
College of Saint Benedict and Saint John's University College of Saint Benedict and Saint John's University

DigitalCommons@CSB/SJU DigitalCommons@CSB/SJU

Honors Theses, 1963-2015 Honors Program

2013

A Spectral Alternative to K-means Clustering for Graph Data A Spectral Alternative to K-means Clustering for Graph Data

Becca Simon
College of Saint Benedict/Saint John's University

Follow this and additional works at: https://digitalcommons.csbsju.edu/honors_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Simon, Becca, "A Spectral Alternative to K-means Clustering for Graph Data" (2013). Honors Theses,
1963-2015. 23.
https://digitalcommons.csbsju.edu/honors_theses/23

This Thesis is brought to you for free and open access by DigitalCommons@CSB/SJU. It has been accepted for
inclusion in Honors Theses, 1963-2015 by an authorized administrator of DigitalCommons@CSB/SJU. For more
information, please contact digitalcommons@csbsju.edu.

https://digitalcommons.csbsju.edu/
https://digitalcommons.csbsju.edu/honors_theses
https://digitalcommons.csbsju.edu/honors
https://digitalcommons.csbsju.edu/honors_theses?utm_source=digitalcommons.csbsju.edu%2Fhonors_theses%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.csbsju.edu%2Fhonors_theses%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.csbsju.edu/honors_theses/23?utm_source=digitalcommons.csbsju.edu%2Fhonors_theses%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@csbsju.edu

A Spectral Alternative to K-means Clustering for Graph Data

AN HONORS THESIS

College of St. Benedict/St. John's University

In Partial Fulfillment

of the Requirements for All College Honors

and Distinction

in the Department of Computer Science

by

Becca Simon

April 2013

PROJECT TITLE: A Spectral Alternative to K-means Clustering for Graph Data

Approved by:

 Michael Heroux
Scientist-in-Residence, Computer Science Department

 Robert Hesse
Associate Professor of Mathematics

 Michael Gass
Associate Professor of Mathematics

 James Schnepf
Chair, Department of Computer Science

 Anthony Cunningham
Director, Honors Thesis Program

Contents

1 Introduction 4

2 Background 5
2.1 Linear Algebra Concepts . 5
2.2 K-means Clustering . 6
2.3 Preprocessing . 6

2.3.1 Singular Value Decomposition 6
2.3.2 Cosine Similarities . 7
2.3.3 Thresholding . 7

2.4 Representing Graphs . 8
2.4.1 Adjacency Matrix . 8
2.4.2 Degree Matrix . 8
2.4.3 Laplacian Matrix . 8
2.4.4 Fiedler Vector . 9

2.5 Accuracy Measures . 9

3 Purpose 10

4 Methods 11
4.1 recursivePartition . 11
4.2 recursiveRatio . 12
4.3 recursiveRatioSort . 13
4.4 fiedlerRatioSort . 16

4.4.1 laplacian . 16
4.4.2 fiedler . 16
4.4.3 ratioCut . 17

4.5 updateVector . 17
4.6 boolean . 17

5 Results 18

6 Conclusions 27
6.1 Future Work . 28

Appendices 31

Appendix A Cut Criteria 31

2

Appendix B Programs 33
B.1 recursivePartition.m . 33
B.2 preprocess2.m . 34
B.3 recursiveRatio.m . 35
B.4 recursiveRatioSort.m . 36
B.5 laplacian.m . 38
B.6 fiedler.m . 39
B.7 cut.m . 40
B.8 ratioCut.m . 41
B.9 minMaxCut.m . 42
B.10 nCut.m . 43
B.11 minCut.m . 44
B.12 updateVector.m . 45
B.13 boolean.m . 46

3

Abstract

Producing meaningful clusterings for graph data requires the user
to provide some insight to the program which he or she may not have
regarding the data. The standard clustering algorithm, K-means, re-
quires the user to specify k, the number of clusters to be produced
by the algorithm. This paper discusses the recursivePartition algo-
rithm, a recursive alternative to K-means clustering. The input to
recursivePartition asks the user to specify n, the maximum size of
any cluster. Using maximum cluster size and spectral methods based
on the Laplacian matrix of the graph, recursivePartition has demon-
strated an ability to produce highly accurate clusters over a range of
inputs, even producing an exact match of the true clusterings present
in the data in multiple tests. recursivePartition is capable of produc-
ing highly accurate clusters with a robustness to user input which the
K-means clustering algorithm cannot match.

1 Introduction

Graphs are a convenient and efficient means of representing social networks
and term-document data. Meaningful analysis of this data often includes a
need for clustering the data into distinct subsets of related nodes. While
the standard algorithm for graph clustering, K-means, is known to produce
meaningful clusters of data given an appropriate k value specifying the num-
ber of clusters to produce, it is an iterative algorithm which can be quite
slow for large datasets. Given the nature of the algorithm and necessary
calculations, K-means is not conducive to speedup through implementations
involving parallel computing. Based on results by other researchers (see [12],
[8], [10], [2], [14]), this experiment sought to use aspects of spectral theory
as the basis for a recursive clustering algorithm which could be implemented
in parallel in the future for speedup over K-means. Due to time constraints
and changing interests, the focus of this project shifted toward producing an
algorithm which was not as tightly restricted by the input value provided
by the user as K-means is. This algorithm, recursivePartition, was designed
to take the nature of the data into account in the number of clusters it
produces. It still requires the user to provide an input parameter, n, but
n denotes the maximum allowable size of any cluster rather than the total
number of clusters, specified as k in K-means. This experiment seeks to
show that the recursivePartition algorithm is somewhat robust to changing

4

inputs while still being capable of producing quality clusterings. The results
of recursivePartition produced in this experiment are compared to the re-
sults of a K-means clustering for ensuring that the high level of accuracy
provided by K-means is not lost. All computations in this experiment were
performed using Matlab because it provides a simple platform for producing
and manipulating matrices.

2 Background

This section gives a brief overview of the linear algebra concepts being used
in this work. It will also provide an explanation of k-means clustering, the
standard clustering technique being used for baseline comparison. An ex-
planation of data preprocessing techniques used and accuracy measures for
evaluating clusters is also included.

2.1 Linear Algebra Concepts

The clustering algorithm being explored in this paper is based on the linear
algebra concepts of eigenvalues and eigenvectors.

Definition An eigenvector of an n x n matrix A is a nonzero vector x such
that Ax = λx for some scalar λ. A scalar λ is called an eigenvalue of A if
there is a non-trivial solution of Ax = λx; such an x is called an eigenvector
corresponding to λ[9].

Manually, the eigenvalues of a matrix A are found by finding all scalars λ
such that the matrix equation (A− λI)x = 0 has a nontrivial solution. I is
the n x n identity matrix. The corresponding eigevector,vi, of an eigenvalue
λi is then found by using row operations to reduce A − λiI in order to
solve the eigenvalue equation by inspection[9]. Matlab provides a built-in
function for finding the k largest magnitude eigenvalues of a matrix A and
their corresponding eigenvectors. This function, [v, d] = eigs(A, k), will be
used for our purposes. The output v is an n x k matrix containing the
eigenvectors of A as columns. d is a k x k matrix containing the k largest
magnitude eigenvalues of A along the major diagonal.

5

2.2 K-means Clustering

K-means is one of the most commonly used clustering algorithms and is based
on a simple idea. A set of representative centroids is chosen, and each point
in the dataset is assigned to its closest centroid. The number of centroids
chosen is based upon a user-specified parameter k, the desired number of
clusters to be found. Each centroid is then updated to be the mean of all the
points assigned to it, and the process repeats itself. This continues until the
centroids make it through an iteration unchanged[13].

