
College of Saint Benedict and Saint John's University College of Saint Benedict and Saint John's University 

DigitalCommons@CSB/SJU DigitalCommons@CSB/SJU 

Honors Theses, 1963-2015 Honors Program 

2013 

The Growth in Normal Subgroups Under Direct Products The Growth in Normal Subgroups Under Direct Products 

Whitney Radil 
College of Saint Benedict/Saint John's University 

Follow this and additional works at: https://digitalcommons.csbsju.edu/honors_theses 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Radil, Whitney, "The Growth in Normal Subgroups Under Direct Products" (2013). Honors Theses, 
1963-2015. 18. 
https://digitalcommons.csbsju.edu/honors_theses/18 

This Thesis is brought to you for free and open access by DigitalCommons@CSB/SJU. It has been accepted for 
inclusion in Honors Theses, 1963-2015 by an authorized administrator of DigitalCommons@CSB/SJU. For more 
information, please contact digitalcommons@csbsju.edu. 

https://digitalcommons.csbsju.edu/
https://digitalcommons.csbsju.edu/honors_theses
https://digitalcommons.csbsju.edu/honors
https://digitalcommons.csbsju.edu/honors_theses?utm_source=digitalcommons.csbsju.edu%2Fhonors_theses%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.csbsju.edu%2Fhonors_theses%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.csbsju.edu/honors_theses/18?utm_source=digitalcommons.csbsju.edu%2Fhonors_theses%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@csbsju.edu


The Growth in Normal Subgroups

Under Direct Products

An Honors Thesis

College of St. Benedict/ St. John’s University

In Partial Fulfillment
of the requirements for Distinction
in the Department of Mathematics

by

Whitney Radil

Advisor: Bret Benesh

April, 2013

1



2

1. Approval Page

Approved by:

Advisor, Bret Benesh
Assistant Professor of Mathematics

Sunil Chetty
Assistant Professor of Mathematics

Michael Gass
Associate professor of Mathematics

Robert Hesse
Chair, Department of Mathematics

Anthony Cunningham
Director, Honors Thesis Program



2. ABSTRACT 3

2. Abstract

This paper will consider the growth of the number of normal sub-
groups in a nonabelian group under the direct product operation. The
groups considered in this paper are dihedral groups and semidirect
products with a similar structure. Many proofs will rely on the use
of a key property of normal subgroups, namely closure under conjuga-
tion, to predict this growth. It will show that for a dihedral group G

of order 2m where m is odd and has prime factorization m =
�

M

i=1 p
αi
i
,

the group has 1 +
�

M

i=1(αi + 1) normal subgroups, and G × G has
(1 +

�
M

i=1(αi +1))2 +1 normal subgroups. This paper will also extend
the idea of a dihedral group to a semidirect product of prime cyclic
groups for a similar result. Let H = Cp � Cq where p, q are prime and
p ≡ 1 mod q. This paper will show that there are 3 normal subgroups
of H and 9 + (q − 1) normal subgroups of H ×H.
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CHAPTER 1

Background

1. Statement of Purpose

The goal of this honors thesis is to determine how certain char-
acteristics of groups behave when we ‘glue’ groups together. More
specifically, this honors thesis will relate to groups that act similarly
to the group of symmetries of a square. In this case, gluing two groups
together will be like having two squares side by side and doing symme-
tries on each of them separately.

2. Intuitive Description

A “group” is intuitively a set of symmetries of an object. A subset
of a group that is a set of symmetries for a different object is called a
“subgroup.” There are certain subgroups, called “normal subgroups,”
that are particularly interesting in mathematics. I will be counting
how the number of normal subgroups of a group grows when I build a
larger group by “gluing” a group to itself.

3. Definitions

More technically, a group G is any set with an operation (denoted
by juxtaposition) that satisfies the following four axioms:

(1) There is an identity element e ∈ G such that eg = g = ge for
all g ∈ G.

(2) For every g ∈ G, there is an inverse element g−1 ∈ G such that
gg

−1 = e = g
−1
g.

(3) The operation is associative: for every g, h, k ∈ G, (gh)k =
g(hk).

(4) The set is closed under the operation, for every g, h ∈ G,
(gh) ∈ G.

