J) | J ∈ (−∞, I)}

9Ernst and Sieben, 2014, “Impartial achievement and avoidance games for generating finite groups”.
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2. Preliminaries

be the collection of those subsets of I that are not contained in any other intersection
subgroup smaller than I . We let X := {XI | I ∈ I} and call an element of X a structure
class.

Parity plays a crucial role in the theory of impartial games. We define the parity
of a natural number n via pty(n) := (1 + (−1)n+1)/2. The parity of a set is the parity of
the size of the set. We will say that the set is even or odd according to the parity of
the set. Observe that an option of a position has the opposite parity. The parity of a
structure class is defined to be pty(XI ) := pty(I).

The set X of structure classes is a partition of the set of game positions of
DNG(G). The starting position ∅ is in XΦ(G). The partition X is compatible with
the option relationship between game positions10: if XI ,XJ ∈ X and P ,Q ∈ XI , XJ ,
then Opt(P )∩XJ , ∅ if and only if Opt(Q)∩XJ , ∅.

We say that XJ is an option of XI and we write XJ ∈ Opt(XI ) if Opt(I)∩XJ , ∅.
The structure digraph of DNG(G) has vertex set {XI | I ∈ I} and edge set {(XI ,XJ ) |
XJ ∈Opt(XI )}.

If P ,Q ∈ XI ∈ X and pty(P ) = pty(Q), then nim(P ) = nim(Q) by Ernst and Sieben
(2014, Proposition 3.15)11. In a structure diagram, a structure class XI is represented
by a triangle pointing down if I is odd and by a triangle pointing up if I is even.
The triangles are divided into a smaller triangle and a trapezoid, where the smaller
triangle represents the odd positions of XI and the trapezoid represents the even
positions of XI . The numbers in the smaller triangle and the trapezoid are the
nim-numbers of these positions. There is a directed edge from XI to XJ provided
XJ ∈Opt(XI ). See Figure 4(c) for an example of a structure diagram.

The type of the structure class XI is the triple

type(XI ) := (pty(I),nim(P ),nim(Q)),

where P ,Q ∈ XI with pty(P ) = 0 and pty(Q) = 1. Note that the type of a structure
class XI is determined by the parity of XI and the types of the options of XI as
shown in Figure 2.

The nim-number of the game is the same as the nim-number of the initial
position ∅, which is an even subset of Φ(G). Because of this, the nim-number of the
game is the second component of type(XΦ(G)), which corresponds to the trapezoidal
part of the triangle representing the source vertex XΦ(G) of the structure diagram.

Loosely speaking, the simplified structure diagram of DNG(G) is built from the
structure diagram by identifying two structure classes that have the same type and
the same collection consisting of option types together with the type of the structure
class itself. We remove any resulting loops to obtain a simple graph as described

10Ernst and Sieben, 2014, “Impartial achievement and avoidance games for generating finite groups”,
Corollary 3.11.

11Ernst and Sieben, 2014, “Impartial achievement and avoidance games for generating finite groups”,
Proposition 3.15.
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y

x

(1,y,x)

c
d

(0,c,d)

a

b

(1,a,b)

y = mex{b, d, x}
x = mex{a, c}

Figure 2: Example for the calculation of the type of a structure diagram using the
types of the options.

in Ernst and Sieben (2014). See Figure 4(d) for an example of a simplified structure
diagram.

3 Groups of odd order

This next result is the foundation for our brief study of groups of odd order.

Proposition 1. If XI is a structure class of DNG(G) such that I is only contained in odd
maximal subgroups, then type(XI ) = (1,1,0).

Proof. We proceed by structural induction on the structure classes. If XI is terminal,
then I is an odd maximal subgroup, so type(XI ) = (1,1,0).

Now, assume that XI is not terminal. Let XJ be an option of XI and let M be a
maximal subgroup containing J . Then I ≤ J ≤M and we may conclude that M is
odd. Thus, type(XJ ) = (1,1,0) by induction. This implies that XI only has options of
type (1,1,0), and hence type(XI ) = (1,mex{0},mex{1}) = (1,1,0).

The next result, originally done with a different proof in Ernst and Sieben (2014,
Proposition 3.22), is an immediate consequence of Proposition 1 since DNG(G) is
determined by the type of XΦ(G).

Corollary 1. If G is a nontrivial odd finite group, then DNG(G) = ∗1.

