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The Possibility of Impossible Pyramids 
TOM SIBLEY 

St. John's University 
Collegeville, MN 56321 

Introduction 

When can we form a triangle or a pyramiid from edges with given lengths? Euclid 
found that for three segments to be the sides of a triangle, it is necessar-y and 
sufficient for the length of each segment to be shorter than the sumll of the lengths of 
the other two. Thus, for any three lengths that could potentially be sides of a triangle, 
there actually is a Euclidean triangle whose sides have those lengths. In short, 
Euclidean plane geometry is "triangle complete," as defined and shown analytically 
below. It seems natural to expect that Euclidean space is "pyramid complete"; that is, 
given six lengths with appropriate restrictions we can find a Euclidean pyramid whose 
edges have those lengths. But could there be "impossible pyramids"? Might there be 
lengths for the sides of a pyramid that form four triangular faces even though no 
Euclidean pyramid exists with those lengths? 

As part of this investigation we shall describe a family of metric spaces which 
includes that of Euclidean geomietry. 

DEFINITIONS. A mnetric space (X, d) is a non-empty set X together with a mnetric 
(or distance) d sutch that for any elements P, Q, B E X, 

(i) A(P, Q) 0; 
(ii) d(P, Q) = d(Q, P); 

(iii) A(P, Q) = o <-* P = Q; 

(iv) d(P, Q) + d(Q, R) > d(P, R). 

Property (iv) is the triangle inequality. A metric space is triangle comnplete if, for 
any three non-negative real numbers a, b, and c satisfying the triangle inequality in 
any order (i.e., a < b + c, b < a + c, and c < a + b), there are three points P, Q, and 
R in X such that d(P, Q) = a, P(F, R) = b, and d(Q, R) = c. 

Let's show that Euclidean plane geometry (i.e., R 2 with the usual Euclidean 
metric) is trianigle complete. Given three non-negative reals a, b, and c satisfying the 
three triangle inequalities, let P = (0, 0) and Q = (a, 0). We need to find a point 
R = (x, y) such that d(P, R) = b and d(Q, P) = c or, equivalently, x2 + y2= b2 

and (a - x)2+ =c2. These equations' solutions are x = (a2 + b2 -c2)/2a and 
y = ? vb2 - X2 = + V(b - x) (b + x) . We will establish triangle completeness once 
we show that b2 - x2 0. Now b+x=((a+b )2-c2)/2a?0 because a+b?c. 
The two other triangle inequalities show that la-bl < c and so b-x = 

(c2-(a-b)2)/2a 2 0. 
The hyperbolic plane is also triangle complete since Euclid's Proposition 22 from 

Book I holds in hyperbolic geometry. However, not every metric space is triangle 
complete. For instance, a sphere in R' of radius r with distances measured along its 
surface cannot be triangle complete because we cannot find points arbitrarily far apart 
on a sphere. In fact, even if we restrict a, b, and c to distances that occur on the 
sphere and satisfy the triangle inequality, they still need not determ-line a triangle 
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whose sides are arcs of great circles. For example, first consider an equilateral tri- 
angle on a sphere whose three vertices lie on the equator. Note that no equilateral 
triangle on the sphere can have longer sides. Let d = 2WwTr/3 be the distance between 
two of these points and let a, b, and c be equal lengths slightly larger than d. Then 
there is no spherical triangle with sides a, b, and c. 

Euclidean pyramids 

Let's turn to the problem of constructing a pyramid in three-dimensional Euclidean 
space from six given lengths. First of all, appropriate triples of lengths must form four 
triangles to make the faces of the pyramid, say APQR, APQS, APRS, and A(RS. 
Thus the triangle inequalities must hold for these triples. We want to glue the 
corresponding edges of the triangles together to make a pyramid. We formalize this 
intuitive idea as follows: 

DEFINITION. A mnetric space (X, d) is pyramid complete if, for arty sextuple of 
non-negative real numnbers (a, b, c, d, e, f) such that each of the triples {a, b, c}, 
{a, d, e}, {b, d, f}, )and {c, e, f } satisfies the triangle inequalities in any order, there 
are fotur points P, Q, R, and S in X so that d(P, Q) = a, d(P, R) = b, d((, R) = c, 
d(P, S) = d, d(Q, S) = e, arnd d(R, S) =f. 

(See FIGURE 1; the triple {a, b, c} corresponds to APQR.) 
Is Euclidean space pyramid complete? The following example shows that the 

answer is no. 

