Serum 25-hydroxyvitamin D status and anaerobic performance in female collegiate basketball players

Anna Krieger
College of Saint Benedict/Saint John's University

Follow this and additional works at: https://digitalcommons.csbsju.edu/elce_cscday

Part of the Biochemical Phenomena, Metabolism, and Nutrition Commons, Dietetics and Clinical Nutrition Commons, and the Sports Sciences Commons

Recommended Citation
https://digitalcommons.csbsju.edu/elce_cscday/22

This Presentation is brought to you for free and open access by DigitalCommons@CSB/SJU. It has been accepted for inclusion in Celebrating Scholarship & Creativity Day by an authorized administrator of DigitalCommons@CSB/SJU. For more information, please contact digitalcommons@csbsju.edu.
Serum 25-Hydroxyvitamin D Status and Anaerobic Performance in Female Collegiate Basketball Players

Primary Investigator: Anna Krieger
Co-Investigators: Amy Olson, PhD, RD, LD and Mani Campos, PhD
Vitamin D and Athletes

- Optimal serum 25(OH)D concentration is at least 75 nmol/L\(^1\)
- Mean 25(OH)D level for U.S. population\(^2\): 56 nmol/L
 - Do all ages/populations demonstrate low vitamin D statuses?
- Study in urban Boston hospital\(^3\):
 - 42% of adolescents examined had vitamin D deficiency
- Deficiency rates in athletes:
 - Gymnasts (83%)\(^4\)
 - Collegiate athletes (63%)\(^5\)
 - Basketball players (94%)\(^4\)

Does this matter?
Personal Study Purpose

Three-Fold

• Examine relationship between vitamin D status and anaerobic performance

• Determine if the temporary deficiency that occurs during the late fall and winter months is associated with decreased anaerobic performance

• Examine the efficacy of 2000 IU vitamin D$_3$ daily supplementation to maintain and/or improve vitamin D status in female young adults
Vitamin D: The Basics

1651

- First scientific description of a vitamin D-deficiency (rickets)\(^6\)

Early 1900’s – Mid-1990’s

- “First Wave” of Vitamin D Awareness\(^7\)

Mid-1990’s - Present

- “Second Wave” of Vitamin D Awareness\(^7\)

Classical Actions\(^6\):
- Intestinal Ca\(^{2+}\) absorption
- Bone metabolism
- Parathyroid function

Non-Classical Actions\(^8\):
- Immune function/disease
- Heart/vascular function
- Pregnancy/lactation
- Obesity
- Cancer
- Muscle function
- Cognitive function

Figure 1. Vitamin D\(_3\) structure (1930s, Windaus)\(^7\)
Vitamin D and Athletes

- Low levels of vitamin D in athletes \rightarrow decreased muscle strength and increased risk of bone and muscle injuries\(^9\)

Table 1. Comparison of vitamin D sufficiency rates throughout year

<table>
<thead>
<tr>
<th>Population</th>
<th>Latitude</th>
<th>Summer period</th>
<th>Winter period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polish professional soccer players(^9)</td>
<td>51 ° N</td>
<td>50%</td>
<td>16.7%</td>
</tr>
<tr>
<td>College athletes(^10)</td>
<td>41.3 ° N</td>
<td>75.6%</td>
<td>15.20%</td>
</tr>
<tr>
<td>Spanish soccer players(^11)</td>
<td>37 ° N</td>
<td>93%</td>
<td>36%</td>
</tr>
</tbody>
</table>
Vitamin D and Athletic Performance

• Higher serum 25(OH)D concentrations are associated with greater muscle strength and athletic performance in some12,13,14, but not all studies14,15:

 — Post-menarchal girls: positive relationship between vitamin D and jump velocity, jump height, power, and force12

 — Healthy men and women: Vitamin D was significantly associated with arm and leg muscle strength when controlling for age and gender13

 — English professional soccer players: significant change in 10 m sprint times and vertical jump, but no significant change in 30 m sprint times or Illinois agility run14

 — Club-level athletes: increases in serum 25(OH)D had no significant effect on the physical anaerobic tests15
Who were the subjects?

