College of Saint Benedict and Saint John's University DigitalCommons@CSB/SJU

Celebrating Scholarship & Creativity Day

Experiential Learning & Community Engagement

4-24-2014

Serum 25-hydroxyvitamin D status and anaerobic performance in female collegiate basketball players

Anna Krieger College of Saint Benedict/Saint John's University

Follow this and additional works at: https://digitalcommons.csbsju.edu/elce_cscday

Part of the Biochemical Phenomena, Metabolism, and Nutrition Commons, Dietetics and Clinical Nutrition Commons, and the Sports Sciences Commons

Recommended Citation

Krieger, Anna, "Serum 25-hydroxyvitamin D status and anaerobic performance in female collegiate basketball players" (2014). *Celebrating Scholarship & Creativity Day*. 22. https://digitalcommons.csbsju.edu/elce_cscday/22

This Presentation is brought to you for free and open access by DigitalCommons@CSB/SJU. It has been accepted for inclusion in Celebrating Scholarship & Creativity Day by an authorized administrator of DigitalCommons@CSB/SJU. For more information, please contact digitalcommons@csbsju.edu.

Serum 25-Hydroxyvitamin D Status and Anaerobic Performance in Female Collegiate Basketball Players

COLLEGE OF

Primary Investigator: Anna Krieger Co-Investigators: Amy Olson, PhD, RD, LD and Mani Campos, PhD

Vitamin D and Athletes

- Optimal serum 25(OH)D concentration is *at least* **75 nmol/L**¹
- Mean 25(OH)D level for U.S. population²: 56 nmol/L
 Do all ages/populations demonstrate low vitamin D statuses?
- Study in urban Boston hospital³:
 - 42% of adolescents examined had vitamin D deficiency
- Deficiency rates in athletes:
 - Gymnasts (83%)⁴
 - Collegiate athletes (63%)⁵
 - Basketball players (94%)⁴

Does this matter?

Personal Study Purpose

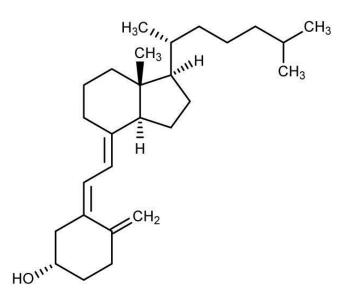
Three-Fold

- Examine relationship between vitamin D status and anaerobic performance
- Determine if the temporary deficiency that occurs during the late fall and winter months is associated with decreased anaerobic performance
- Examine the efficacy of 2000 IU vitamin D₃ daily supplementation to maintain and/or improve vitamin D status in female young adults

Vitamin D: The Basics

1651

First scientific "F description of a vitamin V D-deficiency (rickets)⁶ A


Early 1900's – Mid-1990's

Mid-1990's - Present

"First Wave" of Vitamin D Awareness⁷

Classical Actions⁶:

"Second Wave" of Vitamin D Awareness⁷

Intestinal Ca²⁺ absorption Bone metabolism Parathyroid function Non-Classical Actions⁸: Immune function/disease Heart/vascular function Pregnancy/lactation Obesity Cancer

Muscle function

Cognitive function

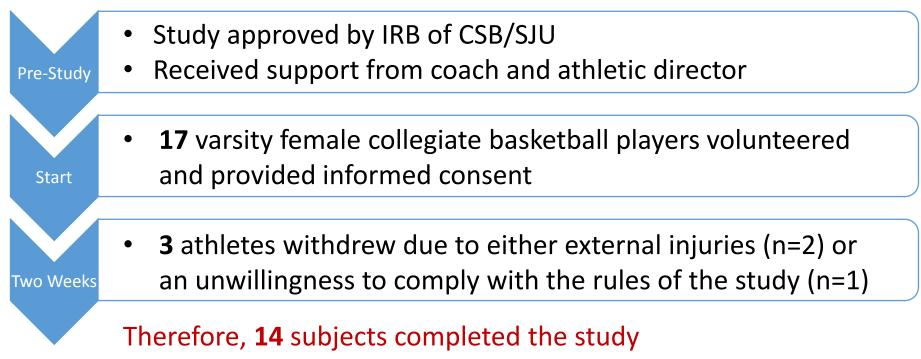
Figure 1. Vitamin D₃ structure (1930s, Windaus)⁷