4 Cyclic groups

Odd cyclic cyclic groups were done in the previous section, and even cyclic groups
are characterized by the following result.

Proposition 2. (Ernst and Sieben 2014, Corollary 6.7) If G is an even cyclic group, then

DNG(G) =


∗1, |G| = 2

∗3, 2 , |G| ≡4 2

∗0, |G| ≡4 0.
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5. Non-cyclic groups of even order

The next two results are likely well-known to finite group theorists, but we
provide their proofs for completeness.

Proposition 3. Let G = H ×K for finite groups H and K . If M is a maximal subgroup of
H , then M ×K is a maximal subgroup of G.

Proof. Suppose that L is a subgroup of G such that M × K < L ≤ H × K = G. Let
(x,y) ∈ L \ (M ×K). Because {e} ×K ≤M ×K , we can conclude that (x,e) <M × {e}.
Then 〈M,x〉 = H by the maximality of M. We have (x,e) ∈ L and M × {e} ≤ L since
{e} ×K ≤ L, so H × {e} is a subgroup of L. Then H × {e} and {e} ×K are subgroups of L,
so G = H ×K ≤ L. Therefore, G = L and M ×K is maximal in G.

Proposition 4. Let G = P ×H , where |P | = 2n and H is odd. Then every maximal
subgroup of G is even if and only if n ≥ 2.

Proof. Let M be a maximal subgroup of P . First, suppose that n ≥ 2. Because
|P | ≥ 4, Cauchy’s Theorem implies |M | ≥ 2. Let K be an odd subgroup of G. Then
K ≤ {e} ×H < M ×H , so K is not maximal. Therefore, every maximal subgroup is
even.

Now, suppose that every maximal subgroup is even. Then M ×H is maximal by
Proposition 3, and so it must have even order. Then |M | ≥ 2, so |P | ≥ 4 and n ≥ 2.

The following corollary will help tie the results for nim-numbers of cyclic groups
to the results for nim-numbers of non-cyclic groups in Section 6.

Corollary 2. Let G be a finite cyclic group. Then every maximal subgroup of G is even if
and only if 4 divides |G|.
Proof. We may write G as G = P ×H , where P is a 2-group and H has odd order. The
result follows by Proposition 4.

5 Non-cyclic groups of even order

Recall that a subset C of the power set of a group G is a covering of G if
⋃
C = G;

in this case, we also say that C covers G. Every proper subgroup of a finite group
is contained in a maximal subgroup, but the set of maximal subgroups does not
always cover the group.

We now consider even non-cyclic groups. We will need Corollary 3 to do this,
which follows immediately from Lemma 1 and Lagrange’s Theorem.

Lemma 1. Let G be a finite group. Then the set of maximal subgroups of G covers G if
and only if G is non-cyclic.

Proof. Suppose G is non-cyclic and x ∈ G. Since G is non-cyclic, 〈x〉 , G. Hence,
x ∈ 〈x〉 ≤M for some maximal subgroup M because there are only finitely many
subgroups.

Now, suppose G is cyclic and let x be a generator for G. Then x cannot be
contained in any maximal subgroup M, lest G = 〈x〉 ≤M , G.
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Corollary 3. If G is a finite non-cyclic group and t ∈ G has even order, then t is contained
in an even maximal subgroup.

We recall one of the main results in Barnes (1988)12.

Proposition 5. (Barnes 1988, Theorem 1) The first player wins DNG(G) if and only if
there is an element g ∈ G of odd order such that 〈g, t〉 = G for every involution t ∈ G.

Note that Condition (1) in the next proposition is the denial of the condition
used in Proposition 5. This new proposition reformulates Barnes’ condition about
elements in terms of maximal subgroups.

Proposition 6. If G is an even non-cyclic group, then the following are equivalent.
(1) There is no element g ∈ G of odd order such that 〈g, t〉 = G for every involution

t ∈ G.
(2) The set of even maximal subgroups covers G.

Proof. Let E be the set of even maximal subgroups. Suppose ∪E = G, and let g ∈ G
have odd order. Then there is some L ∈ E such that g ∈ L. By Cauchy’s Theorem,
there is a t ∈ L of order 2. Then 〈g, t〉 ≤ L < G. So, there can be no element g ∈ G of
odd order such that 〈g, t〉 = G for all involutions t ∈ G.