Example 1. Consider the sextuple (14, 8, 8, 8, 8, 8). We need d(P, Q) = 14, and all 
the others to be 8. We can readily make d(P, R) = d(P, S) = d(Q, R) = d(Q, S) = 8 
as well, but we will see that these distances restrict the possible values of A(R, S). If 
we fix P, Q, and R and rotate triangle APSQ around the side P(, we get the largest 
distance between R and S when all four points are in the same plane; see FIGURE 2. 
For Ml, the midpoint of PQ, the Pythagorean theorem_ applied to APMS 

and APMR gives d(S, M) = d(R, M) = d(P, R)2 d(P,M)2 = 8272 

3.873. Thus, no matter how we rotate APSQ, d(R, S) < d(R, M) + d(M, S) < 7.75, 
which is less than the required 8. 

P P 

8 8 

7 

a / |d b R M 

7 
e f 

8 8 

Q c R Q 

FIGURE 1 FIGURE 2 
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Remarks A scaled down version of Example 1 shows that no 3-dimensional space 
that is "locally Euclidean" (technically a 3-dimensional manifold), such as hyperbolic 
space, can be pyramid complete. Several mathematicians, starting with Niccolo 
Tartaglia in 1560, have published versions of the following formula relating the 
volume V of a pyramid to the lengths of its six sides: 

V2 = 9(a 2f2(b2 + c2 + e + d2) + b2e2(a 2 + c2 +f2 + d2) + c2d2(l2 + b2 +.f2 + e) 

-a4f2 - a2f4 - b4e2 - b2e4 - c4d2 - C2d4 

-a2 b2C2 - a2e2d2- b2f2d2 - c2f2c2)e 

The triangle inequalities for the faces together with the requirement that V2 
non-negative give necessary and sufficient conditions on the lengths for a Euclidean 
pyramid to exist (see [4]). 

The taxicab metric 

Are any metric spaces pyramid complete? Yes! We show that [R with the taxicab 
metric is pyramid complete. The taxicab metric provides an easily-explored geometry, 
often called taxicab geometry. (See, e.g., [2], [3], [5], and [7].) The "taxicab" name 
comes, in R2, from the distances travelled by cars if all streets run either North-South 
or East-West. (See FIGURE 3.) Cars that stay on the roads cannot benefit from the 
Pythagorean theorem, so the total distance between any txvo points is the sum of the 
distances in the principal directions. We consider the taxicab metric only in R', 
although it is readily defined in RD1. 

DEFINITION. For two points (x1, y5, an) and (X2, Y2, 92) in R, 

dT((Xl, YI, 1),(X2, Y2, z2)) X2 -X1| + C) Y]Y I +12 < 1 

See, e.g., [6, pp. 214-219] for a proof that RD with the taxicab metric dT is a metric 
space. Moreover, we can show that [R with the taxicab metric is triangle complete. 
Let a, b, and c satisfy the three triangle inequalities and, without loss of generality, 
assume that a is the largest. Let P = (0, 0, 0), Q = (a, 0, 0), and R = (x, y, O), whlere 
x = (a + b - c)/2 and y = (b + c - )/2. From the triangle inequalities 0 < x and 
0 < y. It is easy to check that dT(P, R) = x + y = b and d.((, R) = (a-x) + Y=C, 
as in FIGURE 4. Note that this argument makes no use of the third coordinate, so the 
"taxicab plane" is also triangle complete. 

0 (1,3) 

l- I I I 
I - - - x (4,-1) 

FIGURE 3 
In the taxicab metric 

d((1,3),(4,- 1))=3+4=7 

R = (x, y,O) 

Q = (a, ?,) 

P= (0,0,0) 

FIGURE 4 
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Let's reconsider the six lengths from Example 1 using the taxicab metric. Although 
no Eucliclean pyramid exists with these edge lengths, the following example shows 
that there is such a "taxicab" pyramid in R 

EXAMPLE 2. Let P = (0, 0, 0), Q = (7, 7, 0), R = (7, 0, 1), and S = (3,4, 1) as in FIG- 
URE 5. Then dT(P, Q) = 14, dT(P, R) = 8, dT((, R) = 8, dT(P, S) = 8, d7((Q, S) = 8, 
and dT(R, S) = 8. 

