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COMPARING LOCAL CONSTANTS OF ORDINARY ELLIPTIC

CURVES IN DIHEDRAL EXTENSIONS

SUNIL CHETTY

Abstract. We establish, for a substantial class of elliptic curves, that the
arithmetic local constants introduced by Mazur and Rubin agree with quo-
tients of analytic root numbers.

1. Introduction

Let E/k be an elliptic curve over a number �eld k. Fix a rational prime p > 3
for which E is ordinary1 and a quadratic extension K of k. Next, �x a character
ρ of Gal(k̄/K) of order pn and let τρ = indK/k ρ and τ1 = indK/k 1 be the induced

representations2 from Gal(k̄/K) to Gal(k̄/k). With ρ we de�ne L = k̄ker(ρ), a cyclic
extension L/K of degree pn, and we assume ρ is such that L/k is Galois and that
the non-trivial element c ∈ Gal(K/k) acts on g ∈ Gal(L/k) via conjugation as
cgc−1 = g−1. Following [9] we refer to such extensions L/k as dihedral.

Let v denote a prime of K, u the prime of k below v, w a prime of L above
v, and denote ku, Kv and Lw for the completions at u, v, and w. We consider
Gal(Lw/ku) ≤ Gal(L/k), and we set τρ,u (resp. τ1,u) to be τρ (resp. τ1) restricted
to Gal(Lw/ku).

For a self-dual complex representation τ of Gal(L/k), one has a conjectural
functional equation for the completed L-function Λ(E/k, τ, s) (see [12, �21])

(1.1) Λ(E/k, τ, s) =

(∏
u

W (E/ku, τu)

)
Λ(E/k, τ, 2− s),

with W (E/ku, τu) ∈ {±1} and the product taken over places u of k. Even though
the functional equation is conjectural, the W (E/ku, τu) can often be made explicit.

In [9] Mazur and Rubin de�ne constants δv, for each prime v of K, which relate
the ρ-part and 1-part of the pro-p-Selmer Gal(k̄/K)-module Sp(E/L) (see �2.2)

(1.2) dimQ̄p
Sp(E/L)ρ − dimQ̄p

Sp(E/L)1 ≡
∑
v

δv (mod 2) .

2010 Mathematics Subject Classi�cation. Primary 11G05; Secondary 11G07, 11G40.
This material is based upon work supported by the National Science Foundation under grant

DMS-0457481. The author would like to thank Karl Rubin for his many helpful conversations on
this material and reading of initial drafts of this paper.

1There is, to date and to our knowledge, only one result [9, Theorem 5.7] at supersingular
primes analogous to our considerations.

2Context will determine the �eld of values. See [7, �5] for a discussion of this.
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2 SUNIL CHETTY

De�ning γu by (−1)γu = W (E/ku, τρ,u)/W (E/ku, τ1,u), for each prime u of k, the
invariance of Λ(E/k, τ, s) under induction (see [12, �8]) and (1.1) give

(1.3) ords=1Λ(E/k, τρ, s)− ords=1Λ(E/k, τ1, s) ≡
∑
u

γu (mod 2) .

With the Shafarevic-Tate and Birch-Swinnerton-Dyer Conjectures in mind, the left-
hand sides of (1.2) and (1.3) are equal, and so we aim to show in as many cases as
possible that γu =

∑
v|u δv.

Our main new result is Theorem 4.1, and it yields a new proof of a case of a
relative version of the Parity Conjecture, Corollary 4.2. This Corollary is already
known by di�erent methods via work by de la Rochefoucauld in [1], Dokchitser and
Dokchitser in [3] and [2], and can also be recovered from work by Greenberg in
[5, �13]. Our calculations of δv in bad reduction also provide a new extension of
the results of [9, �7-8] regarding growth in rank of Sp(E) over dihedral L/K, for
example by relaxing the conditions in Theorem 8.5 of [9].

2. Local Constants of Elliptic Curves

In this section we recall the relevant parts of [13] and [9].

2.1. Analytic Local Constants. We denote ωu for the standard valuation on ku
and c6 for the constant appearing in a simpli�ed Weierstrauss model for E/ku (see
[17, �III.1]). For τ a representation of Gal(k̄u/ku) with real-valued character, we
call W (E/ku, τ) ∈ {±1} the analytic local root number for the pair (E/ku, τ). We
call the constants γu ∈ Z/2Z de�ned as quotients of local root numbers in �1 the
analytic local constants.

When τ has �nite image, set c(τ) := det (τ) (−1) and for two representations
τ and τ ′ of Gal(k̄u/ku) with �nite image de�ne 〈τ, τ ′〉 := 〈tr (τ) , tr (τ ′)〉, with the
right-hand side the usual inner product on characters.