In determining properties and characteristics of groups, it is often
helpful to look at a subset of the group and examine its properties. A
subgroup H of G is any subset of G that fulfills the four group axioms
with the same operation as G. If H is a subgroup of G we say H ≤ G.
The trivial subgroup T is the subgroup containing only the identity

7



8 1. BACKGROUND

element; all other subgroups are non-trivial. Any subgroup of G other
than G itself is called proper; G is improper.

Since a mathematician never underestimates the power of simply
being able to count something, it is helpful to consider the number of
elements of the group. The order of a groupG is the number of elements
in the set G, and is denoted |G|. This number will always be a positive
integer. Further, the order of a subgroup of G will always divide the
order of G. This property is particularly helpful in determining how
many and what kinds of subgroups G will have. We will also define the
order of an element a as the minimal power p such that ap = e.

A group G is abelian if gh = hg for all g, h ∈ G, and nonabelian if
there are some g ∈ G and h ∈ G such that gh �= hg. So an abelian
group is commutative and a nonabelian group is not. The groups that
will be focused on in this paper will be nonabelian groups.

When a, b ∈ G, we refer to conjugation of b by a as ba = a
−1
ba. So

in an abelian group, ba = b for any a, b ∈ G. A normal subgroup N

of G is a subgroup such that for all g ∈ G and n ∈ N , g−1
ng ∈ N .

In other terms, N is closed under conjugation. Note that in abelian
groups, all subgroups are normal subgroups.

One goal of this paper is to determine the growth of normal sub-
groups under the direct product. Since we have determined what nor-
mal subgroups are, it is necessary to define a direct product. The
direct product of a group G with itself (denoted G × G) is the set
{(g, h) : g, h ∈ G}. It will be shown in the section Common Theorems
that G×G forms a group under the operation (g, h)(a, b) = (ga, hb).

Particularly in the area of algebra, mathematicians are concerned
with when two things have the same structure. This property is re-
ferred to as isomorphism. A group G with operation denoted by ×
is isomorphic to a group H with operation denoted by juxtaposition
provided that there is a bijective function φ : G → H such that for all
u, v ∈ G, it follows that φ(u× v) = φ(u)φ(v).

If all elements of a group G can be written as G = {aa · · · a = a
n :

n ∈ Z} for some a ∈ G then the group is called cyclic. In this paper, we
will refer to a cyclic group of k elements by its isomorphism class Ck.
The dihedral group of order 2m can be viewed as the set of symmetries
on a regularm-gon. It can be generated by two elements: a rotation (r)
and a flip (f). There is a nice property of dihedral groups which allows
us to change the order of the flip and rotation. Namely, rif = fr

−i.
Since we can always change the order, we can always write r first.
Therefore, this group can be written as D2m = {rif j : i ∈ Zm and j ∈
Z2}. The paper then considers a generalization of the dihedral group to
a semidirect product. We will define a semidirect product of two cyclic



3. DEFINITIONS 9

groups, generated by a and b respectively, to mimic the structure of
a dihedral group. If a has order p and b has order q, then G can be
written as G = {aibj : 0 < i ≤ p and 0 < j ≤ q}. Both the semidirect
and the direct products “glue” two groups together, but they are done
in different ways.

3.1. Example. The set of the symmetries of a square, called the
dihedral group of order 8 and denoted D8, is a nonabelian group. The
symmetries are: R0, the rotation of 0◦; R90, the rotation of 90◦; R180,
the rotation of 180◦; R270, the rotation of 270◦; H, the flip about a
horizontal axis; V , the flip about a vertical axis; D, the flip about the
main diagonal; and D

�, the flip about the other diagonal.
Below are examples of how this dihedral group satisfies the four

properties required for being a group.

(1) The rotation of 0◦, R0, acts as our identity element since for
all g ∈ D8, it follows that R0g = g = gR0.

(2) R90 and R270 are inverses, and all other symmetries are self
inverses.

(3) I will not show this associativity for all 83 = 512 choices,
but this is an easy consequence of function composition being
associative.

(4) Closure can be shown in entirety, but for now, notice that
R270H = D.