Vitamin D and Athletes

 Low levels of vitamin D in athletes → decreased muscle strength and increased risk of bone and muscle injuries⁹

Table 1. Comparison of vitamin D sufficiency rates throughout year

Population	Latitude	Summer period	Winter period
Polish professional soccer players ⁹	51 ^o N	50%	16.7%
College athletes ¹⁰	41.3 ^o N	75.6%	15.20%
Spanish soccer players ¹¹	37 ^o N	93%	36%



Vitamin D and Athletic Performance

- Higher serum 25(OH)D concentrations are associated with greater muscle strength and athletic performance in some^{12,13,14}, but not all studies^{14,15}:
 - **Post-menarchal girls**: positive relationship between vitamin D and jump velocity, jump height, power, and force¹²
- (+) Healthy men and women: Vitamin D was significantly associated with arm and leg muscle strength when controlling for age and gender¹³
- C = English professional soccer players: significant change in 10 m sprint times and vertical jump, but no significant change in 30 m sprint times or Illinois agility run¹⁴
- Club-level athletes: increases in serum 25(OH)D had no significant effect on the physical anaerobic tests¹⁵

Who were the subjects?

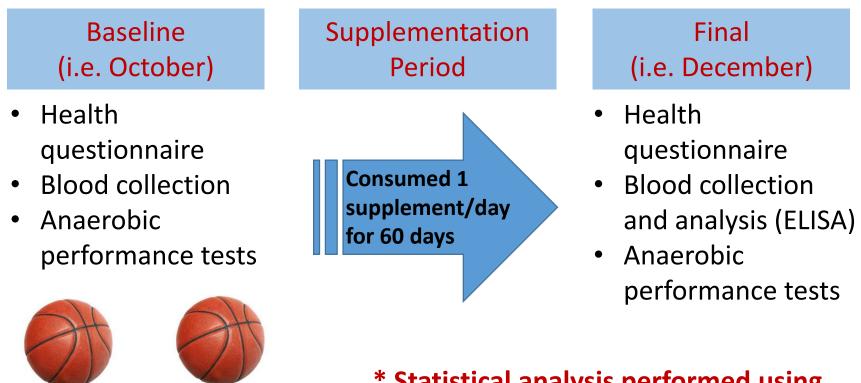


Table 2. Descriptive characteristics at baseline (mean ± SD)

Supplement group	Age (yr)	Weight (kg)	Serum 25(OH)D
			(nmol/L)
Placebo (n=7)	20.3 ± 1.4	72.2 ± 4.4	67.9 ± 24.2
2000 IU vitamin D_3 (n=7)	18.7 ± 1.1	70.4 ± 9.3	66.9 ± 26.5

Research Design

- Double-blind, placebo-controlled study
- Participants were randomly assigned to their respective supplement group

100 IU vitamin E (placebo) (n=7)

2000 IU vitamin D₃ (n=7)

* Statistical analysis performed using SPSS and paired t-tests

Anaerobic Tests

Identical protocols were followed during baseline and final testing sessions

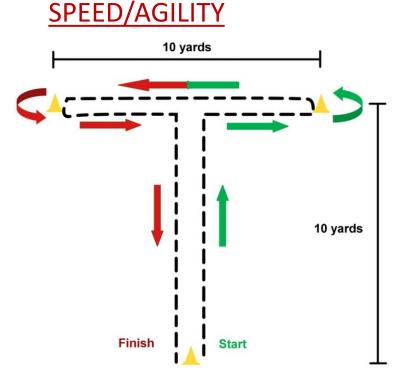


Figure 2. T drill agility test

Figure 3. Just Jump electronic jump mat

 2 measurements/test, taken 5 minutes apart → best result used for analysis

Assessment of Serum-Hydroxyvitamin D Status

- Baseline and final resting finger capillaries were collected from each participant
- Serum 25[OH]D quantification was analyzed using an ALPCO 25[OH]D ELISA assay
- Vitamin D status was defined in accordance with the Endocrine Society guidelines