LetH be the unrami�ed quadratic extension of ku and η the unrami�ed quadratic
character of Gal(k̄u/ku), i.e. the character of Gal(k̄u/ku) with kernel Gal(k̄u/H).
For e = 3, 4, or 6 and q ≡ −1 (mod e), where q = #(ku/u), let ϕe be a
tamely rami�ed character of Gal(k̄u/H) with ϕe|O×H of exact order e and such

that σe = indH/k ϕe is irreducible and symplectic. For θ the unrami�ed quadratic

character of Gal(k̄u/H) set σ̂e := indH/ku (ϕeθ), which is a dihedral representation

of Gal(k̄u/ku) (see p. 316-318 of [13]).
De�ne a representation σE/ku by applying the results of [12, �4] to

σE/ku,` : Gal(k̄u/ku)→ GL(V`(E)∗),

where V`(E)∗ is the dual of V`(E) = T`(E)⊗Z`
Q`. From

W (E/ku, τ) = W (σE/ku ⊗ τ),

Rohrlich proves the following formulae.

Theorem 2.1 (Theorem 2 of [13]). Suppose τ = τ̄ is a 2-dimensional representa-

tion of Gal(k̄u/ku) and denote ` for the residue characteristic of ku.

(i) If ` =∞ then W (E/ku, τ) = (−1)dim τ = 1.
(ii) If ` <∞ and E has good reduction over ku then W (E/ku, τ) = c(τ).



LOCAL CONSTANTS 3

(iii) If ` <∞ and ωu(j) < 0 then

W (E/ku, τ) = c(τ)(−1)〈χ,τ〉

where χ is the character associated to the extension ku(
√
−c6).

(iv) If 5 ≤ ` <∞, ωu(j) ≥ 0, and e = 12
gcd(ωu(∆E),12)

W (E/ku, τ) =

{
c(τ) if q ≡ 1 (mod e)

c(τ)(−1)〈1,τ〉+〈η,τ〉+〈σ̂e,τ〉 if e > 2, q ≡ −1 (mod e) .

Proposition 2.2 (Proposition 7 of [13]). If σE/ku = ψ ⊕ ψ−1 for some character

ψ of k×u and τ is as in Theorem 2.1, then W (E/ku, τ) = c(τ).

2.2. Arithmetic Local Constants. Let Selp∞(E/K) be the p∞-Selmer group
of E (see [9, �2] or [4, �2]). De�ne the pro-p Selmer group of E over K as the
Pontrjagin dual of Selp∞(E/K)

Sp(E/K) := Hom(Selp∞(E/K),Qp/Zp),

and consider it as a Q̄p-module by tensoring with Q̄p.
When Lw 6= Kv, let L

′
w be the unique sub�eld of Lw containing Kv with [Lw :

L′w] = p, and otherwise let L′w := Lw = Kv.

De�nition 2.3 (Corollary 5.3 of [9]). For each prime v of K, de�ne the arithmetic
local constant δv = δ(v,E, ρ) ∈ Z/2Z to be

δv := dimFp
E(Kv)/(E(Kv) ∩NLw/L′w

E(Lw)) (mod 2) .

Theorem 2.4 (Theorem 6.4 of [9]). If S is a set of primes of K containing all

primes above p, all primes rami�ed in L/K, and all primes where E has bad reduc-

tion, then

dimQ̄p
Sp(E/L)ρ − dimQ̄p

Sp(E/L)1 ≡
∑
v∈S

δv (mod 2) .

Proof. Following the notation of [9, �3], let R be the maximal order in in the
cyclotomic �eld of pn-roots of unity, so R has a unique prime p above p. De�ne

I := pp
n−1

and de�ne the I-twist of E by A := I ⊗E (in the sense of [10] and [9]),
an abelian variety with R ⊂ EndK(A). We then have

dimQ̄p
Sp(E/L)ρ = corankR⊗ZpSelp∞(A/K),

dimQ̄p
Sp(E/L)1 = corankZp

Selp∞(E/K).

Thus the conclusion above is equivalent to Theorem 6.4 of [9]

corankR⊗Zp
Selp∞(A/K)− corankZp

Selp∞(E/K) ≡
∑
v∈S

δv (mod 2) .

�

3. Local Computations

We keep the setting and notation of Theorem 2.1 and �1. Recall that c is the
non-trivial element of Gal(K/k).
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3.1. Preliminary Calculations.

Proposition 3.1. If vc 6= v, then γu ≡ δv + δvc ≡ 0.