This experiment used an implementation of the K-means algorithm writ-
ten in Matlab as a baseline comparison for cluster quality. It was provided
by Dr. Daniel M. Dunlavy of Sandia National Laboratories [7].

2.3 Preprocessing

The following sequence of preprocessing techniques was applied to the data
prior to clustering.

2.3.1 Singular Value Decomposition

Singular Value Decomposition (SVD) is a matrix factorization from applied
linear algebra. Given an m x n matrix A, the singular value decomposition
of A takes the form

A = UΣV T (1)

where Σ is an m x n matrix with the singular values of A in non-increasing
order along the major diagonal, U is an m x m matrix of the left singular
vectors of A ordered to correspond with Σ, and V is an n x n matrix of the
right singular vectors of A ordered to correspond with Σ.

The singular values of a matrix A, denoted by σ1, ..., σn, are the square
roots of the non-zero eigenvalues of ATA. The right singular vectors of A,
V = [v1, v2, ..., vn], are the eigenvectors of ATA, and the left singular vectors
of A, U = [u1, u2, ..., um], are the eigenvectors of AAT (see section 2.1)[9].

Matlab provides an implementation of SVD for sparse matrices which
returns the k largest magnitude singular values and their corresponding right
and left singular vectors for a matrix A. This function, [U, S, V] = svds(A, k),
was used to perform all singular value decompositions for this experiment.

6

A new n x k matrix V S was then constructed by multiplying V ∗ S,
where V , S are the right singular vectors of A and singular values of A,
respectively(see 2.3.2).

2.3.2 Cosine Similarities

Given the high dimensionality of the original data and its sparse nature
(matrix is populated primariliy with zeros), cosine similarity was used to
transform the original term-document matrix into a similarity matrix. Co-
sine similarity is a [0, 1] similarity measure based on the cosine of the angle
between two vectors of the same dimensionality, x and y. cos(x, y) = 1 iff
x = y and cos(x, y) = 0 iff x and y share exactly zero terms. The cosine
similarity between x and y is computed as

cos(x, y) =
x· y

‖x‖‖y‖ (2)

=
x

‖x‖ ·
y

‖y‖ (3)

= x′· y′ (4)

where x′ = x
‖x‖ [13]. Thus, by first normalizing each row vector to unit length,

an m x m cosine similarity matrix V Ssims can be computed by straightfor-
ward matrix multiplication, V Ssims = V S ∗ V ST [8].

The cosine similarity matrix is computed from the n x k matrix V S
(see section 2.3.1), so the final dimensions of the symmetric cosine similarity
matrix V Ssims are n x n, where n is the number of columns in the original
m x n term-document matrix A.

2.3.3 Thresholding

The preprocessing performed up to this point has transformed an m x n
sparse term-document matrix into an n x n full matrix V Ssims generated
by the most strongly correlated dimensions as determined by cosine simi-
larity and singular value decomposition. As a result of these preprocessing
steps, most (over 95%) of the values in the full matrix V Ssims are small
in magnitude (≤ .2) compared to the rest of the matrix; thus, these values
contribute relatively little information for clustering and are likely noise. To
eliminate those data points contributing the least information and allow for
more efficient storage and clustering, V Ssims is thresholded into a sparse

7

matrix V Ssims t containing only those values where V Ssims > .2. The
threshold was selected based on a spy plot of the data. It appears to retain
nearly all of the data in clusters while eliminating much of the surrounding
noise present in the data.

2.4 Representing Graphs

The following sections detail the matrices used to represent the graphs pro-
cessed in this experiment. The term-document data is represented as a graph
G = (V,E), where V = v1, v2, . . . , vn is the vertex set. Each vertex vi rep-
resents a document in the dataset. The edge set E indicates a connection
between vertices. In this case, an edge would represent a shared term.

2.4.1 Adjacency Matrix

An adjacency matrix A of graph G, also called a similarity matrix of graph
G, is an n x n symmetric matrix, where n is the number of vertices vi in G.
The values of A are determined by the non-negative weights of the edges in
the graph. Due to the preprocessing described above (see section 2.3), the
weights of G correspond to the cosine similarities of the data after SVD. A
positive entry Ai,j indicates shared terms between vertices vi and vj. Ai,j = 0
indicates no shared terms between vertices (or a low similarity which was
thresholded to zero during preprocessing)[10].

2.4.2 Degree Matrix

The degree matrix D of a graph G is the diagonal matrix of the degrees of
each vertex vi in G. The degree is calculated as the sum of the weights of all
the edges incident to vi, ie d(vi) =

∑
j w(i, j), where w(i, j) is the weight of

the edge between vi and vj[3]. All nondiagonal entries of D are zero. Given
the adjacency matrix A, d(vi) =

∑
j ai,j[11].

2.4.3 Laplacian Matrix

A matrix representation of a graph, referred to as the Laplacian of the graph,
is the basis for spectral clustering of graph data[10]. Given the adjacency ma-
trix A (see section 2.4.1) and the degree matrixD (see section 2.4.2) for an un-
weighted graph G, the Laplacian of G is defined as L(G) = D(G)−A(G)[11].
Due to the preprocessing techniques applied to the data, the graphs for this

8

experiment are weighted and may contain loops. The generalized Laplacian
for this data is defined as

L(u, v) =

dv − w(v, v) if u = v
−w(u, v) if u, v adjacent
0 otherwise

(5)

[3]. This is the format of the Laplacian which will be used for all experiments
in this project.

2.4.4 Fiedler Vector

Using the eigenvectors (see section 2.1) of the Laplacian of the graph G (see
section 2.4.3) provides a means for determining an appropriate bisection of
the vertices of G. This bisection is based on an ordering of the eigenvec-
tor referred to as the Fiedler vector. The Fiedler vector is the eigenvector
corresponding to the smallest magnitude, non-null eigenvalue of the graph
Laplacian, also known as the Fiedler value. The Fiedler value is also re-
ferred to as the “algebraic connectivity of a graph” because it indicates how
strongly connected the graph is. The further the Fiedler value is from zero,
the more strongly connected the graph[12]. It has been shown that a small
magnitude Fiedler value will lead to a good partition of the graph based on
the ratio cut criterion[1]. Ratio cut and a number of other cut criteria based
on the sorted Fiedler vector will be compared in this paper.

2.5 Accuracy Measures

Given any clustering of graph data, accuracy measures must be used in order
to determine how good the clustering is. All of the data used for this paper
has labels indicating what the ideal clustering of the data should be. These
labels were used as the ”true clusters” for comparison when determining the
accuracy of clusters produced in this experiment. Two evaluations of cluster
accuracy were computed: Rand Index and Jaccard Index. The same two
accuracy calculations were computed for each dataset clustered by K-means
and used as a baseline comparison. Each accuracy measure is a value in
the range [0,1], with 1 indicating that the two clusterings are identical up
to a permutation, that is, for any subset of points forming a cluster in one
clustering, the same set of points forms a cluster in the other cluster with no
additions or deletions.

9

This experiment used Matlab implementations of Rand Index and Jaccard
Index provided by Dr. Daniel M. Dunlavy of Sandia National Laboratories
[6], [5].

3 Purpose

The purpose of this experiment was to produce an algorithm (which I have
named recursivePartition) for recursively determining clusters in graph data.
The means of producing these clusters was based on spectral theory and the
results of other researchers (see [12], [8], [10], [2], [14]). My initial purpose
was to produce a recursive clustering algorithm for graph data which main-
tains the accuracy levels of K-means clustering and could be implemented
in parallel for speedup over K-means when clustering large graphs. Due to
changing circumstances and time constraints, I decided to leave the parallel
implementation to a future experiment and focus on the algorithm for the se-
rial implementation. I wrote a serial prototype in Matlab which uses a series
of functions to perform a recursive clustering of graph data until all clusters
meet a user-given maximum cluster size. This implementation performs a
bisection at each level of recursion, continuing the clustering on both sub-
graphs produced by the bisection until the clusters are appropriately small.
The user has an option among Ratio cut, Normalized cut, Min cut, and Min-
Max cut as the mathematical criteria for determining where the bisection
occurs. Explanations of all these cut criteria may be found in Appendix A
and in more detail in [10].