The dihedral group is nonabelian. We see this because: R270H = D,
but HR270 = D

�. Since R270H �= HR270, we see that D8 is nonabelian.
From the motivation above, we can now search for subsets that have
the abelian-like structure in which they are closed under conjugation.
Notice that a normal subgroup of D8 is N = {R0, R90, R180, R270}. For
example, RH

90 = H
−1
R90H = HR90H = R270. Since R90 and R270 are

in N , this is an example of the closure property being satisfied.
As an example of how the direct product works, below is a full list

of elements in D8 ×D8. The direct product, D8 ×D8 is

{(R0, R0), (R0, R90), (R0, R180), (R0, R270), (R0, H), (R0, V ), (R0, D),

(R0, D
�), (R90, R0), (R90, R90), (R90, R180), (R90, R270), (R90, H), (R90, V ),

(R90, D), (R90, D
�), (R180, R0), (R180, R90), (R180, R180), (R180, R270),

(R180, H), (R180, V ), (R180, D), (R180, D
�), (R270, R0), (R270, R90),

(R270, R180), (R270, R270), (R270, H), (R270, V ), (R270, D), (R270, D
�)}.

D8 ×D8 is clearly a normal subgroup of itself. Since it is closed, it is
closed under conjugation.
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4. An Introduction to Semidirect Products

Let us now consider a generalization of the Dihedral Group. We will
define a semidirect product of two cyclic groups to mimic the structure
of a dihedral group.

Let’s motivate the semidirect product Cp � Cq by looking at a
semidirect product Z7 � Z3. Consider the following example where
we will build the group which we will call Z7 � Z3. First let us note
that Z7 = �1� and Z3 = �1�. Suppose we wanted to determine con-
jugacy classes of Z7 � Z3 in Z7 = �1�. We know that 0 is in a class
of its own. Since we are attempting to involve Z3, let us try to find
conjugacy classes of size 3. Note that Z×

7 = �5� which implies that 5
generates the multiplicative group and has order 6. So 52 ≡ 4 mod 7
has order 3. Now we will define the conjugation so that if c ∈ Z×

7

then c
b = 4c. Further, cb

2
= (cb)b = (4c)b = 4(4c) = 16c = 2c and

c
b
3
= (cb

2
)b = (2c)b = 8c = c. Then the conjugacy classes of Z7 � Z3

that will be contained in Z7 are {0}, {1, 4, 2}, {3, 5, 6} since 1 · 4 ≡ 4,
4 · 4 ≡ 2, 2 · 4 ≡ 1 and 3 · 4 ≡ 5, 5 · 4 ≡ 6, 6 · 4 ≡ 3 modulo 7. Note
that it was necessary for cb

3
= c since b

3 is the identity. In conclusion,
the group Z7 � Z3 would be defined as follows:

• Since Z7,Z3 are cyclic, there exist additive generators a, b such
that Z7 = �a� and Z3 = �b�.

• If g ∈ Z7 � Z3 then there are unique i ∈ Z7 and j ∈ Z3 such
that g = ia+ jb.

• a+ b = b− b+ a+ b = b+ a
b = b+ (4a)

Let us now consider defining one type of semidirect product in gen-
eral. Let G be the set defined as the semidirect product of two of its
subgroups Cp and Cq where the following are satisfied:

• p, q be prime such that p ≡ 1 mod q

• Cp = �a� = {a0, a1, a2, . . . , ap−1}
• Cq = �b� = {b0, b1, b2, . . . , bq−1}
• If g ∈ G then there are unique 0 ≤ α < p and 0 ≤ β < q such
that g = a

α
b
β.

• Taking motivation from the additive case, let x be the integer
corresponding to a multiplicative generator of Z×

p
and m =

x
p−1
q . So the order of m is q.

• Define the action (proof below) of the group to be (ai)(b
j) =

a
im

j
.

We will prove G is a group in Theorem 2. This group could be alter-
natively defined by its generators a, b so that G = {aαbβ : 0 ≤ α <

p and 0 ≤ β < q}. Note that the definition implies D2p = Cp�C2. So,
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elements of the form a
i are generalized rotations and elements of the

form a
i
b
j for nonzero j are generalized flips.

Lemma 1. (ai)(b
j) = a

im
j
defines an action on Cp by Cq.

Proof. First, we must show that G is closed under the action.
Note that since i,m, j are all integers, aim

j ∈ G, so G is closed under
the action.

Further, we must show that action by the identity preserves the
element. Since (ai)e = (ai)b

0
= a

im
0
= a

i(1) = a
i, this property holds.