Serum 25(OH)D (nmol/L)	Status
< 50	Deficient
50-75	Insufficient
75-125	Optimal

Table 3. Endocrine Society vitamin D concentration classifications

What were the baseline and final serum total 25[OH]D concentrations?

Table 4. Serum vitamin D_3 status changes over 60 day supplementation period (mean ±SD)

	Placebo (n=7)	2000 IU vitamin D ₃ (n=7)
25(OH)D ₃ (nmol/L)		
Pre-supplementation	66.9 ± 26.5	67.9 ± 24.2
Post-supplementation	56.7 ± 26.5	79.0 ± 18.2*
Vitamin D Sufficient (%)		
Pre-supplementation	42.9	14.3
Post-supplementation	42.9	57.1*

* *p* < 0.05

What were the baseline and final serum total 25[OH]D concentrations?

Figure 4. Changes in serum $25(OH)D_3$ (nmol/L) following 60-day supplementation

Did these post-supplementation changes in vitamin D status affect anaerobic performance?


Table 4. Anaerobic performance changes over 60 day supplementationperiod (mean ±SD)

	Placebo (n=7)	2000 IU vitamin D ₃ (n=7)
T Drill Agility Test (s)		
Pre-supplementation	11.3 ± 0.7	11.6 ± 1.1
Post-supplementation	11.4 ± 0.3	11.1 ± 0.6
Vertical Jump (cm)		
Pre-supplementation	47.3 ± 6.7	47.8 ± 6.6
Post-supplementation	48.2 ± 6.2	48.8 ± 6.2

There were no changes in any of the performance tests over the 60 day supplementation period.

Why were so many participants vitamin D insufficient/deficient at baseline?

- Causes can be multifactorial:
 - Low UVB exposure
 - Low dietary and supplemental intake of vitamin D
 - ✓ Only 14% (n=2) reported taking a daily vitamin D supplement prior to study
 - ✓ Health questionnaire revealed low intakes of vitamin D-rich foods (i.e. milk, fatty fish)

Figure 5. Questions taken from baseline health questionnaire

Chronic vs. acute vitamin D deficiency effects: does the temporary dip matter?

- Threshold effect:
 - Lower baseline concentrations result in a greater magnitude of response to vitamin D supplementation¹⁵
- The "optimal cutoff" of 75 nmol/L may not be enough for enhanced anaerobic effects:
 - The response curve one tissue to a given extracellular signal (i.e. hormone) differs from another¹⁶
 - ✓ Implies that the optimal 25(OH)D concentration for a perceptible physiological response in one tissue may not be optimal for another
 - A higher serum total 25(OH)D concentration may be necessary in skeletal muscle
 - Heaney & Holick proposed the range of 120-225 nmol/L for skeletal muscle¹⁷

Was compliance a factor?

- Yes
 - ✓ Greatest challenge of study

Table 4. Results of final participant questionnaire

Frequency of supplement use	Percentage of participants
5-7 days/week	64% (n=9)
3-5 days/week	29% (n=4)
1-3 days/week	7% (n=1)

Other limitations to the study?