One of the primary difficulties in using clustering algorithms is determin-
ing that the optimal number of clusters for the data because it is usually
unknown. For K-means, this requires running the algorithm on the same
data repeatedly with varying k values and choosing a seemingly suitable
clustering from among the results. This can be costly because the K-means
algorithm is O(n ∗ k ∗ I ∗ d), where n is the number of nodes in the data, k is
the number of clusters to be produced, I is the number of iterations required
for convergence, and d is the number of attributes present in the data [13].
The recursivePartition algorithm is designed to be somewhat robust to the
issue of determining an appropriate number of clusters. By having the user
specify a maximum cluster size rather than a required number of clusters, the
algorithm allows for some flexibility based on the bisections. This experiment
will seek to demonstrate that flexibility.

10

4 Methods

This section will provide an overview of the algorithm developed for this
experiment. It assumes the data has not been preprocessed. All programs are
included in Appendix B. Each subsection below represents a distinct Matlab
program. All Matlab functions written for the recursivePartition algorithm
are available at https://github.com/blsimon/recursivePartition.git.

4.1 recursivePartition

As previously mentioned, there are a number of different cut criteria that
may be used to determine the point of bisection at each level of partition-
ing. Therefore, my implementation features a generic wrapper method re-
cursivePartition which takes three parameters:

A the unpreprocessed data to be clustered

n an integer representing the maximum size any cluster may be

criteria a String specifying either ’normalized’, ’ratio’, min’, or ’minmax’ as
the cut criteria to be used

I will trace an implementation of ratio cut, but all the implementations
follow the same basic pattern, differing only in the specific cut criteria used
and the names of the methods. The return values of recursivePartition are

partitions a vector containing the index of the beginning of each distinct
cluster in the data

index a matrix with the same number of rows as there are data points and
a column for each level of recursion; each column of index contains the
node ordering at that level of recursion; the first column is in numerical
order because it represents the starting point of the data, and the
last column of index contains the final node ordering produced by the
program

Combined, partitions and index provide an ordering of the nodes with the
index of each new cluster, providing all information necessary for determining
to which cluster each node belongs.

recursivePartition first calls preprocess2, which takes the data matrix A
as a parameter and returns the preprocessed data matrix A as described

11

in section 2.3. Assuming we are tracing the implementation of ratio cut,
recursivePartition calls the recursiveRatio method, which takes the first two
parameters of recursivePartition, A and n, and returns partitions and index,
the return values of recursivePartition.

4.2 recursiveRatio

recursiveRatio then initializes a series of variables for use in the coming
recursion.

sizeA an integer representing the number of nodes in the data currently
being partitioned at that level of recursion.

partitions return value initialized as a 2 x 1 vector of zeros to be filled later
with the index of the first node in each cluster

i an integer initialized to one which will track the location in the partitions
vector where the next value should be placed

temp an integer initialized to zero which will later be used for temporarily
storing the beginning of a partition if the lower portion of the data
partitioned into a subset less than or equal to the max cluster size
n while the upper portion of the data is too large and must undergo
additional levels of recursive partitioning

index return value initialized as an m x 1 matrix of zeros, where m is the
total number of nodes to be clustered; this will later be filled with
the current node ordering at each level of recursion (as described in
section 4.1); the first column of index gets initialized to 1, 2, 3, ...,m
because the current node ordering is numeric since the data has not
yet undergone any clustering;

constant an integer initialized to zero; constant will later be used in updating
the universal node ordering for index, where constant will represent the
offset from zero at which the data currently being partitioned begins

j an integer initialized to one which is used to maintain the current column
of index to be filled with the node ordering produced by that level of
recursion

12

recursiveRatio then calls recursiveRatioSort, which, despite the names of
some of the other functions, is the true recursive function of the implemen-
tation and will be explained in section 4.3. After recursiveRatioSort returns,
recursiveRatio cleans up and finalizes the values of partitions and index
before returning them. index is finalized by using the built-in Matlab find
function to locate any remaining zeros in index and replace them with the
value in the previous column. A zero value in index would occur whenever a
cluster was found with fewer levels of recursion than the maximum number
of levels of recursion required by any cluster. Replacing any zero values guar-
antees that the last column of index is the true node ordering for the clusters
produced by the algorithm. partitions is finalized by checking if the last el-
ement of partitions exceeds the number of elements in the original data. If
so, that element is removed from partitions. This removal is necessary when
the lower subset of the data has finished clustering before the upper subset
and the value saved for later filling into the partitions vector. Removing the
non-existent element has no effect on the rest of the clustering.

4.3 recursiveRatioSort

recursiveRatioSort handles the recursive calls for the algorithm using all the
functions described below as helpers. The inputs are as follows:

A the n x n adjacency matrix of the graph to be partitioned

n an integer representing the maximum cluster size as specified by the user

partitions the current state of the partitions vector described in section 4.1

i an integer tracking the current number of partitions; it is used as an index
in the partitions vector and must be kept current at each level of
recursion for use in the boolean function (see section 4.6)

temp an integer for temporarily tracking the index of the lower partition if
the lower partition is finished partitioning while the upper partition
must undergo additional levels of recursion; it must also be maintained
for use in the boolean function

index the current state of the index matrix described in section 4.1

13

constant an integer used as an offset for determining where in the overall
graph the current subgraph occurs; constant is determined by the size
of the partition presently being processed and will be used for updating
the index matrix in the function updateVector (see section 4.5)

j an integer track which column of index is currently being updated for this
subgraph; j is also used as an input to the updateVector function for
updating index

The following outputs are returned by the function recursiveRatioSort:

sizepartition1 and sizepartition2 integers representing the sizes of the up-
per and lower subgraphs found by the function, respectively; they are
needed for inputs to the boolean function (see section 4.6) and for de-
termining whether additional recursion is necessary for either or both
subgraphs

partitions an updated version of the input described above

i an updated version of the input described above

index an updated version of the input described above

constant an updated version of the input described above

recursiveRatioSort begins by incrementing j, the integer tracking which
column of the index matrix is being affected by this current level of recur-
sion. It then calls fiedlerRatioSort (see section 4.4) and uses the returned
permutation vector p as an input to updateVector (see section 4.5). recur-
siveRatioSort then sets sizepartition1 and sizepartition2 as the sizes of g1
and g2, respectively. g1 and g2 are the adjacency matrices of the two sub-
graphs found by the call to fiedlerRatioSort.

The function then enters a four-part if-statement based upon the sizes
of sizepartition1 and sizepartition2 relative to the user-provided maximum
cluster size, n.

If both sizepartition1 and sizepartition2 are currently larger than n, the
recursion will continue for both the upper and lower subgraphs. The vari-
ables boolean1 and boolean2 are set to 0, indicating that neither subgraph is
finished being partitioned. The boolean function (see section 4.6) is called
to ensure the partitions vector is updated appropriately before the next re-
cursive call to recursiveRatioSort. For the case of both subgraphs needing to

14

undergo continued partitioning, boolean will only check if the partitions vec-
tor is currently all zeros, replacing the first index with 1 if so. This indicates
that the first partition will begin at index 1 of the original graph. recursiveR-
atioSort then makes a recursive call to itself, using the upper subgraph g1
for the input A. This change will begin the recursive partitioning process on
the upper subgraph, stopping only when all partitions of this subgraph meet
the maximum cluster size criteria. Once the call to recursiveRatioSort on the
upper subgraph returns, constant is updated to be 1 less than the location
of the first 0 in the jth column of index, ie the column of index correspond-
ing to the current level of recursion. Another recursive call is then made to
recursiveRatioSort, but this time the subgraph g2 from fiedlerRatioSort is
used as the input graph to the function. Once this recursion returns, the
current call to recursiveRatioSort returns.