Finally, we must show that ((ai)b
j
)b

k
= (ai)b

j
b
k
. Since, ((ai)b

j
)b

k
=

(aim
j
)b

k
= a

(imj)mk
= a

im
j+k

= (ai)b
j+k

= (ai)b
j
b
k
, we have satisfied all

conditions and (ai)b
j
= a

im
j
defines an action on Cp by Cq. �

It is noteworthy to mention that since G is closed and a, b ∈ G, then
b
i
a
j ∈ G, but this does not follow how the group is defined. However,

using properties ab = ba
m and ba = a

m
−1
b, we will be able to reorder or

“alphabetize” any element. Recall that the trivial subgroup is denoted
T and contains only the identity, in this case T = {a0b0}. For future
reference, let us consider how to change the order of representation for
a general element g = a

i
b
j ∈ G.

g = a
i
b
j = b

j
b
−j
a
i
b
j = b

j(ai)b
j
= b

j
a
im

j

Similarly, any element of the form g
� = b

j
a
i ∈ G can be alphabetized.

Note that m will have a multiplicative inverse in Zp since p is prime.
Then,

g
� = b

j
a
i = b

j
a
i(m−1)jmj

= b
j(ai(m

−1)j)b
j
= b

j
b
−j
a
i(m−1)j

b
j = a

i(m−1)j
b
j

Thus we are able to reorder any element. We now hold the tools to
show that this semidirect product is a group.

Theorem 2. Let G be defined as the semidirect product of Cp and
Cq as above. Then G is a group.

Proof. Let G be defined as the semidirect product of Cp and Cq

as above. To show that G is a group, we must show it has identity, has
inverses, its operation is associative, and is closed under the operation.

Clearly, a0b0 is the identity.
For inverses, what we want for an element g = a

i
b
j is an element

g
� = b

−j
a
−i. Then

gg
� = a

i
b
j
b
−j
a
−i = a

i
ea

−i = e = b
−j
b
j = b

−j
a
−i
a
i
b
j = g

�
g.

Now, all we need to do is alphabetize g
�, and we’re done. Note from

above that g� = a
−i(m−1)−j

b
−j. Now lets check and show that g� is still
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an appropriate inverse choice:

gg
� = a

i(bja−i(m−1)−j
)b−j = a

i(a−i(m−1)−j(m−1)j
b
j)b−j = a

i(a−i
b
j)b−j = e

g
�
g = a

−i(m−1)−j
(b−j

a
i)bj = a

−i(m−1)−j
(ai(m

−1)−j
b
−j)bj = e.

Thus G has inverses.
For associativity, consider g = a

i
b
j, h = a

k
b
l and f = a

s
b
t. Then

(gh)f = (aibjakbl)asbt

= (aiak(m
−1)j

b
j
b
l)asbt

= a
i+k(m−1)j

b
j+l

a
s
b
t

= a
i+k(m−1)j

a
s(m−1)j+l

b
j+l

b
t

= a
i+k(m−1)j+s(m−1)j+l

b
j+l+t

.

Further,

g(hf) = a
i
b
j(akblasbt)

= a
i
b
j(akas(m

−1)l
b
l
b
t)

= a
i
b
j
a
k+s(m−1)l

b
l+t

= a
i
a
(k+s(m−1)l)(m−1)j

b
j
b
l+t

= a
i
a
k(m−1)j+s(m−1)j+l

b
j+l+t

= a
i+k(m−1)j+s(m−1)j+l

b
j+l+t

.

Thus (gh)f = a
i+k(m−1)j+s(m−1)j+l

b
j+l+t = g(hf). So the operation of

G is associative.
For closure, let g, h ∈ G, then g = a

i
b
j and h = a

k
b
l for some

integers i, j, k, l. Then gh = a
i
b
j
a
k
b
l = a

i
a
k(m−1)j

b
j
b
l = a

i+k(m−1)j
b
j+l.

Since i, k,m
−1
, j are integers, so is i+ k(m−1)j. Since j, l are integers,

so is j + l. Thus gh ∈ G. So G is closed.
Therefore, G is a group. �
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5. Common Theorems

Theorem 3. Let G be a group. Then G and the trivial subgroup
T = {e} are normal.

Proof. Let G be a group with identity e. Then T = {e} is the
trivial subgroup. Let g ∈ G. Then g

−1 ∈ G. Since g
−1
e = g

−1
g = e ∈

T , the trivial subgroup is normal.
Consider the normality of G. Since G is closed, if h ∈ G then

g
−1
hg ∈ G. Thus G is normal. Therefore the trivial and improper

subgroups of a group are normal, as desired. �
Theorem 4. Let G be a group Let p be the smallest prime dividing

the order of G. If H is a subgroup of index p then H is normal in G.