Proof. When v 6= vc, we have Gal(Lw/ku) = Gal(Lw/Kv). It follows that τρ,u =
ρ⊕ ρ−1 and τ1,u = 1⊕ 1, so det (τ) (−1) = 1 for τ = τρ,u or τ = τ1,u. Also 〈ψ, τ〉 ≡
0 (mod 2) for ψ = 1, η, χ, or σ̂e, and by Theorem 2.1, we have W (E/ku, τ) = 1.
Applying Lemma 5.1 of [9] for δv �nishes the claim. �

Proposition 3.2. If vc = v, v is unrami�ed in L/K then γu ≡
∑
v|u δv ≡ 0.

Proof. In this case, v splits completely in L/K by [9, 6.5(i)], i.e. for every prime w
of L lying above v, Lw = Kv. Now, we have

τρ,u, τ1,u : Gal(Lw/ku) = Gal(Kv/ku)→ GL2(C)

viewing Gal(Kv/ku) as the v-decomposition subgroup of Gal(L/k). One sees by
direct calculation (see for example [14, �5.3]) that τρ,u ∼= τ1,u, and by applying
Corollary 5.3 of [9] for δv the claim follows. �

3.2. Good Reduction. In the case of good reduction, the arithmetic local con-
stant has been determined by Mazur and Rubin in [9].

Theorem 3.3 (Theorem 5.6 and 6.6 of [9]). If v is a prime of K with v - p, v = vc,
v is rami�ed in L/K, and E has good reduction at v, then δv ≡ 0.

Theorem 3.4 (Theorem 6.7 of [9]). If v | p and E has good ordinary reduction at

v, then δv ≡ 0.

For the corresponding situation on the analytic side:

Proposition 3.5. If E has good reduction over Kv then γu ≡ 0.

Proof. By Theorem 2.1(ii), it su�ces to see det (τρ,u) ≡ det (τ1,u) (mod p) for
some p | p. Fixing a basis for the spaces of ρ and 1 respectively, we have ρ ≡
1 (mod p) since L/K is a cyclic p-power extension. This implies τρ,u ≡ τ1,u (mod p)
(component-wise), viewed as matrices with function-valued entries, and det (τρ,u) ≡
det (τ1,u) (mod p) . �

3.3. Potential Multiplicative Reduction. Here, in view of Propositions 3.1-3.2,
we assume vc = v and v rami�es in L/K, i.e. Lw 6= Kv.

3.3.1. Analytic.

Proposition 3.6. If E/ku has potential multiplicative reduction, then γu ≡ 0 if

and only if E does not have split multiplicative reduction over Kv.

Proof. Applying the arguments of Proposition 3.5, it remains to determine 〈χ, τ〉.
If E has split multiplicative reduction at u, χ = 1 and since Lw 6= Kv, dim τ = 2.
We have τ = τ1,u = 1⊕µ, with µ the character associated to the extension Kv/ku.
When E has split multiplicative reduction at u, χ = 1 6∼= µ and so 〈χ, τ〉 = 1. For
the other cases, χ ∼= µ if and only if Kv/ku is the quadratic extension over which
E acquires split multiplicative reduction. �
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3.3.2. Arithmetic.

Proposition 3.7. If E has potential multiplicative reduction over ku, then δv ≡ 0
if and only if E does not have split multiplicative reduction over Kv.

Proof. Let H be the quadratic extension over which E attains split multiplicative
reduction. If H = Kv, there is a q ∈ k×u such that E(Lw) ∼= L×w/q

Z as Gal(Lw/Kv)-
modules, and with the isomorphism de�ned over Kv (loc. cit. [17]). This case is
Lemma 8.4 of [9].

Suppose now that H 6= Kv. De�ne E
′ to be the quadratic twist of E associated

to H/ku, so that E′ has split multiplicative reduction at u, and E
ϕ→ E′ is an

isomorphism over H. As before, we have a Gal(HLw/ku)-isomorphism

λ : E′(HLw)→ HL×w/q
Z,

with q ∈ k×. Let Gal(HLw/Lw) = 〈σ〉 and de�ne the minus-part of HL×w to be

(HL×w)− :=
{
z ∈ HL×w : zσ = z−1

}
and similarly for all other Gal(HLw/Lw)-modules3. The map obtained by pre-
composing λ with ϕ restricts to

E(Lw)
ϕ−→ E′(HLw)−

λ−→ ((HL×w)/qZ)−.