If only sizepartition1 is less than n, ie only the upper subgraph meets the
user-given maximum cluster size, recursion will continue on the upper sub-
graph and the lower partition will be saved to be recorded later. boolean1 is
set to 0, indicating the upper subgraph is not finished partitioning. boolean2
is set to 1 to indicate that the lower subgraph is finished. The boolean func-
tion is called to store the necessary information about the lower subgraph
in the temp variable until the upper subgraph is finished. A recursive call
to recursiveRatioSort is then made on g1, the upper subgraph. After the
recursion returns, a call to the boolean function will use the temp variable to
save the lower subgraph information to the partitions vector appropriately.
The current call to recursiveRatioSort then returns.

If only sizepartition2 is less than n, ie only the lower subgraph meets
the user-given maximum cluster size, the upper partition will be recorded
in partitions and recursion will continue on the lower subgraph. boolean1
is set to 1, indicating that the upper subgraph is finished being partitioned.
boolean2 is set to 0 to indicate that the lower subgraph must undergo ad-
ditional partitioning. constat, the variable used for updating the universal
node ordering in the index matrix, is updated by adding sizepartition1 to
its current value because the node ordering for the upper subgraph will not
be affected by the additional recursion on the lower subgraph. The boolean
function is called to record the beginning index of the lower subgraph as the
start of the next partition in the partitions vector. A recursive call to recur-
siveRatioSort is then made on g2, the lower subgraph. After this recursion
returns, the current call to recursiveRatioSort returns.

15

If the else portion of the if-statement executes, ie both the upper and
lower subgraphs are smaller than the maximum cluster size, no recursive call
to recursiveRatioSort will be made. The variables boolean1 and boolean2
are both set to 1, indicating that both portions of the graph are finished
partitioning. A call to the boolean function updates the partitions vector
using the sizes of both the upper and lower subgraphs and the current call
to recursiveRatioSort returns.

4.4 fiedlerRatioSort

fiedlerRatioSort is a function to partition the graph into two distinct sub-
graphs based on the sorted Fiedler vector of the graph. This function takes
the n x n adjacency matrix I of the graph to be partitioned. It generates
the Laplacian of I (see section 4.4.1). It then generates the Fiedler vector of
that Laplacian (see section 4.4.2), which gets sorted by the built-in Matlab
sort function. The nodes of I are rearranged to match the order of the sorted
Fiedler vector. Finally, I is partitioned into subgraphs A and B using the
ratioCut function (see section 4.4.3). fiedlerRatioSort returns an n x 1 vec-
tor p containing the permutation of nodes used to sort I based on its Fiedler
vector, and the adjacency matrices A and B of the two distinct subgraphs
found.

4.4.1 laplacian

laplacian is a helper method to compute the Laplacian of the graph data,
as described in section 2.4.3. laplacian takes the n x n adjacency matrix A
of the data to be clustered and returns the n x n matrix L representing the
Laplacian of A. L is computed by forming the diagonal n x n matrix D of
the sums of each column of A and subtracting L = D − A.

4.4.2 fiedler

fiedler is a helper method to generate the Fiedler value and corresponding
Fiedler vector (ie the smallest magnitude nonzero eigenvalue and its corre-
sponding eigenvector) as described in section 2.4.4. The input is the n x n
Laplacian matrix L produced by the laplacian function. The output argu-
ments v and d are the Fiedler vector of L and corresponding Fiedler vector
of L, respectively.

16

4.4.3 ratioCut

ratioCut is a function for determining where to bisect the Fiedler vector.
In running the algorithm with a different initial cut criteria input, ratioCut
would be replaced by the appropriate corresponding function, such as min-
MaxCut, nCut, or minCut. The input to each of these cut functions is the
n x n matrix sortedI, which is the graph I permuted based on the sorted
Fiedler vector, that is sortedI = I(p, p), where I is the current subset of the
graph data at this level of recursion. ratioCut returns two matrices, A and B,
which are the adjacency matrices of the distinct subgraphs of I partitioned at
the optimum cutpoint according to the Ratio cut criteria. It uses a function
called cut to evaluate how many edges would be cut for any given subsets
A and B. Ratio cut and all other cut criteria implemented are explained
mathematically in Appendix A.

4.5 updateVector

updateVector is a helper method used to update the output matrix index,
the universal ordering matrix consisting of the ordering of the nodes at each
level of recursion. The first input to the function is the vector p produced
by fiedlerRatioSort (see section 4.4). The node ordering matrix index is the
second input, and an updated version of this matrix will serve as the output
of the function. The third input is an integer called constant which is used
as an offset for determining where in the overall graph this subset occurs.
constant is determined by the size of the partition presently being processed.
The final input is the integer j, which indicates which column of index is to
be updated based on the present level of recursion.

4.6 boolean

boolean is a helper method to update the partitions vector. The inputs are
as follows:

partitions the vector described above which records the first index of each
of the partitions

boolean1 and boolean2 booleans indicating if the upper portion and lower
portion of the partition, respectively, are less than the user-given max-
imum cluster size

17

i an integer tracking the total number of partitions; it is used as an index in
the partitions vector

sizepartition1 and sizepartition2 the sizes of the upper and lower portion
of the partition, respectively

temp an integer for temporarily tracking the index of the lower partition if
the lower partition is finished partitioning while the upper partition
must undergo additional levels of recursion

n the user-given maximum cluster size

The outputs of this function are the integer i, the vector partitions, and
the integer temp. These outputs are the updated versions of their corre-
sponding inputs.

See section 4.3 for an explanation of how this function updates the partitions
vector under the various cases relating to the size of the upper and lower sub-
graphs.

5 Results

While this experiment is motivated by the fact that the ideal clusters or
number of clusters are generally unknown for a dataset, all of the graphs
used in this experiment have known clusterings. This is necessary for using
accuracy measures to determine how the recursive algorithm is performing
compared to the K-means algorithm (see section 2.5 for explanation of accu-
racy measures used). This experiment uses the standard K-means algorithm
(see section 2.2) as a baseline accuracy comparison as well as a version of
K-means using stochastic perturbations of the clusterings ”to avoid local
minima of the multimodal objective function being minimized in the stan-
dard k-mean algorithm” [7]. The perturbation method of K-means produces
higher accuracy values than the standard approach and is used as a goal for
the clustering quality of recursivePartition. This experiment uses one real
dataset, a weighted term-document matrix representing a collection of 298
newswire documents from the Associated Press and the New York Times.
This collection contains 8118 terms and 30 clusters determined by the main
topic of each document. It was provided by Dr. Daniel M. Dunlavy of San-
dia National Laboratories. Artificial datasets were generated using a Matlab

18

function developed by Dr. Daniel M. Dunlavy [4]. This function produces
adjacency matrices for an artificial graph containing a user-specified num-
ber of clusters, minimum cluster size, and maximum cluster size. It also
produces the true clusters corresponding to the graph. Each experiment is
performed 10 times, and the average accuracy values are reported below. The
initial parameters selected for each algorithm are based on educated guesses
with some knowledge of the data and highlighted in yellow in the results
tables. The parameters resulting in the highest accuracy for each algorithm
are highlighted in orange.