Proof. The proof can be found in [1]. �
Theorem 5. If G is a group, then the direct product G × G is a

group under component-wise multiplication.

Proof. If e ∈ G is the identity in G then we will show that (e, e) ∈
G×G is the identity. Let (g, h) ∈ G×G, then g, h ∈ G, so ge = eg = g

and eh = he = h. Thus (e, e)(g, h) = (eg, eh) = (g, h) = (ge, he) =
(g, h)(e, e). Therefore (e, e) is the identity in G×G.

Let (g, h) ∈ G × G. Then there are g
−1
, h

−1 ∈ G so that gg
−1 =

g
−1
g = e = hh

−1 = h
−1
h. Since (g, h)(g−1

, h
−1) = (gg−1

, hh
−1) =

(e, e) = (g−1
g, h

−1
h) = (g−1

, h
−1)(g, h), it follows that (g−1

, h
−1) =

(g, h)−1, so G×G has inverses.
Let (g1, h1), (g2, h2), (g3, h3) ∈ G × G. Now for associativity, con-

sider

[(g1, h1)(g2, h2)](g3, h3) = (g1g2, h1h2)(g3, h3) = ((g1g2)g3, (h1h2)h3).

Since the operation of G is associative,

(g1(g2g3), h1(h2h3)) = (g1, h1)(g2g3, h2h3) = (g1, h1)[(g2, h2)(g3, h3)].

Thus
[(g1, h1)(g2, h2)](g3, h3) = (g1, h1)[(g2, h2)(g3, h3)],

so G×G is associative under component-wise multiplication.
For closure, let (g1, h1), (g2, h2) ∈ G × G. Then (g1, h1)(g2, h2) =

(g1g2, h1h2), since G is closed, g1g2 ∈ G and h1h2 ∈ G. Therefore
(g1g2, h1h2) ∈ G×G. So G×G is closed.

Thus, G×G is a group, as desired.
�

Theorem 6. If M,N are normal in G, then M ×N is normal in
G×G.
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Proof. Let M,N be normal in G. Let (m,n) ∈ M × N and
(g1, g2) ∈ G × G. Then m ∈ M , n ∈ N , g1, g2, g

−1
1 , g

−1
2 ∈ G, and

(g−1
1 , g

−1
2 ) ∈ G×G. Since (g1, g2)(g

−1
1 , g

−1
2 ) = (g1g

−1
1 , g2g

−1
2 ) = (e, e) =

(g−1
1 g1, g

−1
2 g2) = (g−1

1 , g
−1
2 )(g1, g2). It follows that (g

−1
1 , g

−1
2 ) = (g1, g2)−1.

For the normality of M × N , consider (g−1
1 , g

−1
2 )(m,n)(g1, g2) =

(g−1
1 mg1, g

−1
2 ng2). Since M is normal it follows that g

−1
1 mg1 ∈ M .

SinceN is normal it follows that g−1
2 ng2 ∈ N . Thus (g−1

1 mg1, g
−1
2 ng2) ∈

M ×N and M ×N is normal in G×G, as desired. �
Corollary 7. If G has k normal subgroups, then G × G has at

least k2 normal subgoups.

Proof. Let G be a group with k normal subgroups. Consider all
subgroups of G × G that are of the form M × N where M,N are
normal in G. Since the selection of M and N for any M ×N ⊆ G×G

is independent, and there are k options for each it follows that there
are at least k2 normal subgroups in G×G. �



CHAPTER 2

Dihedral Groups

A dihedral group of order 2m is the set of symmetries on a reg-
ular m-gon. The dihedral group can be generated by two elements,
a rotation (r) and a flip (f). The following are well known facts
and will be stated without proof: (rj)−1 = r

−j and r
k
f = fr

−k.
Since there is a defined way of reordering the rotations and flips, we
can define D2m in the following way. This group can be defined as
D2m = {rif j : i ∈ Zm and j ∈ Z2}. For the remainder of the chapter,
we consider the prime factorization of m to be m =

�
M

µ=1 p
αµ
µ

1. D2m for odd m

It is known by [2] that if H is a proper subgroup of a dihedral group
of order 2k, then H is normal in D2k if and only if H ≤ Ck = {ri :
i ∈ Zk} or 2|k and H is a special maximal subgroup. A subgroup is
maximal if no proper subgroup contains it. Since we are dealing with
odd m it follows that 2 � | m and the second part of this theorem will
not apply.