FIGURE 5 suggests a general approach to proving that taxicab geometry is pyramid 
complete. Note that R is above one corner of the rectangle in the xy-plane with 
opposite corners P and (, and that the amount R is raised above that rectangle 
depends on how much the sum of the distances d7.(P, R) and dT((, R) exceeds 
dT(P, Q) in triangle AP(R. That is, d7.(P, R) + d7((Q, R) - dT(P, () = 2, twice the 
h-eight of R above the plane of that rectangle. If we were given just the first five 
distances dT(P, Q) = 14, dT(P, R) = 8, dT(P, S) = 8, dT,(Q, R) = 8, and dT.(Q, S) = 
8, the triangle inequalities for triangle APRS (or AQRS) limit dT,(R, S) to any 
number from 0 to 16. Thus pyramid coma-pleteness requires us to obtain pyramids for 
all of the values for dT(R, S) from 0 to 16. In FIGURE 5 we can obtain the values 
between 0 and 14 by sliding S along the diagonal between R = S' and S". (The 
special conditions of this exama-ple force R and S' to be the same point.) To see this 
note that all points (x, y, 0) on the line x + y = 7 with 0 < x, y < 7 are a distance of 7 
from both P and Q. Hence the points (x, y, 1) will be a distance of 8 from both P 
and Q. However, to stretch the distance dT(R, S) beyond 14, we need a different 
tactic. Note that the two points labeled S* are the maximum distance of 16 from R 
and that the segments connecting S" to them provide a way to var-y dT(R, S) 
continuously froimi 14 to the maximum distance 16 while keeping S the correct 
distance from P and Q. 

THEOREM 1. Taxicab geomnetr-y oi R i,s pynramid com-tplete. 

Proof: Suppose that we are given a sextuple of non-negative numbers 
(a, b, c, d, e, f ) such that all triangle inequalities hold on the following triples: 
{a, b, c}, {(a, d, e}, {b, d, f }, and {c, e, f }. (Refer to FIGURE 1 for the relationship 
between these lengths and the points P, (, R, and S.) For ease, we assume 
b + c ? d + e. (If b + c < d + e, we switch R and S in what follows.) We follow 
Example 2, choosing P = (0, 0, 0), Q = (t, it, 0), and R = (t, 0, v), where dT(P, ,) = a, 
dT(P, R) = b, and dT(Q, R) = c. (See FIGURE 6.) 

z (0,7,1)=S" 

P=(0,0,0) S? - =(-1,7,0) 
y or 

R=(7,O,1)=S'/ .- 
lb S. = (0,8,0) 

Q = (7,7,0) 
x 

FIGURE 5 

S = (3,4,1) 

z 

P=(O, 0,0) y 

R= (t,,v)) 

Q= (t,u,O) 
x 

FIGURE 6 
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From the definition of the taxicab metric we get the equations 

t+u=az, t+v=b, and ut+V=c. 

The solutions 

t= .5(a+b-c), i= .5(a +c-b), and v= .5(b+c- a) 

are all non-negative because of the triangle inequalities satisfied by a, b, and c. 
Next we place S. We could solve three additional equations for S witlh variouis 

cases, but a geometric approaclh provides more insight. As in the discussion following 
Example 2 we treat dT.(R, S) as a variable. We use the fourtlh and fifth numbers, d 
and e, to determine the range of possible locations for S relative to points P and Q, 
which is the range of values for dTI(R, S). We will show that this range includes f. 
Figures 7 througlh 10 illustrate our strategy. Th-e daslhed lines in FIGURES 7, 8, and 9 
describe the possibilities for S when b ? c. If b < c, only FIGURE 8 changes signifi- 
cantly, as shown in FIGURE 10. In all cases, we will show that S' is the candidate for S 
as close to R as possible and S* is the candidate for S as far from R as possible. 

sit z 

z~~~~~~~~~~~~~~ 

Jo gso sit 

SI Z S" o 
RR 

Q ~~~~~~~Q 
x x 

FIGURE 7 FIGURE 8 

z 

P z sit 

y 

R RY 

Q9 

x ~~~~~~~~~~~x 

FIGURE 9 FIGURE 10 
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We consider now the possibilities for S, showing that these points satisfy d = 

