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Sublimital Analysis
Thomas Q. Sibley

St. John’s University
Collegeville, MN 56321

tsibley@csbsju.edu

Limits of subsequences play a small supporting role in analysis. (See, for example, the
Bolzano-Weierstrass Theorem.) However, in the typical undergraduate course we never
seem to care what the limits actually are, suggesting that these "sublimits" might not
deserve star billing. The article [3] by Zheng and Cheng in the references does consider
such "sublimits" in a particular setting. This article takes a closer look at subsequences and
their limits more generally. I owe a disclosure to those readers who connected the
"sublimital" of the title with the word "subliminal." While "sublimits" may well be hidden in
the original sequence, they aren’t placed there to send subconscious messages. Instead
we should think of them as enticements to mathematical exploration.

Example 1. Let bn be the alternating sequence given by bn 1 n n 1
n . The first

few terms are 0
1 , 1

2 , 2
3 , 3

4 , 4
5 ,

This sequence diverges, but it has subsequences converging to two "sublimits":
limk b2k limk

2k 1
2k 1 and limk b2k 1 limk

2k 2
2k 1 1.

Definition. Given a sequence an of real numbers, a real number s is a sublimit of an

if and only if there is some subsequence ank of the original sequence such that
limk ank s. Denote the set of all sublimits of a sequence an by S an .

Example 1 (continued). For the sequence bn , where bn 1 n n 1
n as given earlier,

S bn 1, 1 . The reader is invited to show bn has no other sublimits.

Remark. If a sequence cn converges to a limit l, then S cn l since l is the only
possible sublimit.

Example 2. The sequence dn given by dn n has no sublimits and S dn .

Example 3. The set Q of rationals is countable so there is a sequence qn listing all of
Q. Then every real number r is a sublimit of qn . To see this, note that for each 1

k 0
there are infinitely many rationals in the open interval r , r . So for all k N, we can
choose qnk Q such that |qnk r| 1

k and nk nk 1. Thus the subsequence qnk

converges to r and S qn R.



In Example 3 each real number has its own subsequence, which the usual notation qnk

can’t indicate. The following notation overcomes that lack and will be useful in the proof of
Theorem 1.

Definition. Given a sequence an and a set of its subsequences indexed by K, for
k K let an k denote the subsequence with index k and let an k, i denote the ith term of
an k .

Example 3 naturally leads to the question "Given any set S of real numbers is there a
sequence whose set of sublimits is S?" The answer, in a word, is "no." Our goal is to
characterize the possible sets of sublimits. At the end we’ll generalize this question to
metric spaces.

In looking for ways to describe possible sets of sublimits we might well start with
instances where subsequences appear in analysis courses. (See, for example, the text [1]
by Abbott for definitions of terms used in this paragraph along with more on the theorems.)
The Bolzano-Weierstrass theorem states that every bounded sequence has a convergent
subsequence. So perhaps bounded sets play a role. However, the set of sublimits in
Example 3 is definitely not bounded, so that property can’t be part of the characterization of
sets of sublimits. Another common role of subsequences is in the definition of sequentially
compact. The Heine-Borel theorem informs us that sets are compact if and only if they are
closed and bounded. Also, limits and sublimits are related to limit points, which appear in
the definition of closed sets. So perhaps the characterization of sets of sublimits relates to
closed sets. The sets of sublimits in Examples 1, 2 and 3 are, indeed, closed. Theorem 1
below confirms that all sets of sublimits are closed.

Theorem 1. Let an be any sequence of real numbers. Then S an , its set of sublimits,
is a closed set.

Figure 1 explains the idea behind the proof. The right hand column is a sequence sk of
sublimits of the sequence an and its limit L. Each of the sublimits sk has a subsequence
an k converging to sk. We need to create a new subsequence an L converging to L.

Figure 1 suggests choosing the "diagonal" subsequence an k,k . The reader is invited to
construct an example where such a diagonal subsequence fails to converge to L. In the
proof we shall generate a more sophisticated subsequence using the Axiom of Choice.



an 1,1 an 1,2 an 1,3 s1

an 2,1 an 2,2 an 2,3 s2

an 3,1 an 3,2 an 3,3 s3

an k, 1 an k, 2 an k,k sk

L
Figure 1.

Proof of Theorem 1. Let an be any sequence and, in order to show S an is closed,
let L be any limit point of S an . Then there is a sequence sk such that for each k N,
sk S an , sk L and limk sk L. Because each sk is a sublimit of an , there is a
subsequence an k such that lim i an k, i sk. (See Figure 1.) We need to build a new
subsequence an L converging to L in order to show S an is closed.

For i N, let j i be the smallest subscript such that for |sj i L| 1
i and let an j i ,h i

be the first term of an such that |an j i ,h i sj i | 1
i . That is, we choose the sublimit

sj i to be close to our ultimate limit L and in turn choose the term an j i ,h i to be close to
sj i . Thus an j i ,h i must be fairly close to L. More precisely, |an j i ,h i L| 2

i .
Note that without uniform convergence of the subsequences an k we need the Axiom of
Choice to ensure the existence of all of the h i .