- Small sample size
- Limited number of anaerobic tests
 - ✓ Additional tests
 - Maximum strength tests (e.g. 1-RM measurements)¹²
 - \circ Short sprints (e.g. 10 m sprint)¹¹
- $\circ~$ Did not monitor changes in training and physical activity
 - Training effects and changes in fitness levels throughout the supplementation period may have affected performance tests

Next steps: future research

- Repeat study with added changes:
 - ✓ Incorporate methods to increase compliance
 - ✓ Monitor immune health
 - Vitamin D affects immunity, which in turn affects athletes and their performance¹⁸
- Need for randomized controlled trials that examine:
 - ✓ Optimal vitamin D levels for peak athletic performance
 - ✓ Effects of chronic vs. acute vitamin
 D deficiencies

Take-away messages

- 2000 IU vitamin D₃/daily over a 60day period increased serum 25(OH)D₃ to optimal levels
- The elevated vitamin D status did not improve our chosen measures of anaerobic performance in collegiate female basketball players

May indicate that a chronic deficiency of vitamin D or a more severe deficiency is needed to adversely affect muscle function

References

- 1. Bischoff-Ferrari, H.A. (2008). Optimal serum 25-hydroxyvitamin D levels for multiple health outcomes. Advances in Experimental Medicine & Biology. 624:55-71. doi: 10.1007/978-0-387-77574-6_5.
- 2. Institute of Medicine, Food and Nutrition Board. Dietary Reference Intakes for Calcium and Vitamin D. Washington, DC: National Academy Press, 2010.
- 3. Holick, M.F. (2007). Vitamin D deficiency. New England Journal of Medicine. 357(3): 266-281.
- 4. Shuler, F.D., Wingate, M.K., Moore, H. & Giangarra, C. (2012). Sports health benefits of vitamin D. Sports Health. 4(6):496-501.doi: 10.1177/1941738112461621
- 5. Halliday, T.M., Peterson, N.J., Thomas, J.J., Kleppinger, K., Hollis, B.W. & Larson-Meyer, D.E. (2011). Vitamin D status relative to diet, lifestyle, injury, and illness in college athletes. *Medicine & Science in Sports & Science*, 335-343. doi: 10.1249?MSS.0b013e3181eb9d4d
- 6. Lips, P. (2006). Vitamin D physiology. *Progress in Biophysics and Molecular Biology*. 92: 4-8. doi:10.1016/j.pbiomolbio.2006.02.016.
- 7. Brown, S. (2013). Vitamin D: An old bone builder takes on new importance. *Better Bones*. Retrieved from <u>http://www.betterbones.com/bonenutrition/vitamin-d/currentandfuture.aspx</u>
- 8. Christakos, S., Hewison, M., Gardner, D.G., Wagner, C.L., Sergeev, I.N., Rutten, E...Bilke, D.D. (2013). Vitamin D: Beyond bone. Annals of the New York Academy of Sciences. 1287: 45-58. doi:10.1111/nyas.12129.
- 9. Kopec, A., Solarz, K., Majda, F., Slowinska-Lisowska, M. & Medras, M. (2013). An evaluation of the levels of vitamin D and bone turnover markers after the summer and winter periods in polish professional soccer players. *Journal of Human Kinetics.* 38: 135-140. doi: 10.2478/hukin-2013-0053.
- 10. Halliday, T.M., Peterson, N.J., Thomas, J.J., Kleppinger, K., Hollis, B.W. & Larson-Meyer, D.E. (2011). Vitamin D status relative to diet, lifestyle, injury, and illness in college athletes. *Medicine & Science in Sports & Science*, 335-343. doi: 10.1249?MSS.0b013e3181eb9d4d
- 11. Galan, F., Ribas, J., Sánchez-Martinez, P.M., Calero, T., Sánchez, A.B., Muñoz, A. (2012). Serum 25-hydroxyvitamin D in early autumn to ensure vitamin D sufficiency in mid-winter in professional football players. *Clinical Nutrition*. 31: 132-136.
- 12. Ward, K.A., Das, G., Berry, J.L., Roberts, S.A., Rawer, R., Adams, J.E. & Mughal, Z. (2009). Vitamin D status and muscle function in post-menarchal girls. Journal of Clinical Endocrinology & Metabolism, 94(2): 559-563. doi: 10.1210/jc.2008-1284
- 13. Grimaldi, A.S., Parker, B.A., Capizzi, J.A., Clarkson, P.M., Pescatello., White, C.M. & Thompson, P.D. (2013). 25(OH) vitamin D is associated with greater muscle strength in healthy men and women. Medicine & Science in Sports & Exercise. 45(1): 157-162. doi: 10.1249/MSS.0b013e31826c9a78.
- 14. Close, G.L., Russell, J., Cobley, J.N., Owens, D.J., Wilson, G., Gregson, W., Fraser, W.D. & Morton, J.P. (2013). Assessment of vitamin D concentration in nonsupplemented professional athletes and healthy adults during the winter months in the UK: implications for skeletal muscle function. Journal of Sports Sciences. 31(4): 344-353. doi: 10.1080/02640414.2012.733822
- 15. Close, G.L., Leckey, J., Patterson, M., Bradley, W., Owens, DJ., Fraser, W.D., & Morton, J.P. (2013). The effects of vitamin D(3) supplementation on serum total 25[OH]D concentration and physical performance: a randomized dose-response study. *British Journal of Sports Medicine*, 47(11), 692-6. doi: 10.1136/bjsports-2012-091735
- 16. Biesalski HK, Aggett PJ, Anton R, et al. (2011) 26th Hohenheim Consensus Conference, September 11, 2010 Scientific substantiation of health claims: evidencebased nutrition. *Nutrition.27(Suppl 10):S1–20*
- 17. Heaney, R.P. & Holick, M.F. (2011). Why the IOM recommendations for vitamin D are deficient. Journal of Bone and Mineral Research. 26:455–7
- 18. Ogan, D., & Pritchett, K. (2013). Vitamin D and the athlete: Risks, recommendations, and benefits. *Nutrients*, 5(6), 1856-1868. doi:<u>10.3390/nu5061856</u>