Suppose ∪E < G. Then there is an element g ∈ G \ (∪E); this g must have odd
order by Corollary 3. Now, let t ∈ G have order 2. If 〈g, t〉 is not equal to G, then
〈g, t〉 is contained in a maximal subgroup M. Since t has even order, it follows that
M must also be even, which contradicts the fact that g is not an element of any even
maximal subgroup. Therefore, 〈g, t〉 is not contained in any maximal subgroup,
which implies that 〈g, t〉 = G.

The next corollary follows from Propositions 5 and 6 since DNG(G) = ∗0 if and
only if the second player has a winning strategy.

Corollary 4. If G is an even non-cyclic group, then the following are equivalent.
(1) The set of even maximal subgroups covers G.
(2) Every element of G of odd order is in a proper even subgroup of G.
(3) DNG(G) = ∗0.

The following proposition shows that we only need to consider groups G where
the minimum number of generators d(G) is 2. One can prove this by slightly
modifying the proof of Barnes (1988, Theorem 1), although we provide a different
proof here.

Proposition 7. If G is an even group satisfying d(G) ≥ 3, then DNG(G) = ∗0.

Proof. Suppose that the set of even maximal subgroups fails to cover G, and let
t ∈ G have order 2. LetN be the set of maximal subgroups containing t. This is a
nonempty set of even subgroups. Because the entire set of even maximal subgroups
fails to cover G, the set N must also fail to cover G. But then 〈t,x〉 = G for all

12Barnes, 1988, “Some games of F. Harary, based on finite groups”.
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6. Classification of avoidance games

x ∈ G \
⋃
N , so d(G) ≤ 2. The result now follows from Corollary 4 since the set of

even maximal subgroups covers G when d(G) ≥ 3.

Example 2. One can easily verify using GAP13 that d(G) = 3 if G = Sym(4)×Sym(4)×
Sym(4), where Sym(k) is the symmetric group on k letters. Hence DNG(G) = ∗0.

6 Classification of avoidance games

We seek a way to determine the nim-number of DNG(G) for a finite group G from
covering properties of the maximal subgroups of G. We first recall the following
result.

Proposition 8. 14 The type of a structure class of DNG(G) is in

{(0,0,1), (1,0,1), (1,1,0), (1,3,2)}.

The following allows us to complete the determination of nim-numbers for all
avoidance games.

Proposition 9. Let G be an even non-cyclic group. Then DNG(G) = ∗3 if and only if the
set of even maximal subgroups does not cover G.
Proof. The contrapositive of the forward direction follows immediately from Corol-
lary 4. Now, assume that the set of even maximal subgroups does not cover G. Since
G is non-cyclic, the set of maximal subgroups covers G, so there must be an odd
maximal subgroup and hence XΦ(G) is odd. We will prove that type(XΦ(G)) = (1,3,2)
by showing that both (0,0,1) and (1,0,1) are contained in the set

T := {type(XI ) | XI ∈Opt(XΦ(G))}.

An easy calculation shows that this is sufficient to determine the type of XΦ(G), re-
gardless of whether there are other elements in T because T is necessarily contained
in the four-element set given in Proposition 8. Since ∅ ∈ XΦ(G), it will suffice to
show that ∅ has options of type (0,0,1) and (1,0,1).

By Cauchy’s Theorem, there is an involution t ∈ G. Because the set of even
maximal subgroups does not cover G, there is an element g ∈ G that is not contained
in any even maximal subgroup. Because G is non-cyclic, both {g} and {t} are options
of the initial position ∅. Let {g} ∈ XI and {t} ∈ XJ . Because g is only contained in odd
maximal subgroups and g ∈ I , type(XI ) = (1,1,0) by Proposition 1. We also know
that XJ is even, so type(XJ ) = (0,0,1).

The following theorem is a complete categorization of the possible values of
DNG(G).

13The GAP Group, 2015, GAP – Groups, Algorithms, and Programming, Version 4.7.7.
14Ernst and Sieben, 2014, “Impartial achievement and avoidance games for generating finite groups”,

Proposition 3.20.
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Theorem 1. Let G be a nontrivial finite group.
(1) If |G| = 2 or G is odd, then DNG(G) = ∗1.
(2) If G �Z4n or the set of even maximal subgroups covers G, then DNG(G) = ∗0.
(3) Otherwise, DNG(G) = ∗3.

Proof. The first case is handled by Proposition 2 and Corollary 1, respectively. For
the second case, note that both conditions imply that G has even order. Then the
result follows from Proposition 2 and Corollary 4, respectively.