Table 1 summarizes the results of the experiment using the Associated
Press and New York Times newswire document collection. Because this
data contains 30 clusters, the K-means algorithm was run with k = 30.
Additional runs using k = 28, k = 29, k = 31, and k = 32 were used
to demonstrate how K-means performs if too few or too many clusters are
sought. The initial n value for recursivePartition was determined by dividing
the total number of nodes in the data by the number of known clusters
(ie 298nodes

30clusters ≈ 10 nodes per cluster). Because n is the maximum cluster
size to be found by recursivePartition, there is some danger of choosing too
small an n value. Experiments using n greater than the initial n = 10
approximation demonstrate the robustness of recursivePartition to larger n
values. recursivePartition outscores the baseline K-means and K-means with
perturbations using k = 30 in both Rand Index and Jaccard Index for n = 10
to n = 15.

19

Table 1: Results of K-means and recursivePartition on AP and NYT data
Data contains 30 real clusters

Yellow highlighting denotes the initial parameter value for each algorithm
Orange highlighting indicates the highest accuracies

Algorithm Parameter RI JI Num Clusters
K-means k = 28 .9809 .5881 28
K-means k = 29 .9800 .5747 29
K-means k = 30 .9831 .6140 30
K-means k = 31 .9836 .6205 31
K-means k = 32 .9856 .6495 32
K-means perturb k = 28 .9824 .6097 28
K-means perturb k = 29 .9818 .6015 29
K-means perturb k = 30 .9847 .6442 30
K-means perturb k = 31 .9852 .6481 31
K-means perturb k = 32 .9879 .6906 32
recursivePartition n = 9 .9849 .5318 52
recursivePartition n = 10 .9886 .6536 42
recursivePartition n = 11 .9892 .6757 39
recursivePartition n = 12 .9888 .6760 36
recursivePartition n = 13 .9878 .6583 34
recursivePartition n = 14 .9877 .6605 33
recursivePartition n = 15 .9870 .6524 31

Artificial data was generated using the gen cluster graph function [4].
The data contains 453 nodes in 30 clusters of minimum size 10 and maximum
size 20. Table 2 summarizes the results. k = 30 was chosen as the starting
parameter for K-means because the data is known to contain 30 clusters. The
starting parameter for recursivePartition was chosen as n = 16 by dividing
the number of nodes by the number of known clusters to produce average
cluster size. The recursivePartition algorithm for n = 16 to n = 21 produced
higher RI and JI values than K-means and K-means with perturbations for
the values of k = 28 to k = 32, including k = 30, the true number of clusters
present in this artificial data. Additionally, recursivePartition with n = 20
produced 30 clusters which identically matched the true clusters in the data
up to a permutation, as demonstrated by its RI = 1.0000 and JI = 1.0000
accuracies.

20

Table 2: Results of K-means and recursivePartition on Artificial Data
Data contains 30 real clusters of minimum 10 and maximum 20 nodes

Algorithm Parameter RI JI Num Clusters
K-means k = 28 .9853 .6859 28
K-means k = 29 .9871 .7152 29
K-means k = 30 .9830 .6556 30
K-means k = 31 .9882 .7346 31
K-means k = 32 .9872 .7230 32
K-means perturb k = 28 .9877 .7237 28
K-means perturb k = 29 .9886 .7407 29
K-means perturb k = 30 .9866 .7041 30
K-means perturb k = 31 .9911 .7836 31
K-means perturb k = 32 .9915 .7915 32
recursivePartition n = 15 .9914 .7359 46
recursivePartition n = 16 .9942 .8229 40
recursivePartition n = 17 .9952 .8523 38
recursivePartition n = 18 .9964 .8880 36
recursivePartition n = 19 .9981 .9414 33
recursivePartition n = 20 1.0000 .1.0000 30
recursivePartition n = 21 .9999 .9968 30

Artificial data was generated using the gen cluster graph function [4].
The data contains 568 nodes in 30 clusters of minimum size 18 and maximum
size 20. Table 3 summarizes the results. k = 30 was chosen as the starting
parameter for K-means because the data is known to contain 30 clusters. The
starting parameter for recursivePartition was chosen as n = 19 by dividing
the number of nodes by the number of known clusters to produce average
cluster size. Again, recursivePartition using a range of n values outperforms
K-means and K-means with perturbations for the known k value.

21

Table 3: Results of K-means and recursivePartition on Artificial Data
Data contains 30 real clusters of minimum 18 and maximum 20 nodes

Algorithm Parameter RI JI Num Clusters
K-means k = 28 .9787 .5945 28
K-means k = 29 .9793 .6034 29
K-means k = 30 .9808 .6192 30
K-means k = 31 .9818 .6321 31
K-means k = 32 .9842 .6617 32
K-means perturb k = 28 .9822 .6361 28
K-means perturb k = 29 .9831 .6488 29
K-means perturb k = 30 .9851 .6733 30
K-means perturb k = 31 .9845 .6654 31
K-means perturb k = 32 .9867 .6980 32
recursivePartition n = 18 .9916 .7365 52
recursivePartition n = 19 .9936 .8006 40
recursivePartition n = 20 .9968 .9030 30
recursivePartition n = 21 .9964 .8924 35
recursivePartition n = 22 .9967 .8984 30
recursivePartition n = 23 .9969 .9059 30
recursivePartition n = 24 .9981 .9423 30

Artificial data containing 600 nodes in 30 clusters of size 20 was generated
using the gen cluster graph function [4]. Table 4 summarizes the results.
k = 30 was chosen as the starting parameter for K-means because the data
is known to contain 30 clusters. The starting parameter for recursivePartition
was chosen as n = 20 because the data was generated to have all clusters
of exactly size 20. With the exception of the JI value for recursivePartition
with n = 19, the recursivePartition algorithm for the range of values of
n = 19 to n = 25 produced higher accuracies than K-means and K-means
with perturbations.

22

Table 4: Results of K-means and recursivePartition on Artificial Data
Data contains 30 real clusters of 20 nodes

Algorithm Parameter RI JI Num Clusters
K-means k = 28 .9773 .5812 28
K-means k = 29 .9789 .5971 29
K-means k = 30 .9810 .6214 30
K-means k = 31 .9814 .6293 31
K-means k = 32 .9824 .6386 32
K-means perturb k = 28 .9804 .6135 28
K-means perturb k = 29 .9828 .6429 29
K-means perturb k = 30 .9823 .6364 30
K-means perturb k = 31 .9846 .6671 31
K-means perturb k = 32 .9870 .7015 32
recursivePartition n = 19 .9888 .6577 50
recursivePartition n = 20 .9965 .8928 31
recursivePartition n = 21 .9965 .8923 30
recursivePartition n = 22 .9932 .7990 37
recursivePartition n = 23 .9939 .8213 43
recursivePartition n = 24 .9967 .8991 30
recursivePartition n = 25 .9966 .8984 32

Artificial data containing 460 nodes in 30 clusters of minimum size 10 and
maximum size 20 was generated with noise added using the gen cluster graph
function [4]. Again, k = 30 was used as the starting K-means parameter
because the data contained 30 known clusters. Dividing the number of nodes
by the number of clusters produced a starting recursivePartition parameter of
n = 16. Table 5 shows recursivePartition for n = 15 to n = 21 outperformed
K-means and K-means with perturbations for k = 30 with respect to RI
value. recursivePartition outperformed all runs of K-means and K-means
with perturbations, k = 28 to k = 32 for both RI and JI accuracy for the
range of n = 17 to n = 21. In fact, recursivePartition using n = 20 and
n = 21 both produced 30 clusters which exactly matched the true clustering
of the data up to a permutation, as indicated by their RI and JI scores of
1.0000.