dT.(P, S) and e = dT(Q, S). Let k = 0.5(d + e - a). Because a, d, and e satisfy the 
triangle inequality in any order, we see that k ? 0. As in Example 2, k will be the 
height above the xy-plane of the points on the dashed line between S' and S". 
Consider the points X = (x, y, 0) satisfying 0 < x, y < d - k = 0.5(a + d - e) and 
x + y = d - k. These points X form the solid diagonal line. Then dT(P, X) = d - k 
and dT(Q, X) = e - k = 0.5(a + e - d), since the triangle inequalities for a, d, and e 
ensure that both d - k ? 0 and e - k ? 0. Given X = (x, y, 0) as above, the points 
S = (x, y, k) satisfy dT(P, S) = d-k + k = d and dT(Q, S) = e. The tables below 
give the coordinates for S', S", St, and S between S" and St for the cases 
corresponding to FIGURE 7 through 10, which depend on how d - k compares with t 
and ui. For the column for S, 0 < w < k. 

Figu;re d - k S' S" 
7 d -k <t, (d -k,0,k) (0,d -k,k) 
8 u <d -k <t (d -k,0,k) (d -k -u,t,k) 
9 t,u <d-k (t,d-k -t,k) (dl-k -u,u, k) 
10 t<d-k?<n (t,d-k-t,k) (0,dl-k,k) 

Figure St S between S" and St 
7 (-k, d-k.0) (-w,ld-k,k-w) 
8 (d -k-u,u +k,0) (d -k-u,u + w,k -w) 
9 (d-k-u,u +k,0) (d -k-u,u + w,k-w) 
10 (-k,d-k,0) (-w,,d-k,k-w) 

We can readily clheck that, throughout the table, 

a=dT( P, Sf) = dT(AP, S) =dT(AP, S*) =dT(P, S). 

Similarly, we find that, throughout the table, 

dT(Q, S') = dT(Q, S") = dT(Q, S*) = dT(Q, S) = t + u + 2k -d, 

which equals e once we rewrite t, u, and k in terms of a, b, c, d, and e. Thus in all 
cases the points between S' and S" and between S" and St are the correct distances 
from P and Q. 

Finally, we show that the points S' and St in each case give, respectively, the 
minimum and maximum distances between R and S compatible with the relevant 
triangle inequalities. We now need the assumption b + c ? d + e, which implies that 
dT(P, R) + dT(Q, R) exceeds dT(P, Q) by more than dT(P, S) + dT(Q, S) exceeds 
dT(P, Q). Hence the --coordinate of R must be greater than the --coordinate of S. 
In FIGURES 7 and 8, where S' = (d - k,0, k), S' is "between" P and R. That is, 
dT(P, R) = dT(P, S') + dT(S', R). Because dT(P, R) = b, dT(P, S') = d and b < d + 
f, we see that dT(S', R) <f. In FIGURES 9 and 10, S' = (d - k - u, u, k) is "between" 
Q and R and a similar argument shows that dT(S', R) <f. In the same way we see 
that f < b + d = dT(R, S*) in FIGURES 7 and 10 and f < c + e = dT(R, S*) in FIGURES 

8 and 9. In short, dT(R, S') <f < dT(R, S*). This completes the proof. U 

Related metrics 

The Euclidean and taxicab metrics are special cases of the so-called p-metrics (for 
1 < p < oc), a family of metrics defined as follows for R'. 
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DEFINITION. On R , define d) for any real number p ? 1 by 

d,((x, y, z), (k,l,mn)) = (x -k< + I y -l1'9 +1z -til'l' 

The Euclidean metric is the case p = 2 and the taxicab metric is the case p = 1. 
See, e.g., [6, pp. 214-219] for a proof that dp is a metric on R". 

It can be shown that RI" with any of the p-metrics is triangle complete. Since the 
proof requires more advanced ideas from real analysis, we omit it. Interestingly, 
however, we can settle the question of pyramid completeness without advanced 
mnathematics. FIGURE 11 illustrates in two dimensions the shape of the "p-circles" of 
the same radius for different values of p < o0. Note that the taxicab "circle" has 
straight sides, while all the others are curved. This flatness is the key to pyramid 
completeness for the taxicab metric. Each of the other p-circles is strictly convex: 
Each point on these circles has a tangent line that intersects the circle in only that 
point. Similarly, for p > 1 the three-dimensional "p-spheres" are strictly convex: Each 
point has a tangent plane that intersects the p-sphere at only one point. 

FIGURE 11 
p circles for 

p=1,p=1.5,p=2, p=3. 