For the final case, assume that the conditions of Items (1) and (2) are not met. If
G is cyclic, then G �Z4n+2 for some n ≥ 1. Thus, DNG(G) = ∗3 by Proposition 2. On
the other hand, if G is not cyclic, then Proposition 9 implies that DNG(G) = ∗3, as
well.

Note that the set of maximal subgroups of a cyclic group never covers the group
by Lemma 1. Therefore, exactly one of the hypotheses of Theorem 1(2) will hold.

Corollary 5. Let G be a nontrivial finite group.
(1) If all maximal subgroups of G are odd, then DNG(G) = ∗1.
(2) If all maximal subgroups of G are even, then DNG(G) = ∗0.
(3) Assume G has both even and odd maximal subgroups.

(a) If the set of even maximal subgroups covers G, then DNG(G) = ∗0.
(b) If the set of even maximal subgroups does not cover G, then DNG(G) = ∗3.

Proof. Let G be a finite group. If all maximal subgroups of G are odd, then it must
be that |G| is 2 or odd, so DNG(G) = ∗1 by Theorem 1. If all maximal subgroups of G
are even and G is cyclic, then |G| is a multiple of 4 by Corollary 2 and DNG(G) = ∗0.
If all maximal subgroups of G are even and G is not cyclic, then the set of maximal
subgroups of G covers G and DNG(G) = ∗0 by Theorem 1. So, we may suppose that
G has both even and odd maximal subgroups.

If the set of even maximal subgroups covers G, then G cannot be cyclic by
Lemma 1, and hence DNG(G) = ∗0 by Corollary 4. If the set of even maximal
subgroups does not cover G, then DNG(G) = ∗3 by Theorem 1.

Example 3. All four cases of Corollary 5 can occur. All maximal subgroups of Z3
are odd, so DNG(Z3) = ∗1. All maximal subgroups of Z4 are even, so DNG(Z4) = ∗0.
The group G := Z2 ×Z3 ×Z3 has maximal subgroups of both parities with the set
of even maximal subgroups covering G, so DNG(G) = ∗0. The group Sym(3) has
maximal subgroups of both parities with the set of even maximal subgroups failing
to cover Sym(3), so DNG(Sym(3)) = ∗3.

Corollary 5 relates to an amusing result.

Proposition 10. If the parity of all maximal subgroups of G is the same, then the outcome
of DNG(G) does not depend on the strategy of the players.

Proof. If every maximal subgroup is even, the players will inevitably end up choosing
from a single even maximal subgroup. Thus, regardless of strategy, the second
player will win. A similar argument holds if every maximal subgroup is odd.
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7. Applications

The parity of the maximal subgroups are all the same for p-groups. It has been
conjectured that almost every group is a p-group; if so, there is almost always no
strategy that changes the outcome of the game.

Corollary 6. If G is a finite group with an even Frattini subgroup, then DNG(G) = ∗0.

Proof. Since Φ(G) is even, every maximal subgroup must be even.

Example 4. The Frattini subgroups of the general linear group GL(2,3) and the
special linear group SL(2,3) are isomorphic to Z2. Hence the avoidance game on
these groups has nim-number 0.

The following corollary is a restatement of the results above, but written as an
ordered checklist of conditions, starting with what is easiest to verify. Note that the
hypothesis of Item (3) implies the hypothesis of Item (4), which in turn implies the
hypothesis of Item (5) if G is non-cyclic, so there is some redundancy. Items (3) and
(4) are listed separately because they are easier to check than Item (5).

Corollary 7. Let G be a nontrivial finite group.
(1) If |G| = 2, then DNG(G) = ∗1.
(2) If G is odd, then DNG(G) = ∗1.
(3) If Φ(G) is even, then DNG(G) = ∗0.
(4) If every maximal subgroup of G is even, then DNG(G) = ∗0.
(5) If the set of even maximal subgroups covers G, then DNG(G) = ∗0.
(6) Otherwise, DNG(G) = ∗3.

Proof. Items (1)–(6) follow immediately from Proposition 2, Corollary 1, Corollary 6,
Corollary 5(2), Corollary 5(3)(a), and Corollary 5(3)(b), respectively.