- **Pre-Study**
 - Study approved by IRB of CSB/SJU
 - Received support from coach and athletic director

- **Start**
 - **17** varsity female collegiate basketball players volunteered and provided informed consent

- **Two Weeks**
 - **3** athletes withdrew due to either external injuries (n=2) or an unwillingness to comply with the rules of the study (n=1)

Therefore, **14** subjects completed the study

Table 2. Descriptive characteristics at baseline (mean ± SD)

<table>
<thead>
<tr>
<th>Supplement group</th>
<th>Age (yr)</th>
<th>Weight (kg)</th>
<th>Serum 25(OH)D (nmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo (n=7)</td>
<td>20.3 ± 1.4</td>
<td>72.2 ± 4.4</td>
<td>67.9 ± 24.2</td>
</tr>
<tr>
<td>2000 IU vitamin D₃ (n=7)</td>
<td>18.7 ± 1.1</td>
<td>70.4 ± 9.3</td>
<td>66.9 ± 26.5</td>
</tr>
</tbody>
</table>
Research Design

- Double-blind, placebo-controlled study
- Participants were randomly assigned to their respective supplement group

Baseline (i.e. October)
- Health questionnaire
- Blood collection
- Anaerobic performance tests

Supplementation Period
- Consumed 1 supplement/day for 60 days

Final (i.e. December)
- Health questionnaire
- Blood collection and analysis (ELISA)
- Anaerobic performance tests

Statistical analysis performed using SPSS and paired t-tests

- 100 IU vitamin E (placebo) (n=7)
- 2000 IU vitamin D\(_3\) (n=7)
Anaerobic Tests

- Identical protocols were followed during baseline and final testing sessions

SPEED/AGILITY

VERTICAL JUMP

Figure 2. T drill agility test

Figure 3. Just Jump electronic jump mat

- 2 measurements/test, taken 5 minutes apart → best result used for analysis
Assessment of Serum-Hydroxyvitamin D Status

• Baseline and final resting finger capillaries were collected from each participant
• Serum 25[OH]D quantification was analyzed using an ALPCO 25[OH]D ELISA assay
• Vitamin D status was defined in accordance with the Endocrine Society guidelines

Table 3. Endocrine Society vitamin D concentration classifications

<table>
<thead>
<tr>
<th>Serum 25(OH)D (nmol/L)</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 50</td>
<td>Deficient</td>
</tr>
<tr>
<td>50-75</td>
<td>Insufficient</td>
</tr>
<tr>
<td>75-125</td>
<td>Optimal</td>
</tr>
</tbody>
</table>
What were the baseline and final serum total 25(OH)D concentrations?

Table 4. Serum vitamin D₃ status changes over 60 day supplementation period (mean ±SD)

<table>
<thead>
<tr>
<th></th>
<th>Placebo (n=7)</th>
<th>2000 IU vitamin D₃ (n=7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25(OH)D₃ (nmol/L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-supplementation</td>
<td>66.9 ± 26.5</td>
<td>67.9 ± 24.2</td>
</tr>
<tr>
<td>Post-supplementation</td>
<td>56.7 ± 26.5</td>
<td>79.0 ± 18.2*</td>
</tr>
<tr>
<td>Vitamin D Sufficient (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-supplementation</td>
<td>42.9</td>
<td>14.3</td>
</tr>
<tr>
<td>Post-supplementation</td>
<td>42.9</td>
<td>57.1*</td>
</tr>
</tbody>
</table>

* p < 0.05
What were the baseline and final serum total 25(OH)D concentrations?

* $p < 0.05$

Figure 4. Changes in serum 25(OH)D$_3$ (nmol/L) following 60-day supplementation
Did these post-supplementation changes in vitamin D status affect anaerobic performance?