If q 6∈ NHLw/Lw
then we also have ((HL×w)/qZ)− ∼= (HL×w)−. If q ∈ NHLw/Lw

then

the projection of (HL×w)− has index 2 in ((HL×w)/qZ)−, hence prime to p. Both
cases will be similar, so we proceed with the former. One has a similar situation
with E(L′w)→ (HL′×w )−.

Since these maps commute with N := NHLw/HL′w
, the snake lemma gives

[E(L′w) : N(E(Lw))] = [(HL′×w )− : N((HL×w)−)].

We claim that this index is 1, implying E(Kv) ⊆ E(L′w) = N(E(Lw)) and hence

dimFp E(Kv)/(E(Kv) ∩NLw/L′w
E(Lw)) = 0.

To see that the index is 1, we note that local class �eld theory gives an injection

((HL′w)×)−/N((HL×w)−) ↪→ Gal(HLw/HL
′
w) = Gal(Lw/L

′
w)−.

Since we know that σ conjugates Gal(Lw/L
′
w) trivially, Gal(Lw/L

′
w)− is trivial. �

3.4. Potential Good Reduction. Again, we assume vc = v and v rami�es in
L/K, so Lw 6= Kv as before.

3.4.1. Analytic. Denote ` for the common residue characteristic of ku, Kv, Lw, and
suppose E/ku has additive and potential good reduction. Throughout we set H to
be the unique unrami�ed quadratic extension of ku.

Proposition 3.8. Suppose v - 6. If v - p or Kv/ku is unrami�ed then γu ≡ 0.

Proof. Here, we use the notation of Theorem 2.1, and from v - 6, we have ` ≥ 5.
For τ = τρ,u or τ = τ1,u, we have 〈1, τ〉 + 〈η, τ〉 ≡ 0 (mod 2), using that Kv/ku is
unrami�ed for the latter.

In this setting σ̂e is the representation of Gal(k̄u/ku) induced from a character ϕ̂e
of order e = 3, 4, or 6 (see [13, p. 332]). Hence, we may view σ̂e as a representation

3For example, restriction of σ gives Gal(HLw/Lw) ∼= Gal(HL′
w/L

′
w), providing HL′

w a
Gal(HLw/Lw)-module structure.
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of Gal(K1/ku) for some extension K1/Kv.
Consider τ = τρ,u. Lifting σ̂e and τ to some appropriate extension K2/ku, since

τ is irreducible, we see 〈σ̂e, τ〉 = 1 if and only if σ̂e ∼= τ . Restricting τ and σ̂e to
Gal(K2/Kv), these representations decompose as τ = ρ⊕ρc and σ̂e = ϕe⊕ϕce. The
order of ρ is a power of p ≥ 5 and the order of ϕe is 3, 4, or 6, so 〈σ̂e, τ〉 = 0. For
τ = τ1,u, we have τ = 1⊕ η and so 〈σ̂e, τ〉 = 0. �

Proposition 3.9. Suppose v - 6 and Kv/ku is rami�ed. If E acquires good reduc-

tion over an abelian extension of ku, then γu ≡ 0.

Proof. Here ` ≥ 5, so we are in case (iii) of Theorem 2.1, and the condition that
E acquires good reduction over an abelian extension of ku is equivalent to (see
[11, Prop 2]) W(M/ku) being abelian, where M is the minimal extension of kuru
over which E acquires good reduction, and in turn to σE/ku = ψ ⊕ ψ−1 for some

character ψ of k×u . This gives

W (E/ku, τ) = c(τ) = det (τ) (−1).

Applying Proposition 3.5 then gives the result. �

Proposition 3.10. If v | 6 then γu ≡ 0.

Proof. This is case 2(b) of [1]. De la Rochefoucauld proves this in terms of ε-factors
as Rohrlich's formula (Theorem 2.1 above) do not apply when E is wildly rami�ed
(see [6, �4]). We note that the dihedral setting is essential in his proof. �

3.4.2. Arithmetic.

Proposition 3.11. If v - p and E has additive reduction over Kv then δv ≡ 0.

Proof. If E has additive reduction, then

(3.1) E0(Kv)/E1(Kv) ∼= Ẽns(κ) ∼= κ+,

with κ, the residue �eld of Kv, a �nite �eld of characteristic ` 6= p. We recall two
facts (see �VII.3 and �VII.6 of [17]),

(1) E1(Kv) ∼= Zr` ⊕ T for some �nite `-group T .
(2) |E(Kv)/E0(Kv)| ≤ 4.