Corollary 8. If H is a proper subgroup of D2m where m is odd,
then H is normal if and only if H = Ca for some a|m.

Proof. Since 2 � | m, H is normal in D2m if and only if H ≤ Cm.
Thus the order of H must divide m, and the subgroup will be cyclic.
Therefore H is normal in D2m if and only if H = Ca for some a|m. �

Let us now consider the prime factorization of m which can be
written as m =

�
M

µ=1 p
αµ
µ for some primes pµ and positive integers αµ.

Lemma 9. Let m =
�

M

µ=1 p
αµ
µ be odd. Then there are

�
M

µ=1(αµ+1)
proper normal subgroups of D2m.

Proof. The maximal cyclic subgroup of D2m is isomorphic to Cm

and has order m. Thus if H is a subgroup of Cm the order of H

must be some a such that a|m by Lagrange’s Theorem. So the prime
factorization of a must be a =

�
M

µ=1 p
βµ
µ such that 0 ≤ βµ ≤ αµ for

all µ. Thus there are αµ + 1 options for the power of pµ. Note that

15



16 2. DIHEDRAL GROUPS

this calculation will include the trivial subgroup when all βi are zero.
Therefore there are

�
M

µ=1(αµ + 1) such orders and thus
�

M

µ=1(αµ + 1)
proper normal subgroups of D2m. �

Theorem 10. Let m =
�

M

µ=1 p
αµ
µ be odd. There are exactly 1 +

�
M

µ=1(αµ + 1) normal subgroups of D2m.

Proof. By Theorem 3, D2m is normal. By Lemma 9 there are�
M

µ=1(αµ+1) proper normal subgroups of D2m. Thus there are exactly

1 +
�

M

µ=1(αµ + 1) normal subgroups of D2m. �
Corollary 11. The number of normal subgroups of D2m × D2m

is greater than or equal to (1+
�

M

µ=1(αµ +1))2 where m =
�

M

µ=1 p
αµ
µ is

odd.

Proof. By Theorem 10 there are exactly 1+
�

M

µ=1(αµ+1) normal
subgroups of D2m. By Corollary 7 there are at least k

2 normal sub-
groups of G × G when there are k normal subgroups of G. Thus the
number of normal subgroups of D2m ×D2m is greater than or equal to
(1 +

�
M

µ=1(αµ + 1))2. �
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2. D2m ×D2m for odd m

The following series of lemmas will be used to exhaustively pin-
point how many normal subgroups are in D2m × D2m for odd m. In
D2m, the only proper normal subgroups are cyclic. If ri is present in
a normal subgroup, then all multiples of that rotation are present in
that subgroup. Thus, if ri is in the normal subgroup denoted by N

and k = m

gcd(i,m) , then k is the order of ri. Further, by Lagrange’s The-
orem, it follows that k divides the order of N . In other terms, a group
isomorphic to Ck is a subgroup of N . Note that since m =

�
M

µ=1 p
αµ
µ ,

there are (
�

M

µ=1(αµ + 1))− 1 options for k.
I will show the following theorem:

Theorem 12. Ifm =
�

M

µ=1 p
αµ
µ is odd, then there are (1+

�
M

µ=1(αµ+
1))2 + 1 normal subgroups of D2m ×D2m.

This value is the lower bound shown above in Corollary 11 plus 1.
This extra subgoup will come from a special group that has a index 2
in D2m, this means it contains exactly half of the elements of D2m.

This special group can be described by a semidirect product, namely
(Cm×Cm)�C2. Note that (Cm×Cm)�C2 = {(rifx

, r
j
f
x) : 0 ≤ i, j <

m and 0 ≤ x < 2}. In other terms, either both components have a flip,
or neither do. This subgroup is the only one that does not follow the
form of normal subgroups shown in Theorem 6. Looking at each of the
components of the tuple individually for this group we see that each
includes all elements from D2m, but they are connected in an unusual
way. This group is key in showing why Theorem 6 is not a tight lower
bound.