Table 4. Anaerobic performance changes over 60 day supplementation period (mean ±SD)

<table>
<thead>
<tr>
<th></th>
<th>Placebo (n=7)</th>
<th>2000 IU vitamin D₃ (n=7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T Drill Agility Test (s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-supplementation</td>
<td>11.3 ± 0.7</td>
<td>11.6 ± 1.1</td>
</tr>
<tr>
<td>Post-supplementation</td>
<td>11.4 ± 0.3</td>
<td>11.1 ± 0.6</td>
</tr>
<tr>
<td>Vertical Jump (cm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-supplementation</td>
<td>47.3 ± 6.7</td>
<td>47.8 ± 6.6</td>
</tr>
<tr>
<td>Post-supplementation</td>
<td>48.2 ± 6.2</td>
<td>48.8 ± 6.2</td>
</tr>
</tbody>
</table>

There were no changes in any of the performance tests over the 60 day supplementation period.
Why were so many participants vitamin D insufficient/deficient at baseline?

- Causes can be multifactorial:
 - Low UVB exposure
 - Low dietary and supplemental intake of vitamin D
 - Only 14% (n=2) reported taking a daily vitamin D supplement prior to study
 - Health questionnaire revealed low intakes of vitamin D-rich foods (i.e. milk, fatty fish)

Figure 5. Questions taken from baseline health questionnaire
Chronic vs. acute vitamin D deficiency effects: does the temporary dip matter?

- **Threshold effect:**
 - ✓ Lower baseline concentrations result in a greater magnitude of response to vitamin D supplementation\(^{15}\)

- **The “optimal cutoff” of 75 nmol/L may not be enough for enhanced anaerobic effects:**
 - ✓ The response curve one tissue to a given extracellular signal (i.e. hormone) differs from another\(^{16}\)
 - ✓ Implies that the optimal 25(OH)D concentration for a perceptible physiological response in one tissue may not be optimal for another
 - ✓ A higher serum total 25(OH)D concentration may be necessary in skeletal muscle
 - • Heaney & Holick proposed the range of **120-225 nmol/L** for skeletal muscle\(^{17}\)
Was compliance a factor?

- Yes
 - ✔ Greatest challenge of study

Table 4. Results of final participant questionnaire

<table>
<thead>
<tr>
<th>Frequency of supplement use</th>
<th>Percentage of participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-7 days/week</td>
<td>64% (n=9)</td>
</tr>
<tr>
<td>3-5 days/week</td>
<td>29% (n=4)</td>
</tr>
<tr>
<td>1-3 days/week</td>
<td>7% (n=1)</td>
</tr>
</tbody>
</table>
Other limitations to the study?

• Small sample size
• Limited number of anaerobic tests
 ✓ Additional tests
 o Maximum strength tests (e.g. 1-RM measurements)12
 o Short sprints (e.g. 10 m sprint)11
 o Did not monitor changes in training and physical activity
 ✓ Training effects and changes in fitness levels throughout the supplementation period may have affected performance tests
Next steps: future research

• Repeat study with added changes:
 ✓ Incorporate methods to increase compliance
 ✓ Monitor immune health
 o Vitamin D affects immunity, which in turn affects athletes and their performance\(^{18}\)

• Need for randomized controlled trials that examine:
 ✓ Optimal vitamin D levels for peak athletic performance
 ✓ Effects of chronic vs. acute vitamin D deficiencies
Take-away messages

• 2000 IU vitamin D$_3$/daily over a 60-day period increased serum 25(OH)D$_3$ to optimal levels

✓ The elevated vitamin D status did not improve our chosen measures of anaerobic performance in collegiate female basketball players

May indicate that a chronic deficiency of vitamin D or a more severe deficiency is needed to adversely affect muscle function
QUESTIONS?
References

Baseline Questionnaire

ID Number__
Date__
Age_________

Are you currently taking any dietary supplements?
[] Yes [] No
If yes, please provide names of supplements (if known):
__
__
__
If yes, how often do you take the supplements?
[] Daily [] 3-5 times/week
[] 1 time/week [] <1 time/week

Are you currently taking a supplement that contains vitamin D?
[] Yes [] No [] I don’t know
If yes, do you know the amount of vitamin D you are taking?
[] Yes ______I.U. [] I don’t know

Do you wear sunscreen on a daily basis?
[] Yes [] No

How often do you use a tanning bed?
[] 3+ times/week [] 1-2 times/week
[] 1-3 times/month [] Never