7 Applications

7.1 Nilpotent groups

Recall that finite nilpotent groups are the finite groups that are isomorphic to the
direct product of their Sylow subgroups. It immediately follows that all abelian
groups are nilpotent. The next proposition generalizes the result for abelian groups
found in Ernst and Sieben (2014).

Proposition 11. If G is a nontrivial finite nilpotent group, then

DNG(G) =


∗1, |G| = 2 or G is odd
∗3, G �Z2 ×Z2k+1, k ≥ 1

∗0, otherwise.

Proof. If |G| = 2 or G is odd, then DNG(G) = ∗1 by Theorem 1. If G �Z2 ×Z2k+1 for
some k, then it follows from Proposition 2 that DNG(G) = ∗3.
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Lastly, we assume we are not in the first two cases; then either 4 divides |G| or G
is non-cyclic of even order. We know G �

∏
pQp, where Qp is the Sylow p-subgroup

of G for the prime p. If 4 divides |G|, then every maximal subgroup is even by
Proposition 4, and hence DNG(G) = ∗0 by Corollary 5. So, suppose that |Q2| = 2 and
G is non-cyclic; then

∏
p,2Qp is not cyclic. Let g ∈ G have odd order. Then 〈g〉 is a

proper subgroup of
∏
Qp, so Q2×〈g〉 is a proper subgroup of G. Thus, every element

of odd order is contained in an even subgroup, so DNG(G) = ∗0 by Corollary 4.

7.2 Generalized dihedral groups

A group G is said to be a generalized dihedral group if G � AoZ2 for some finite
abelian A, where the action of the semidirect product is inversion. In this case, we
write G = Dih(A) and we identify A with the corresponding subgroup of G. Note
that A has index 2 in G, so A is maximal in G. The proof of the following is a trivial
exercise.

Proposition 12. Every element of Dih(A) that is not in A has order 2.
Proposition 13. Every maximal subgroup of Dih(A) is even except possibly A.
Proof. Let M be a maximal subgroup of Dih(A) that is not equal to A. Then M
contains an element of Dih(A) that is not contained in A. By Proposition 12, this
element has order 2, so M is even.

Proposition 14. The avoidance games on the generalized dihedral groups satisfy:

DNG(Dih(A)) =
{
∗3, A is odd and cyclic
∗0, otherwise.

Proof. If A is even, then all maximal subgroups of Dih(A) are even by Proposition 13.
Then DNG(Dih(A)) = ∗0 by Corollary 5, so we may assume that A is odd.

If A = 〈a〉 for some a ∈ A, then 〈L,a〉 = G for all even maximal subgroups L.
Then a is not in the union of the even maximal subgroups, and we conclude that
DNG(Dih(A)) = ∗3 by Theorem 1.

If A is non-cyclic, let g ∈Dih(A) have odd order; then g ∈ A by Proposition 12.
Let t ∈Dih(A) be any element of order 2. Then 〈g, t〉 = Dih(〈g〉) < Dih(A) since A is
not cyclic, so DNG(G) = ∗0 by Corollary 4.

Note that DNG(Dih(A)) can only be ∗3 if Dih(A) is a dihedral group. An alter-
native proof for Proposition 14 is to determine the simplified structure diagrams
shown in Figure 3 for DNG(Dih(A)) in terms of the minimum number of generators
d(A) of A and the parities of A and Φ(A).

7.3 Generalized quaternion groups

Recall that a group G is a generalized quaternion group (or dicyclic group) if
G � 〈x,y | x2n = y4 = 1,xn = y2,xy = x−1〉 for some n ≥ 2. The quaternion group of
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Φ(A) even Φ(A) odd d(A) = 1 d(A) = 2 d(A) ≥ 3

Figure 3: Simplified structure diagrams for DNG(Dih(A)).

order 8 is the n = 2 case.

Proposition 15. If G is a generalized quaternion group, then DNG(G) = ∗0.

Proof. Let g ∈ G have odd order. Using notation from the presentation above, one can
easily verify that G = X ∪Xy, where X = 〈x〉. It is easy to check that every element
of Xy has order 4 and so g ∈ X. Since X is even, DNG(G) = ∗0 by Corollary 4.

7.4 Groups with real elements

Recall15 that an element g of a group G is real if there is a t ∈ G such that gt = g−1.
Note that t induces an automorphism of order 2 on 〈g〉, so G must be even if it has a
real element.