Baseline Questionnaire

ID Number_____

Date_____

Age_____

Are you currently taking any dietary supplements?

[]Yes []No

If yes, please provide names of supplements (if known):

If yes, how often do you take the supplements?

[]Daily [] 3-5 times/week

[]1time/week []<1time/week

Are you currently taking a supplement that contains vitamin D?

[]Yes []No []Idon't know

If yes, do you know the amount of vitamin D are you taking?

[] Yes _____I.U. [] I don't know

Do you wear sunscreen on a daily basis? [] Yes [] No How often do you use a tanning bed? [] 3+ times/week [] 1-2 times/week [] 1-3 times/month [] Never How many glasses of milk do you consume per day? [] 3+ glasses [] 2-3 glasses [] 1 glass [] 4 glass [] 1 don't drink milk How often do you eat "fatty fish" (e.g. salmon, tuna, etc.)? [] 3+ times/week [] 1-2 times/week [] 1-3 times/month [] I don't eat "fatty fish"

Final Questionnaire

Are you currently taking an additional supplement (i.e. one not provided by the study) that contains vitamin D? [] Yes [] No [] I don't know				
If yes, do you know the amount of vitamin D you are taking? [] YesI.U. [] I don't know				
Do you wear sunscreen on a daily basis?				
[] Yes [] No				
How often do you use a tanning bed?				
[] 3+ times/week [] 1-2 times/week				
[] 1-3 times/month [] Never				
Did you travel during the supplementation period?				
[]Yes []No				
If yes, where?				
How many glasses of milk do you consume per day?				
[] 3+ glasses [] 2-3 glasses [] 1 glass				
[] <1 glass [] I don't drink milk				
How often do you eat "fatty fish" (e.g. salmon, tuna)? [] 3+ times/week [] 1-2 times/week				
[] 1-3 times/month [] I don't eat "fatty fish"				