I) = 00 

FIGURE 12 

p circles 
including p = oo 

EXAMPLE 3. The metric space 3 with the p-metric for 1 < p < 0 is not pyramid 
complete. Consider the following values for the sides of the pyramid: a = 10, 
b = c = d = e = 5 and f > 0. Let P and Q be any two points in [3 with d,)(P, Q) = 10. 
Consider the p-spheres of radius 5 centered at P and Q. By the strict convexity of 
these p-spheres, they have exactly one point of intersection. This means that the only 
possibility for a pyramid with the given sides a, b, c, d, and e is for f = 0. Hence R 3 

with the p-metric is not pyramid complete for 1 < p < 00. 

REMARK. A more sophisticated argument shows that for any particular value of 
p > 1 and a > 0 there are values for b, c, d, e, and f all the same and slightly bigger 
than a/2 giving actual triangles that cannot be made into pyramids. 

The family of p-metrics has one more member-the oo-metric. The p-miietrics arise 
in functional analysis, an area unrelated to triangle and pyramid completeness. (See 
[1] and [6].) 
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DEFINITION. On DR, define d,, by 

d.,(( x, y, z), (k, 1, mI)) = im-axf Ix - k I,IY -1 I l it} 

FIGURE 12 adds the "oo-circle" to the p-circles of FIGURE 1 1. As p increases, the 
shape of a p-circle approaches the shape of the oc-circle; this indicates why the 
notation d,, is natural. More precisely, in R ", dj(P, Q) = limprn a dp(P, Q). (See, e.g., 
[6] for more on dxo.) Because circles in both the d1 and d00 metrics have straight sides, 
we conjecture that 1R3 with the dcc) metric is pyramid complete. 

THEOREM 2. Th-e netric space 1R with> d,lC, the o0-metric, is pyracmiid couiplete. 

Proof Suppose that for the sextuple of non-negative numbers (a, b, c, d, e, f ), all 
triangle inequalities hold for the triples {a, b, c}, {a, d, e}, {b, d, f }, and {c, e, f}. (See 
FIGURE 1 for the relationship between these lengths and the points P, Q, R, and S.) 
For ease we consider the case where a is the largest value and e is the smallest among 
b, c, d, and e. (The other cases require only a relabeling of points.) Let P = (b, 0, O), 
Q = (c, a, e), R = (O, b, 0), and S = (f, d, 0). (See FIGURE 13.) 

z 

R R= (O, b, O) 

/ Q= ~(c, a,e) t 

zp= (b,o, o) / 

s=(fd,?o) 

x 
FIGURE 13 

Then dcc)(P, R) = b. Also, dcc)(P, Q) = a and dcl(Q, R) = c because 0 < e < c < a and 
the triangle inequality a < b + c guarantees a - b < c. The other triangle inequalities 
similarly ensure that dcj)(P, S) = d, dcj)Q, S) = e and dj(R, S) =f. U 

ExAMPLE 4. An unordered set of six lengths may form a Euclidean pyramid in 
some orders, but not in others. Consider the sextuple (10, 7, 6, 6, 6, 6). In this order 
there is a Euclidean pyramid with its vertices having approximate coordinates P = 

(10, 0, 0), Q = (0, 0, 0), R = (4.35,4.132, 0), and S = (5, - 0.907,3.190). However, the 
reasoning in Example 1 shows that the sextuple (10, 6, 6, 6, 6, 7) fails to have a 
corresponding Euclidean pyramid. The definition of pyramid completeness we have 
chosen leads to simpler proofs than a weaker one allowing reordering of lengths. 
Examples 1 and 3 show that the p-metrics for 1 < p < oo are not pyramid complete, 
even allowing such reordering. 

Interested readers can explore higher-dimensional or other variations of this prob- 
lem, such as the following suggestion from Walter Sizer, of Moorhead State Univer- 
sity: 

The areas of the four faces of a pyramid satisfy an inequality similar to the 
triangle inequality: The sum of any three of these areas is not less than the 
fourth area. Given four numbers that satisfy this area inequality in all arrange- 
ments, is there a pyramid in Euclidean geometry (or other metric spaces) whose 
faces have these numbers as their areas? 

This content downloaded from 152.65.133.188 on Mon, 24 Nov 2014 16:39:33 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


MATHEMATICS MAGAZINE VOL. 73, NO. 3, JUNE 2000 193 

In summary, only the mietric spaces with the extreme metrics, p = 1 and p = oo, are 
pyramid complete. 

Acknowledgment. I tlhank the referees for Exaiiiple 4 and for otlher lhelpfu-l suggestions. 
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