Proposition 16. If G is a finite group such that |G| > 2 and g ∈ G is a real element of
odd order, then g is contained in a proper even subgroup or G �Dih(〈g〉).
Proof. Let K = 〈g〉. Because g is real, there is a t ∈ G such that gt = g−1. Then
conjugation by t in G induces an automorphism of K of order 2, so the order of t
is even. Since t normalizes K , we may define a subgroup L = K〈t〉. If L < G, then
g ∈ L < G and we are done since L must be even.

So assume that G = L with K normal in G. Let u be an involution in G, and let
M = K〈u〉. If M < G, then g ∈M < G and we are done since M is even. So assume
that G = K〈u〉 = 〈g,u〉 with |G| = 2|〈g〉|. Since g is real and G = K ∪Ku, u must invert
g and we have G �Dih(〈g〉).

The next corollary immediately follows from Proposition 2, Corollary 4, and
Propositions 14 and 16.

15Rose, 1994, A course on group theory.
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Corollary 8. If G is a finite group such that every element of G of odd order is real, then

DNG(G) =


∗1, |G| = 2

∗3, G �Dih(A) for some odd cyclic A
∗0, otherwise.

Example 5. If G is any of the groups listed below, then DNG(G) = ∗0 by Corollary 8
since every element of G is real by Tiep and Zalesski16.

(1) Ω2n+1(q) with q ≡4 1 and n ≥ 3
(2) Ω+

9 (q) with q ≡4 3
(3) PΩ+

4n(q) with q .4 3 and n ≥ 3
(4) Ω+

4n(q) with q .4 3 and n ≥ 3
(5) 3D4(q)
(6) any quotient of Spin−4n(q)′ with n ≥ 2
(7) any quotient of Sp2n(q)′ with q .4 3 and n ≥ 1

Proposition 16 implies that DNG(Sym(n)) = ∗0 for all n ≥ 4 since every element
in Sym(n) is conjugate to other elements with the same cycle structure, including
the element’s inverse. This is generalized in the following corollary for Coxeter
groups. Recall that the Coxeter groups of types An and I2(m) are isomorphic to
Sym(n+ 1) and the dihedral group of order 2m, respectively17.

Corollary 9. If G is a finite irreducible Coxeter group, then

DNG(G) =


∗1, G is of type A1

∗3, G is of type I2(m) for some odd m

∗0, otherwise.

Proof. If G is of type A1, then G is isomorphic to Z2 and DNG(G) = ∗1 by Propo-
sition 1. If G is of type I2(m) for some odd m (which includes type A2), then G is
dihedral of order 2m, and hence DNG(G) = ∗3 by Proposition 14. Every element of
every other Coxeter group is real by Geck and Pfeiffer (2000, Corollary 3.2.14)18, so
the result follows from Corollary 8.

7.5 Alternating groups

Let Alt(n) denote the alternating group on n letters. The last two authors proved
in Ernst and Sieben (2014) that DNG(Alt(3)) = ∗3 = DNG(Alt(4)). Barnes (1988)19

proved that DNG(Alt(n)) = ∗0 if n is greater than 5 and not a prime that is congruent

16Tiep and Zalesski, 2005, “Real conjugacy classes in algebraic groups and finite groups of Lie type”.
17Humphreys, 1990, Reflection groups and Coxeter groups.
18Geck and Pfeiffer, 2000, Characters of finite Coxeter groups and Iwahori-Hecke algebras.
19Barnes, 1988, “Some games of F. Harary, based on finite groups”.
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to 3 modulo 4. The full characterization of DNG(Alt(n)) can be found in Benesh,
Ernst, and Sieben (2015b)20, which uses the O’Nan–Scott Theorem21 to show

DNG(Alt(n)) =
{
∗3, n ∈ {3,4} or n is in a certain family of primes

∗0, otherwise.

The smallest number in this family of primes is 19.

7.6 Sporadic groups

The sporadic groups are the finite simple groups that do not belong to any infinite
family of simple groups.

Proposition 17. Let M23 denote the Mathieu group that permutes 23 objects and B
denote the Baby Monster. If G is a sporadic group, then

DNG(G) =
{
∗3, G �M23 or G � B

∗0, otherwise.

Proof. Suppose G � M23. Then 23 divides |G|, so G has an element of order 23.
The Atlas of Finite Groups22 states that no even maximal subgroup of G has order
divisible by 23, so we conclude that elements of order 23 are not in any even
maximal subgroup and the set of even maximal subgroups does not cover G. Then
DNG(G) = ∗3 by Corollary 5. If G � B, then similarly elements of order 47 are
not contained in any even maximal subgroup, since no even maximal subgroup is
divisible by 4723. So DNG(G) = ∗3 in this case, too.