How many glasses of milk do you consume per day?
[] 3+ glasses [] 2-3 glasses [] 1 glass
[] <1 glass [] I don’t drink milk

How often do you eat “fatty fish” (e.g. salmon, tuna, etc.)?
[] 3+ times/week [] 1-2 times/week
[] 1-3 times/month [] I don’t eat “fatty fish”
Final Questionnaire

Last 4 Digits of Banner ID

How often did you take the study’s supplement?
[] 5-7 times/week [] 1-3 times/week
[] 3-5 times/week [] Never

Did you initially take the supplement, but then stopped?
[] Yes [] No

If yes, explain when and why you stopped:

__

Are you currently taking any other vitamins/minerals?
[] Yes [] No

If yes, please provide names of vitamins/minerals (if known):

__

If yes, how often do you take the vitamins/minerals?
[] Daily [] 3-5 times/week
[] 1 time/week [] <1 time/week

Are you currently taking an additional supplement (i.e. one not provided by the study) that contains vitamin D?
[] Yes [] No [] I don’t know

If yes, do you know the amount of vitamin D you are taking?
[] Yes ______I.U. [] I don’t know

Do you wear sunscreen on a daily basis?
[] Yes [] No

How often do you use a tanning bed?
[] 3+ times/week [] 1-2 times/week
[] 1-3 times/month [] Never

Did you travel during the supplementation period?
[] Yes [] No

If yes, where? _______________________________________

How many glasses of milk do you consume per day?
[] 3+ glasses [] 2-3 glasses [] 1 glass
[] <1 glass [] I don’t drink milk

How often do you eat “fatty fish” (e.g. salmon, tuna)?
[] 3+ times/week [] 1-2 times/week
[] 1-3 times/month [] I don’t eat “fatty fish”
ALPCO 25(OH)D ELISA Assay

• Utilized a competitive ELISA technique with a selected monoclonal antibody recognizing 25(OH)D
• Participants’ serum was incubated with a releasing reagent
• Pre-incubated solutions were then transferred to a microplate coated with 25(OH)D and the anti-25(OH)D antibody was added
• During the overnight incubation step, the 25(OH)D in the serum samples and a fixed amount of 25(OH)D bound to the microtiter well competed for the binding of the antibody.
• Then, a peroxidase-conjugated antibody was added to each microplate well → a complex of 25(OH)D-anti-25(OH)D antibody-peroxidase conjugate if formed
• Tetramethylbenzidine (TMB) was used as a peroxidase substrate
• Finally, an acidic stop solution was added to terminate the reaction, whereby the color changes from blue to yellow.
 ✓ The intensity of the yellow color was inversely proportional to the concentration of 25(OH)D
Vertical jump and agility T-test descriptive data

<table>
<thead>
<tr>
<th>Group</th>
<th>Agility T Test (s)</th>
<th>Vertical Jump (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>College basketball players (women)</td>
<td>9.0</td>
<td>21</td>
</tr>
<tr>
<td>Competitive college athletes (women)</td>
<td>10.8</td>
<td>16-18.5</td>
</tr>
<tr>
<td>Sedentary college students (women)</td>
<td>13.5</td>
<td>8-14</td>
</tr>
</tbody>
</table>

The values listed are either means or 50th percentile (medians).
Role of Vitamin D in Muscle

• Upon activation to 1,25(OH)D, vitamin D-responsive gene expression in muscle is altered

• These genes affect⁴:
 — Muscle protein synthesis
 — Muscle strength
 — Muscle size
 — Reaction time
 — Balance
 — Coordination
 — Endurance

Fig 1. An increase in the storage form of vitamin D is associated with incremental improved musculoskeletal performance⁴
Vitamin D Conversion Mechanism

- 7-dehydrocholesterol in skin
 - Sun exposure
 - Cholecalciferol (D₃)
 - 25-hydroxylase in liver
 - 25-hydroxyvitamin D
 - 1-alpha-hydroxylase in kidney
 - 1,25-dihydroxyvitamin D
 (1,25-dihydroxycholecalciferol or calcitriol - active)
 - Binding to vitamin D receptors
 - Biological actions
Illinois Agility Test