23

Table 5: Results of K-means and recursivePartition on noisy Artificial Data
Data contains 30 real clusters of minimum 10 and maximum 20 nodes

Algorithm Parameter RI JI Num Clusters
K-means k = 28 .9867 .7128 28
K-means k = 29 .9870 .7141 29
K-means k = 30 .9881 .7304 30
K-means k = 31 .9895 .7515 31
K-means k = 32 .9868 .7186 32
K-means perturb k = 28 .9888 .7482 28
K-means perturb k = 29 .9895 .7566 29
K-means perturb k = 30 .9898 .7601 30
K-means perturb k = 31 .9910 .7812 31
K-means perturb k = 32 .9909 .7787 32
recursivePartition n = 15 .9919 .7500 45
recursivePartition n = 16 .9928 .7779 43
recursivePartition n = 17 .9943 .8256 40
recursivePartition n = 18 .9948 .8419 39
recursivePartition n = 19 .9994 .9814 31
recursivePartition n = 20 1.0000 1.0000 30
recursivePartition n = 21 1.0000 1.0000 30

Artificial data containing 568 nodes in 30 clusters of minimum size 18 and
maximum size 20 was generated with noise added using the gen cluster graph
function [4]. Again, k = 30 was used as the starting K-means parameter
because the data contained 30 known clusters. Dividing the number of nodes
by the number of clusters produced a starting recursivePartition parameter
of n = 19. Table 6 shows all runs of recursivePartition n = 18 to n = 24
outperformed K-means and K-means with perturbations for k = 30, and
recursivePartition n = 20 to n = 24 produced identical matches up to a
permutation of the true 30 clusters present in the data.

24

Table 6: Results of K-means and recursivePartition on noisy Artificial Data
Data contains 30 real clusters of minimum 18 and maximum 20 nodes

Algorithm Parameter RI JI Num Clusters
K-means k = 28 .9831 .6512 28
K-means k = 29 .9836 .6573 29
K-means k = 30 .9868 .7031 30
K-means k = 31 .9862 .6961 31
K-means k = 32 .9878 .7183 32
K-means perturb k = 28 .9842 .6677 28
K-means perturb k = 29 .9879 .7267 29
K-means perturb k = 30 .9851 .6796 30
K-means perturb k = 31 .9893 .7469 31
K-means perturb k = 32 .9892 .7424 32
recursivePartition n = 18 .9927 .7695 49
recursivePartition n = 19 .9964 .8871 39
recursivePartition n = 20 1.0000 1.0000 30
recursivePartition n = 21 1.0000 1.0000 30
recursivePartition n = 22 1.0000 1.0000 30
recursivePartition n = 23 1.0000 1.0000 30
recursivePartition n = 24 1.0000 1.0000 30

Artificial data containing 600 nodes in 30 clusters of size 20 was generated
with noise added using the gen cluster graph function [4]. Again, k = 30
was used as the starting K-means parameter because the data contained
30 known clusters. A starting recursivePartition parameter of n = 20 was
selected because all clusters were generated as uniform size 20. Table 7 shows
all runs of recursivePartition n = 20 to n = 25 outperformed K-means and
K-means with perturbations for k = 30, producing identical matches up to a
permutation of the true 30 clusters present in the data.

25

Table 7: Results of K-means and recursivePartition on noisy Artificial Data
Data contains 30 real clusters of 20 nodes

Algorithm Parameter RI JI Num Clusters
K-means k = 28 .9824 .6428 28
K-means k = 29 .9857 .6880 29
K-means k = 30 .9843 .6655 30
K-means k = 31 .9868 .7065 31
K-means k = 32 .9852 .6766 32
K-means perturb k = 28 .9852 .6827 28
K-means perturb k = 29 .9836 .6556 29
K-means perturb k = 30 .9847 .6718 30
K-means perturb k = 31 .9868 .7063 31
K-means perturb k = 32 .9863 .6976 32
recursivePartition n = 19 .9891 .6574 60
recursivePartition n = 20 1.0000 1.0000 30
recursivePartition n = 21 1.0000 1.0000 30
recursivePartition n = 22 1.0000 1.0000 30
recursivePartition n = 23 1.0000 1.0000 30
recursivePartition n = 24 1.0000 1.0000 30
recursivePartition n = 25 1.0000 1.0000 30

6 Conclusions

As demonstrated in section 5, recursivePartition is capable of producing clus-
ters with comparable or higher levels of accuracy than the K-means algorithm
with the known number of true clusters present in the data. The flexibility
of recursivePartition in producing accurate results over a range of parameter
values helps to combat one of the major drawbacks of the K-means algo-
rithm, namely the difficulty in choosing the correct k value for the dataset.
Although where to begin selecting an n value for recursivePartition is as
unknown as which k value to choose for K-means and our method of di-
viding the total number of nodes by the number of clusters present in the
data will not work because the number of clusters in a meaningful dataset
is likely unknown, recursivePartition is more forgiving with its parameter
value. Because recursivePartition has the user specify a maximum cluster

26

size rather than the number of clusters to return, it allows the algorithm to
have some influence on what the appropriate number of clusters would be.
For instance, in table 7 recursivePartition returned 30 clusters for the range
of n = 20 to n = 25. Flexibility like that could allow a user to run fewer rep-
etitions of recursivePartition than K-means to find the appropriate number
of clusters for the data. With this flexibility does come a danger of setting
too low a maximum cluster size and thus producing more clusters than de-
sirable. This is also demonstrated in table 7 where the parameter n = 19
causes recursivePartition to produce 60 clusters rather than the desired 30
clusters produced by n = 20 to n = 25. While this danger of producing
too many/too small clusters is something to take care to avoid, it is also a
threat with K-means if an inappropriate k value is chosen. The flexibility in
recursivePartition’s ability to produce highly accurate clusters over a range
of parameter values can help to reduce the overall number of runs necessary
to produce an appropriate clustering.

6.1 Future Work

Future work based on this experiment shows promise for producing interest-
ing results. In line with the original goals for this project, the recursivePar-
tition algorithm could be implemented in parallel. Once the algorithm has
paritioned the initial graph into distinct subgraphs (as many as the user
wants threads), each of these subgraphs partitioned independently on its
own thread using the recursivePartition algorithm. The speedup of that par-
allel version of the algorithm could then be studied. Another continuation of
this project would be a deeper study into how it performs on different types
of data, including those with drastically differing sized clusters or clusters
with widely-ranging densities. Further work should also include methods for
determining an appropriate guess for the input value n given that the ac-
tual number of clusters present in the data is unknown. Specifically, further
research into setting an appropriate n value should explore how high the n
value can be pushed before the accuracy suffers. The maximum cluster size
cannot be so large that it does not force enough levels of recursion to produce
reasonably sized clusters. It would seem that n must not exceed the sum of
the sizes of the two largest clusters in the data, but n needs to be studied
further to determine a stricter upper limit for good clusterings.

27

References

[1] Noga Alon. Eigenvalues and expanders. Combinatorica, 6(2):83–96,
1986.

[2] Benjamin Auffarth. Spectral graph clustering. Technical report, January
2007.

[3] F.R.K. Chung. Spectral graph theory. Regional conference series in
mathematics. Published for the Conference Board of the mathematical
sciences by the American Mathematical Society, 1997.

[4] D. Dunlavy. gen cluster graph matlab function, 2009. Sandia National
Laboratories.

[5] D. Dunlavy. jaccard index matlab function, 2009. Sandia National Lab-
oratories.

[6] D. Dunlavy. rand index matlab function, 2009. Sandia National Labo-
ratories.

[7] D. Dunlavy. kmeans dmd matlab function, 2010. Sandia National Lab-
oratories.

[8] D. Dunlavy. Sectral clustering of data vectors, February 2011. Sandia
National Laboratories.