ALPCO 25(OH)D ELISA Assay

- Utilized a competitive ELISA technique with a selected monoclonal antibody recognizing 25(OH)D
- Participants' serum was incubated with a releasing reagent
- Pre-incubated solutions were then transferred to a microplate coated with 25(OH)D and the anti-25(OH)D antibody was added
- During the overnight incubation step, the 25(OH)D in the serum samples and a fixed amount of 25(OH)D bound to the microtiter well *competed* for the binding of the antibody.
- Then, a peroxidase-conjugated antibody was added to each microplate well → a complex of 25(OH)D-anti-25(OH)D antibody-peroxidase conjugate if formed
- Tetramethylbenzidine (TMB) was used as a peroxidase substrate
- Finally, an acidic stop solution was added to terminate the reaction, whereby the color changes from blue to yellow.
 - ✓ The intensity of the yellow color was inversely proportional to the concentration of 25(OH)D

Vertical jump and agility T-test descriptive data

Group	Agility T Test (s)	Vertical Jump (in)
College basketball players (women)	9.0	21
Competitive college athletes (women)	10.8	16-18.5
Sedentary college students (women)	13.5	8-14

*The values listed are either means or 50th percentile (medians).

Role of Vitamin D in Muscle

- Upon activation to 1,25(OH)D, vitamin D-responsive gene expression in muscle is altered
- These genes affect⁴:
 - Muscle protein synthesis
 - Muscle strength
 - Muscle size
 - Reaction time
 - Balance
 - Coordination
 - Endurance

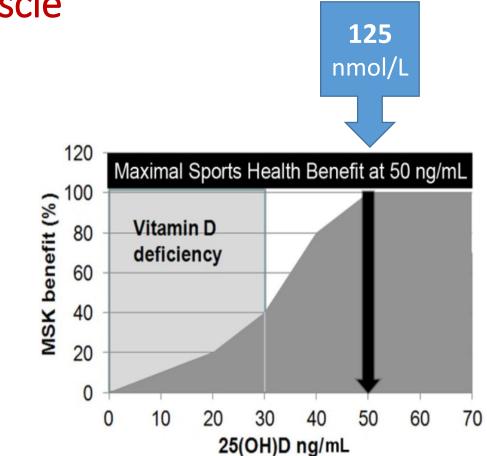
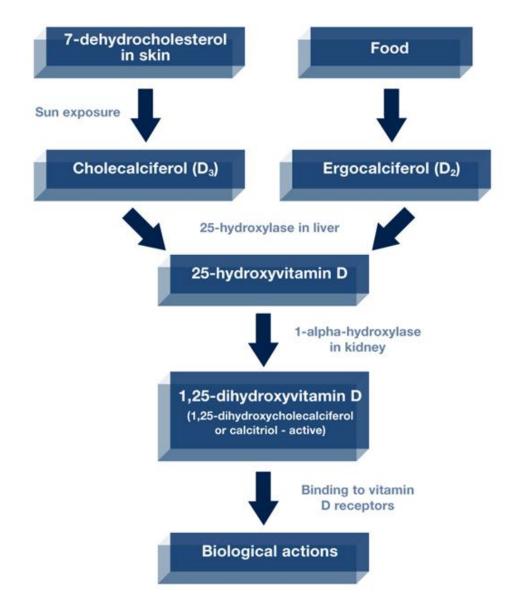
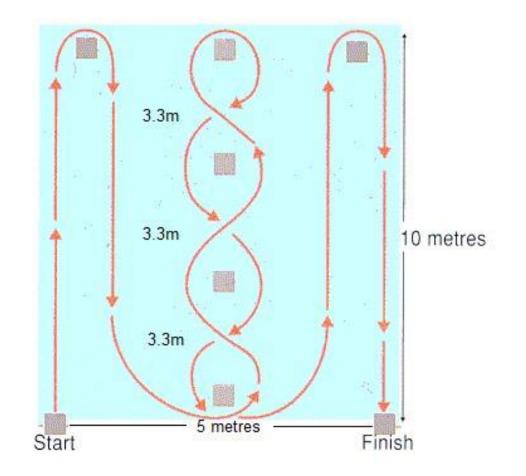




Fig 1. An increase in the storage form of vitamin D is associated with incremental improved musculoskeletal performance⁴

Vitamin D Conversion Mechanism

Illinois Agility Test