Now suppose that G is isomorphic to the Thompson group T h. There is only one
class of maximal subgroups of G that is odd24, and these odd maximal subgroups
are isomorphic to 31.15. Thus, we only need to consider elements of order dividing
31 · 15, since all other elements are contained in some even maximal subgroup. By
the character table in Conway et al. (1985), it suffices to consider elements of order
3, 5, 15, and 31. Again by the character table, all elements of orders 3, 5, and 15 are
contained in centralizers of even order. Therefore, all elements of G are contained
in an even maximal subgroup except possibly for elements of order 31.

So let M be a maximal subgroup of G isomorphic to 31.15, and let g ∈M have
order 31. By the character table, there are exactly two conjugacy classes C1 and C2 of
elements of order 31, and any element of order 31 is contained in one and its inverse

20Benesh, Ernst, and Sieben, 2015b, “Impartial avoidance and achievement games for generating
symmetric and alternating groups”.

21Aschbacher and Scott, 1985, “Maximal subgroups of finite groups”.
22Conway et al., 1985, Atlas of finite groups: maximal subgroups and ordinary characters for simple

groups.
23Wilson, 1999, “The maximal subgroups of the Baby Monster, I”.
24Linton, 1989, “The maximal subgroups of the Thompson group”.
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is contained in the other. By Conway et al. (1985), there is a maximal subgroup
H of G that is isomorphic to 25.L5(2), so 31 divides |H | and H has an element h of
order 31. Then g is conjugate to either h or h−1; without loss of generality, assume
that there is an x ∈ G such that hx = g. Then g = hx ∈ Hx, so g is contained in
an even maximal subgroup. Therefore, the maximal subgroups of G cover G, so
DNG(G) = ∗0 by Corollary 5.

The remaining cases contain only even maximal subgroups, and therefore have
nim-number 0 by Corollary 5:

(1) The group J4 has only even maximal subgroups25.
(2) The group Fi23 has only even maximal subgroups26.
(3) The group Fi′24 has only even maximal subgroups27.
(4) The group M has only even maximal subgroups28.

Every maximal subgroup is even for every sporadic group not already men-
tioned Conway et al. (1985)29, so they also have nim-number 0.

7.7 Rubik’s Cube groups

We can use our classification results together with a computer algebra system to
handle some fairly large groups. There are 8 and 20 conjugacy classes of maximal
subgroups of the 2× 2× 2 and 3× 3× 3 Rubik’s Cube groups, respectively. A simple
GAP calculation30 shows that all these maximal subgroups are even. Hence, the
avoidance games on these groups are all ∗0.

8 Groups with Frattini subgroups of odd order

If the Frattini subgroup of a group G is even, then DNG(G) = ∗0 by Corollary 6. If
the Frattini subgroup is odd, then factoring out by the Frattini subgroup does not
change the nim-number of DNG(G).

Proposition 18. Let G be a finite group, and let N be a normal subgroup of G such that
N is odd and N ≤ Φ(G). Then DNG(G) = DNG(G/N ).

25Kleidman and Wilson, 1988, “The maximal subgroups of J4”.
26Kleidman, Parker, and Wilson, 1989, “The maximal subgroups of the Fischer group Fi23”.
27Linton and Wilson, 1991, “The maximal subgroups of the Fischer groups Fi24 and Fi′24”.
28Norton, 1998, “Anatomy of the Monster: I”;

Norton and Wilson, 2002, “Anatomy of the Monster: II”;
Norton and Wilson, 2013, “A correction to the 41-structure of the Monster, a construction of a new

maximal subgroup L2(41) and a new Moonshine phenomenon”;
Wilson, 1999, “The maximal subgroups of the Baby Monster, I”;
Wilson, 2010, “New computations in the Monster”.

29Conway et al., 1985, Atlas of finite groups: maximal subgroups and ordinary characters for simple
groups.