[9] D.C. Lay. Linear Algebra and Its Applications. Pearson Education, 2002.

[10] Ulrike Luxburg. A tutorial on spectral clustering. Statistics and Com-
puting, 17(4):395–416, 2007.

[11] B. Mohar. Some applications of Laplace eigenvalues of graphs. Preprint
series // Institute of Mathematics, Physics and Mechanics, Department
of Mathematics, University of Ljubljana. Univ. of Ljubljana, Inst. of
Mathematics, Physics and Mechanics, Dep. of Mathematics, 1997.

[12] Daniel A. Spielman and Shang Teng. Spectral partitioning works: Pla-
nar graphs and finite element meshes. Technical report, Berkeley, CA,
USA, 1996.

28

[13] P.N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining.
Pearson International Edition. Pearson Addison Wesley, 2006.

[14] Deepak Verma and Marina Meila. A comparison of spectral clustering
algorithms. University of Washington Tech Rep UWCSE030501, 1(03-
05-01):1–18, 2003.

29

Appendix A Cut Criteria

All implemented cut criteria are based on the work of [10].
Notation:

s(A,B) =
∑

i∈A

∑

j∈B

wij = cut(A,B) (6)

is the similarity between the two non-empty mutually disjoint sets A and B.

dA =
∑

i∈A

di (7)

is the degree of node i

| A | =| B | (8)

is number of vertices in A,B.

vol(A) =
∑

i∈A

di (9)

is the volume of the subgraph A.

Various cut criteria have been developed in order to maximize within clus-
ter similarities while minimizing the number of edges cut between clusters.
The following are commonly used cut criteria that have been developed.
Ratio cut:

JRCut(A,B) =
s(A,B)

| A | +
s(A,B)

| B | =
k∑

i=1

cut(Ai, Ai)

| Ai |
(10)

Note that Ratio cut does not take into account the within cluster similarities.

Normalized cut:

JNCut(A,B) =
s(A,B)

dA
+

s(A,B)

dB
(11)

=
s(A,B)

s(A,A) + s(A,B)
+

s(A,B)

s(B,B) + s(A,B)
(12)

=
∑k

i=1

cut(Ai, Ai)

vol(Ai)
(13)

= cut(A,B)(
1

vol(A)
+

1

vol(B)
) (14)

30

MinMax cut:

JMMC(A,B) =
s(A,B)

s(A,A)
+

s(A,B)

s(B,B)
(15)

Min Cut:

JMinCut(A,B) = min(cut(A1, ..., Ak)) = min(
k∑

i=1

cut(Ai, Ai)) (16)

where

cut(A,A) =
∑

i∈Akj∈Ak

wij (17)

31

Appendix B Programs

B.1 recursivePartition.m

% Overarching method face to allow for various algorithms to be
% used in partitioning. The desired algorithm is specified via
% the 3rd paramter, a String denoting the name of the algorithm
% to use. This method then calls the appropriate partitioning
% method where all necessary variables are assigned.

function [partitions, index] = recursivePartition(A,n,criteria)

[ignore, A] = preprocess2(A);
if strcmpi(criteria, 'normalized')

[partitions, index] = recursiveNormalized(A,n);
elseif strcmpi(criteria, 'ratio')

[partitions, index] = recursiveRatio(A,n);
elseif strcmpi(criteria, 'min')

[partitions, index] = recursiveMinCut(A,n);
elseif strcmpi(criteria, 'minmax')

[partitions, index] = recursiveMinMax(A,n);
elseif strcmpi(criteria, 'bcut')

[partitions, index] = recursiveBCut(A,n);
else

error('Unknown partitioning criteria');
end

32

B.2 preprocess2.m

% Preprocessing of the adjacency matrix A of a graph to produce
% a symmetric matrix, VSsims, of the cosine similarities of
% V, the right singular vector of A, and S, the singular values
% of A. VSsims is then thresholded into a sparse symmetric
% matrix, VSsims t, by eliminating those values of VSsims which
% are effectively 0. This implementation uses a threshold of 0.2

function [VS, VSsims t] = preprocess2(A)

t = 0.2;
k = 30;

[num terms,num documents] = size(A);

[U,S,V] = svds(A,k);
VS = V*S;

for j = 1:num documents
VS(j,:) = VS(j,:) / norm(VS(j,:),2);

end
VSsims = VS*VS';
VSsims thresh = VSsims > .2;
VSsims new = VSsims.*VSsims thresh;
VSsims t = sparse(VSsims new);

33

B.3 recursiveRatio.m

% Overhead method with parameters limited to the essential
% information required from the user in recursivePartition.m.
% This function appropriately assigns all other necessary
% parameters for method recursiveRatioSort

function [partitions,index] = recursiveRatio(A,n)

sizeA = size(A,1);
partitions = zeros(2,1);
i = 1;
temp = 0;
index = zeros(sizeA,1);
index(1:sizeA) = 1:sizeA;
constant = 0;
j = 1;

[sizepartition1,sizepartition2,partitions,i,index,constant] = ...
recursiveRatioSort(A,n,partitions,i,temp,index,constant,j);

ind = find(index==0);
amt = numel(ind);
for(k = 0:amt);

[row,col] = find(index==0,1,'first');
index(row,col) = index(row,col−1);

end
num = numel(partitions);
if partitions(num) > sizeA;

partitions = partitions(1:num−1);
end

34

B.4 recursiveRatioSort.m

% Function to perform a recursive partitioning of a data matrix,
% A, associated with a graph until partitions are reduced to a
% user−specified maximum size, n. Initialization of all other
% parameters is handled in recursiveRatio.m

function [sizepartition1,sizepartition2,partitions,i,index,...
constant] = recursiveRatioSort(A,n,partitions,i,temp,...
index,constant,j)

j = j+1;

[p,g1,g2] = fiedlerRatioSort(A);
[index] = updateVector(p,index,constant,j);
sizepartition1 = size(g1,1);
sizepartition2 = size(g2,1);
if sizepartition1 > n && sizepartition2 > n

boolean1 = 0;
boolean2 = 0;

[i,partitions,temp] = boolean(partitions,boolean1,...
boolean2,i,sizepartition1,sizepartition2,temp,n);

[sizepartition1,sizepartition2,partitions,i,index,...
constant] = recursiveRatioSort(g1,n,partitions,...
i,temp,index,constant,j);

[constant] = find(index(:,j+1)==0,1,'first');
constant = constant−1;

[sizepartition1,sizepartition2,partitions,i,index,...
constant] = recursiveRatioSort(g2,n,partitions,...
i,temp,index,constant,j);

elseif sizepartition1 > n
boolean1 = 0;
boolean2 = 1;

[i,partitions,temp] = boolean(partitions,boolean1,...
boolean2,i,sizepartition1,sizepartition2,temp,n);

[sizepartition1,sizepartition2,partitions,i,index,...
constant] = recursiveRatioSort(g1,n,partitions,...