We are now ready to define our subsequence an L recursively. We take
an L, 1 an j 1 ,h 1 . Given an L,w , define an L,w 1 to be the first term an j i ,h i
such that i w 1 and an j i ,h i has a larger index in the original sequence an than
an L,w has. Since there are infinitely many terms an j i ,h i , there are terms satisfying
these conditions. Then we have |an L,w L| 2

w and the subsequence an L,w converges
to L. Hence L is a sublimit of an and S an is closed.

Now that we know the set of sublimits is closed, we turn the situation around and show
in Theorem 2 that every closed set of reals is a set of sublimits. The proof of Theorem 2 is
more involved than the first proof since it requires constructing a sequence to fit a given
closed set and ensuring that no extraneous sublimits sneak in.

Theorem 2. For any closed subset F of R there is a sequence an such that S an F.

Proof. We may assume that the closed set F is non-empty since otherwise we could
use the sequence of Example 2. To simplify notation, we further assume 0 F. (If 0 F
but a F, we adapt the following construction by adding a throughout.)



To approximate every element of F we first define a collection of intervals Ii,j, where
i N 0 and 1 j 2 4i. (See Figure 2.) Define
Ii,j 2i j 1 2 i , 2i j 2 i for i 0 and 1 j 2 4i. Note that

j 1

2 4 i

Ii,j 2i, 2i . Thus each time i increases, the family of intervals Ii,j : 1 j 2 4i

covers an interval twice as long with intervals half as long.

For each interval Ii,j we choose a number ai,j, which may or may not be in the interval. If
F Ii,j is non-empty, we let ai,j be the midpoint of Ii,j. Otherwise, ai,j 0. (Figure 3
illustrates the numbers ai,j for a specific set F and the intervals Ii,j.) We use the
lexicographic order on the numbers ai,j to obtain a sequence. That is, ai,j comes before an,k

if and only if i n or (i n and j k). [The sequence starts off a0,1, a0,2, a1,1, a1,2, a1,3, ,
a1,8, a2,1, etc.] Let bn be the nth term of the ai,j using this ordering.

Claim: F is the set of sublimits of bn . First we show that if x F, then x S bn , and
then we show the converse. Let x F. There is n N such that |x| 2n. For i n, there is
one (or possibly two) choices of j such that x Ii,j. For these i and j, we see that
|x ai,j | 2 i 1 because ai,j is the midpoint of an interval of length 2 i. Thus we can form a
subsequence bn x from these ai,j and bn x converges to x. So x is a sublimit of bn .

Suppose y F. Since F is closed, there is 0 such that the interval y ,y is
disjoint from F. However, that doesn’t mean that each ai,j must be at least away from y. If
there is w Ii,j F, then ai,j, the midpoint of Ii,j, satisfies |w ai,j | 2 i 1. Since 0, there
is n N such that 2 n . Hence for i n and any j, the closest ai,j could be to y is
|y ai,j | |y w| |w ai,j | 2 n 1. Thus no subsequence of bn can converge to y and
S bn F, as claimed.

The proof of Theorem 1 generalizes readily to any metric space. The proof of Theorem
2 generalizes to Rn by replacing the intervals Ii,j with n-dimensional "boxes." However,
Example 4 below shows that there are metric spaces for which Theorem 2 fails.

Example 4. Let F be the set of all real functions f : R 0,1 and define a metric d on F
by d f,g sup|f x g x |. The whole space is closed, as is any metric space. However,
we will show that no sequence of functions has the whole space as its set of sublimits. Let
fn be any sequence in F. Consider the new function f : R 0,1 defined by

f x
0 if x N

fn n 0.5 if x n and fn n 0.5
fn n 0.5 if x n and fn n 0.5

.

Then d f, fn |f n fn n | 0. 5. Thus no subsequence of fn can approach the function f.



The reader is invited to determine some of the many other closed subsets of F that are not
sets of sublimits.

The key to generalizing Theorem 2 successfully is the existence of a subset like the
midpoints of the intervals Ii,j, which is a countable, dense subset of R. A subset S of a
metric space X is dense in X if and only if the closure of S is X. Equivalently, S is dense in X
if and only if for every x X there is a sequence of elements of S converging to x. For a
sequence to have the whole space as its set of limit points, the sequence as a set must be
dense in the space. Since sequences have countably many terms, only spaces with
countable dense subsets can be candidates to generalize Theorem 2. Theorem 3 below
assures us they do. The reader is encouraged to prove Theorem 3 assuming the following
fact, proven in Kuratowski [2, 156]: If a metric space has a countable dense subset, then
every subset of it does too. The reader should also consider why we need to require F
in this theorem.

Theorem 3. If a metric space X has a countable dense subset and F is a non-empty
closed set in X, then there is a sequence an whose set S an of sublimits is F.

The close connection of sublimits with the deeper idea of closed sets helps explain why
sublimits have not been studied more extensively for their own sake.
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