30Benesh, Ernst, and Sieben, 2015a, Companion web site.
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8. Groups with Frattini subgroups of odd order

Z1

3 · Z2

Z3

Z2 × Z2

3 · Z6

Z9

Z6 × Z2

3 · Z18

Z18 × Z2

Z1

3 · Z2

Z3

Z2 × Z2

3 · Z6

Z6 × Z2

0

1

0

13·
0

1

0

1

0

13·

0

1

0

1

(a) (b) (c) (d)

Figure 4: The subgroup lattices for Z18×Z2 and its quotient group Z6×Z2, together
with their common structure diagram and simplified structure diagram for the
avoidance game. The intersection subgroups are framed. Note that 3 ·Zn refers to 3
distinct copies of Zn at the same node in the diagram.

Proof. The result follows trivially if |G| = 2 and follows from Corollary 1 if G is odd,
so assume that G is even of order greater than 2. If G is cyclic, then 4 divides |G| if
and only if 4 divides |G/N |, since N is odd; the result follows by Proposition 2. So,
suppose that G is non-cyclic.

Let x ∈ G. If M is a maximal subgroup of G, then N ≤ Φ(G) ≤M by the definition
of Φ(G). By the Correspondence Theorem31, the maximal subgroups of G/N that
contain Nx are exactly the set of subgroups of the form M/N , where M is a maximal
subgroup of G containing x. Additionally, |(MN )/N | = |M/N | = |M |/ |N | ≡2 |M | since
N is odd. Therefore, the parities of the orders of maximal subgroups of G/N that
contain Nx are exactly the same as the parities of orders of maximal subgroups of
G that contain x, so the set of even maximal subgroups of G/N covers G/N if and
only if the set of even maximal subgroups of G covers G. The result follows from
Theorem 1.

It is well-known that the Frattini quotient of a nilpotent group is abelian. Since
the avoidance games for abelian groups were classified in Ernst and Sieben (2014),
we could have used Proposition 18 to prove Proposition 11.

Example 6. The Frattini subgroup of G = Z18 ×Z2 is Φ(G) �Z3. Hence, DNG(G) =
DNG(G/Φ(G)) = DNG(Z6 ×Z2) = ∗0, where the last equality follows from Proposi-
tion 11. Figure 4 shows how the subgroup lattice changes in the factoring process
while the structure diagrams remain the same. Notice that there are three arrows in
Figure 4(c) joining the structure classes corresponding to the intersection subgroups

31Isaacs, 2009, Algebra: a graduate course, Theorem 3.7.
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Z1 and 3 ·Z6 in the structure diagram of DNG(Z6 ×Z2), even though there is no
edge joining Z1 to any copy of Z6 in Figure 4(b). A similar relationship holds
between the structure classes corresponding to the intersection subgroups Z3 and
3 ·Z18 for DNG(Z18 ×Z2).

Factoring out by the Frattini subgroup can reduce the size of the group to make
it more manageable for computer calculation.

Example 7. The Frattini subgroup of the special linear group SL(3,7) is isomorphic
to Z3. The Frattini quotient is isomorphic to the projective special linear group
P SL(3,7). A GAP calculation shows that the Frattini quotient has 69008 even and
32928 odd maximal subgroups. The set of even maximal subgroups does not cover
P SL(3,7), so DNG(SL(3,7)) = DNG(P SL(3,7)) = ∗3 by Corollary 5(3)(b).

9 Further questions

Below we outline a few open problems related to DNG(G).

(1) The nim-number of the avoidance game is determined by the structure di-
agram, which is determined by the structure digraph and the parity of the
intersection subgroups. Is it possible to determine the structure diagram from
the abstract subgroup lattice structure without using any information about
the subgroups?

(2) Can we characterize DNG(G ×H), or even DNG(G oH), in terms of DNG(G)
and DNG(H)?

(3) Let N be a normal subgroup of G such that N ≤ Φ(G). Are the structure
digraphs of DNG(G) and DNG(G/N ) isomorphic?

(4) Can we characterize the nim-numbers of the achievement games from Ernst
and Sieben (2014) in terms of covering conditions by maximal subgroups
similar to Corollary 5 for avoidance games?

(5) Is it possible to determine nim-numbers for avoidance games played on alge-
braic structures having maximal sub-structures, such as quasigroups, semi-
groups, monoids, and loops?

(6) The nim-number of a game position P can be determined using the type of
the structure class containing P . The type of the structure class requires a
recursive computation using the minimal excludant. Is it possible to avoid this
computation and determine the nim-value of P in terms of a simple condition
using only the maximal subgroups?

(7) What are the nim-values of avoidance games played on the remaining classical
and simple groups?
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