35

i,temp,index,constant,j);

[i,partitions,temp] = boolean(partitions,boolean1,...
boolean2,i,sizepartition1,sizepartition2,temp,n);

elseif sizepartition2 > n;
boolean1 = 1;
boolean2 = 0;
constant = constant + sizepartition1;

[i,partitions,temp] = boolean(partitions,boolean1,...
boolean2,i,sizepartition1,sizepartition2,temp,n);

[sizepartition1,sizepartition2,partitions,i,index,...
constant] = recursiveRatioSort(g2,n,partitions,...
i,temp,index,constant,j);

else
boolean1 = 1;
boolean2 = 1;

[i,partitions,temp] = boolean(partitions,boolean1,...
boolean2,i,sizepartition1,sizepartition2,temp,n);

% boolean1 = 0;
%boolean2 = 0;

end

36

B.5 laplacian.m

% Function to produce the corresponding Laplacian matrix, L,
% from the adjacency matrix, A, of an undirected graph.
% L is the laplacian matrix given by L = D − A where D is
% the diagonal matrix of the degree of each node ie the
% sum of each row or column of A

function L = laplacian(A)

D = diag(sum(A));
L = D − A;

37

B.6 fiedler.m

% Function to generate the Fiedler value and corresponding
% Fiedler vector (second smallest eigenvalue and eigenvector)
% for the given Laplacian matrix L. d is the Fiedler value, v
% is the sorted Fiedler vector

function [v d] = fiedler(L)

[V D] = eigs(L,2,'sa');
if D(2,2) < .5

d = D(2,2);
v = V(:,2);

else
[V D] = eigs(L,size(L,1)−1,'sa');
[row,col] = find(floor(D)>0,1,'first');
d = D(row,row);
v = V(:,row);

end

38

B.7 cut.m

% Function to calculate cut(A,B), ie the set of edges between two
% disjoint sets A,B both in the graph I, where A+B=I, the
% complete graph.
% @precondition: subset A is the first portion of the graph,
% the graph, sortedI, and subset B is the distinct second
% portion of sortedI.
% A and B are square symmetric adjacency matrices.

function edgeTotal = cut(sortedI,sizeA,sizeI)

discard = sortedI(sizeA+1:sizeI, 1:sizeA);
edgeTotal = sum(sum(discard));

39

B.8 ratioCut.m

% Function implementing the Ratio Cut algorithm which tends
% toward partitions of an equal or nearly equal size.
% RatioCut = Cut(A,B){1/(Vol(A)*Vol(B))}
% where RatioCut is minimized. Input is sortedI = I(p,p), the
% graph I sorted based on the sorted Fiedler vector

function [A,B] = ratioCut(sortedI)

numRows = size(sortedI,1);
cutVector = zeros(1,1);

breakpoint = floor(sqrt(numRows));

for j = breakpoint:numRows−breakpoint;
cutAB = cut(sortedI,j,numRows);
cutVector(j−breakpoint+1) = (cutAB/j) + (cutAB/(numRows−j));

end

[ignore cutPoint] = min(cutVector);
cutPoint = cutPoint + breakpoint −1;
A = sortedI(1:cutPoint,1:cutPoint);
B = sortedI(cutPoint+1:numRows, cutPoint+1:numRows);

40

B.9 minMaxCut.m

% Function to calculate the MinMax Cut of a graph I
% MinMaxCut(A,B) = ((Cut(A,B)/Cut(A,A)) + (Cut(A,B)/Cut(B,B)))
% where MinMaxCut(A,B) is minimized.
% Input is sortedI = I(p,p), the graph I sorted based on the
% sorted Fiedler vector

% Note: Volume portion masked whenever Cut(sortedI,A,B) = 0, but
% it appears the first instance (if any) of 0 may provide the
% optimal cut because that is where the volumes are most
% comparable (among all subsets where Cut(sortedI,A,B) = 0).
% This function operates under the assumption that the first
% instance of 0 is the optimal cut among all 0s.

function [A,B] = minMaxCut(sortedI)

numRows = size(sortedI,1);
cutVector = zeros(1,1);

breakpoint = floor(sqrt(numRows));
for i = 1:breakpoint

cutVector(i) = 1000000;
end

for j = breakpoint:numRows−breakpoint % ensure nonempty partition
A = sortedI(1:j,1:j);
B = sortedI(j+1:numRows,j+1:numRows);
cutAB = cut(sortedI,j,numRows);
cutVector(j) = ((cutAB/volume(A)) + (cutAB/volume(B)));

end

[ignore cutPoint] = min(cutVector);
A = sortedI(1:cutPoint,1:cutPoint);
B = sortedI(cutPoint+1:numRows,cutPoint+1:numRows);

41

B.10 nCut.m

% Function to calculate the Normalized Cut of a graph I.
% From the Verma and Meila paper:
% NCut(A,B) = Cut(A,B){(1/Vol(A)) + (1/Vol(B))}
% where NCut(A,B) is minimized.
% Input is sortedI = I(p,p), the graph I sorted based on the
% sorted Fiedler vector

% Note: Volume portion masked whenever Cut(sortedI,A,B) = 0, but
% it appears the first instance (if any) of 0 may provide the
% optimal cut because that is where the volumes are most
% comparable (among all subsets where Cut(sortedI,A,B) = 0).
% This function operates under the assumption that the first
% instance of 0 is the optimal cut among all 0s.

function [A,B] = nCut(sortedI)

numRows = size(sortedI,1);
cutVector = zeros(1,1);

breakpoint = floor(sqrt(numRows));
for i = 1:breakpoint

cutVector(i) = 1000000;
end

for j = breakpoint:numRows−breakpoint % ensure nonempty partition
A = sortedI(1:j,1:j);
B = sortedI(j+1:numRows,j+1:numRows);
cutVector(j) = cut(sortedI,j,numRows) *...

((1/volume(A)) + (1/volume(B)));
end

[ignore cutPoint] = min(cutVector);
A = sortedI(1:cutPoint,1:cutPoint);
B = sortedI(cutPoint+1:numRows,cutPoint+1:numRows);

42

B.11 minCut.m

% Method to calculate the Min Cut of a graph I:
% MinCut(A,B) = Cut(A,B)
% where MinCut is minimized.
% Input is sortedI = I(p,p), the graph I sorted based on the
% sorted Fiedler vector

function [A,B] = minCut(sortedI)

numRows = size(sortedI,1);
cutVector = zeros(1,1);

breakpoint = floor(sqrt(numRows));
for i = 1:breakpoint

cutVector(i) = 1000000;
end

for j = breakpoint:numRows−breakpoint % ensure nonempty partition
cutAB = cut(sortedI,j,numRows);
cutVector(j) = cutAB;

end

[ignore cutPoint] = min(cutVector);
A = sortedI(1:cutPoint,1:cutPoint);
B = sortedI(cutPoint+1:numRows,cutPoint+1:numRows);

43

B.12 updateVector.m

% Function to update the universal ordering vector of the
% nodes at each level of recursion.
% constant is the constant to add to the elements of
% vector p in order to update the vector index properly.
% constant is related to the size of the partition

function [index] = updateVector(p,index,constant,j)
sizep = size(p,1);
constp = p + constant;
for k = 1:sizep;

index(constant+k,j) = index(constp(k),j−1);
end
ind = find(index(1:constant,:)==0);
amt = numel(ind);
for k = 0:amt;

[row,col] = find(index(1:constant,:)==0,1,'first');
index(row,col) = index(row,col−1);

end

44

B.13 boolean.m

% Function to update the vector indexing the start of partitions

function [i,partitions,temp] = boolean(partitions,boolean1,...
boolean2,i,sizepartition1,sizepartition2,temp,n)

if i == 1;
partitions(1) = 1;

end
if boolean1 == 1 && boolean2 == 1;

i = i+1;
partitions(i) = partitions(i−1) + sizepartition1;
i = i+1;
partitions(i) = partitions(i−1) + sizepartition2;

elseif boolean1 == 1; % && boolean2 == 0;
i = i+1;
partitions(i) = partitions(i−1) + sizepartition1;

elseif boolean2 == 1; % && boolean1 == 0;
if sizepartition1 > n

temp = sizepartition2;
else

if temp > 0
i = i+1;
partitions(i) = partitions(i−1) + temp;
temp = 0;

end
end

end

45

	A Spectral Alternative to K-means Clustering for Graph Data
	Recommended Citation

	tmp.1376339644.pdf.SnXEK