Since p - 6` these two facts yield

E(Kv)/pE(Kv) ∼= E0(Kv)/pE0(Kv) ∼= E1(Kv)/pE1(Kv) = 0,

showing that E(Kv) has no p-subgroups and so δv ≡ 0. �

For K a �nite extension of ku, denote Ẽ for the reduction of E at the prime of
K. If κ is the residue �eld of K and E has good ordinary reduction over K then
we say that E has anomalous reduction over K if Ẽ(κ)[p] 6= 0, and we say E has
non-anomalous reduction otherwise (see [9, App. B], also [8, �1.b]).

Proposition 3.12. If v | p, E has additive reduction over Kv, and E attains good,

ordinary, non-anomalous reduction over a Galois extension M/Kv, then δv ≡ 0.

Proof. Since E has potential good reduction, M can be chosen so that [M : Kv] is
prime to p (see [15, �2] and [16, p.2]). Let Ek denote a model for E de�ned over ku,
and let EM denote a model of E de�ned over M for which E has good, ordinary,
non-anomalous reduction. We have an isomorphism Ek → EM de�ned over M ,
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giving Ek(M) ∼= EM (M), where M = MLw, and similarly for M′ = ML′w. We
denote Γ = Gal(M/Kv) and H = Gal(Lw/L

′
w), and note that

Gal(M/Kv) ∼= Gal(M′/L′w) ∼= Gal(M/Lw), Gal(Lw/L
′
w) ∼= Gal(M/M′).

By Propositions B.2 and B.3 of [9], we have that NH : EM (M) → EM (M′) is
surjective, and hence NH : Ek(M) → Ek(M′) is surjective also. From this and
NΓ ◦NH = NH ◦NΓ we have

(3.2)
[Ek(L′w) : NΓ(Ek(M′))] = [Ek(L′w) : NΓ ◦NH(Ek(M))]

= [Ek(L′w) : NH ◦NΓ(Ek(M))].

Since Γ has order prime to p and

|Γ| · Ek(L′w) ⊂ NΓ(Ek(M′)) ⊂ Ek(L′w),

the �rst term in (3.2) is prime to p. Since H has order p and

NH ◦NΓ(Ek(M)) ⊂ NH(Ek(Lw)) ⊂ Ek(L′w),

the last term in (3.2) is divisible by some power of p when NH(Ek(Lw)) 6= Ek(L′w).
Since this is impossible, we must have NH(Ek(Lw)) ⊃ Ek(Kv) and δv ≡ 0. �

4. Main Result

Recall E/k is an elliptic curve ordinary at p. Also recall that γu is de�ned by

(−1)γu = W (E/ku, τρ,u)/W (E/ku, τ1,u).

De�ne S = {primes v of K : vc = v, v rami�es in L/K, and v | 6p} .

Theorem 4.1. Fix primes u of k and v of K with v | u. If v ∈ S suppose that one

of the following holds:

(a) E has good reduction at v.
(b) E has potential multiplicative reduction at v,
(c) E has additive, potential good reduction at v, and acquires good, non-

anomalous reduction over an abelian extension of ku when v | p.
Then γu ≡

∑
v|u δv (mod 2).

Corollary 4.2. If E/k satis�es the hypothesis of Theorem 4.1, then (mod 2)

dimQ̄p
Sp(E/L)ρ − dimQ̄p

Sp(E/L)1 ≡ ords=1Λ(E/k, ρ, s)− ords=1Λ(E/k, 1, s).

Proof of 4.1. Let v, vc the primes of K above u. If v 6∈ S then vc 6= v, v is
unrami�ed in L/K, or v - 6p. If vc 6= v then we use Proposition 3.1, and if vc = v
is unrami�ed in L/K, Proposition 3.2 gives the claim. For the remainder we may
assume vc = v.

In the case v - 6p, we have v - 6 and v - p. If E has good reduction at v then
Theorem 3.3 shows δv ≡ 0, and Proposition 3.5 gives γu ≡ 0. If E has potential
multiplicative reduction then Proposition 3.7 and Proposition 3.6, for δv and γu,
respectively, give the result. Lastly, if E has potential good reduction, then we
apply Proposition 3.11 and Proposition 3.8.

For v ∈ S, case (a) follows from Theorem 3.4 for δv and Proposition 3.5 for γu.
Case (b) is covered by Proposition 3.7 for δv and Proposition 3.6 for γu.

For case (c), �rst consider v | 6. We apply Proposition 3.10 for γu, and since v - p,
we can apply Proposition 3.11 for δv. When v | p the condition that E acquries
ordinary, non-anomalous reduction allows us to apply Proposition 3.12 for δv. In
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this case, v - 6 and so for γu we use Proposition 3.8 when Kv/ku is unrami�ed or
the `abelian' condition and Proposition 3.9 when Kv/ku is rami�ed. �
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