Before we get around to showing the normal subgroups of D2m ×
D2m, let us consider a few helpful theorems. First we will show that
this special group that was just mentioned is, in fact, normal. Then
we will show a nice property that allows us to go between generalized
flips, and a particular flip.

Lemma 13. Let m be odd. Then (Cm × Cm) � C2 is normal in
D2m ×D2m.

Proof. Since this subgroup has index 2 in D2m×D2m it is normal
in D2m ×D2m, as desired. �

Lemma 14. Let m be odd, let N be normal in D2m ×D2m and let
i, j be integers. Then (rif, rjf) ∈ N if and only if (f, f) ∈ N .

Proof. Let m be odd and let N be normal in D2m × D2m. Sup-
pose (rif, rjf) ∈ N . Note that since m is odd, 2 has a multiplicative
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inverse modulo m, call it τ . Then since N is normal, we can conjugate
(rif, rjf) by (riτ , rjτ ). So that

(rif, rjf)(r
iτ
,r

jτ ) = (r−iτ
, r

−jτ )(rif, rjf)(riτ , rjτ )

= (r−iτ
r
i
fr

iτ
, r

−jτ
r
j
fr

jτ )

= (r−iτ
r
i
r
−iτ

f, r
−jτ

r
j
r
−jτ

f)

= (r−iτ+i−iτ
f, r

−jτ+j−jτ
f)

= (ri−i2τ
f, r

j−j2τ
f)

= (f, f) ∈ N.

Thus if (rif, rjf) ∈ N then (f, f) ∈ N .
Suppose (f, f) ∈ N . Then since N is normal, we can conjugate

(f, f) by (r−iτ
, r

−jτ ). So then

(f, f)(r
−iτ

,r
−jτ ) = (riτ , rjτ )(f, f)(r−iτ

, r
−jτ )

= (riτfr−iτ
, r

jτ
fr

−jτ )

= (riτr−iτ
f, r

jτ
r
jτ
f)

= (ri2τf, rj2τf)

= (rif, rjf) ∈ N.

Thus if (f, f) ∈ N then (rif, rjf) ∈ N .
Therefore (f, f) ∈ N if and only if (rif, rjf) ∈ N , as desired. �
Corollary 15. Let m be odd and let N be normal in D2m ×D2m.

If (f, f) ∈ N , then (rsf, rtf) ∈ N for all s, t.

Proof. This can be shown by replacing the conjugation of (f, f)
by (r−iτ

, r
−jτ ), with conjugation of (f, f) by (f−sτ

, r
−tτ ) in the second

part of the proof. �
Corollary 16. Let m be odd and let N be normal in D2m ×D2m.

Then (x, rjf) ∈ N for some integer j and some x ∈ D2m if and only if
(x, f) ∈ N .

Proof. This can be shown by replacing the conjugation of (rif, rjf)
by (riτ , rjτ ) with conjugation of (x, rjf) by (e, rjτ ) and by replacing
the conjugation of (f, f) by (r−iτ

, r
−jτ ), with conjugation of (x, f) by

(e, r−jτ ). �
The proofs of the following corollaries are similar.

Corollary 17. Let m be odd and let N be normal in D2m ×D2m.
If (x, f) ∈ N for some x ∈ D2m, then (x, rtf) ∈ N for all t.
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Corollary 18. Let m be odd and let N be normal in D2m ×D2m.
Then (rif, x) ∈ N for some integer i and some x ∈ D2m if and only if
(f, x) ∈ N .

Corollary 19. Let m be odd and let N be normal in D2m ×D2m.
If (f, x) ∈ N for some x ∈ D2m, then (rsf, x) ∈ N for all s.

By Theorem 6, and Lemma 13 we have shown that if m =
�

M

µ=1 p
αµ
µ

is odd, then there are at least (1+
�

M

µ=1(αµ+1))2+1 normal subgroups
of D2m × D2m. Now we will show exhaustively, through cases, that
there are no more than (1 +

�
M

µ=1(αµ + 1))2 + 1 normal subgroups of
D2m ×D2m.

Let N be normal in G. I will determine the number of normal
subgroups by exhaustion based on which elements are known to be in
N . Recall that D2m ×D2m = {(rifx

, r
j
f
y) : 0 ≤ i, j ≤ m− 1 and 0 ≤

x, y ≤ 1} and that N is a normal subgroup of D2m ×D2m. All cases to
be used in these lemmas are outlined below:

a) There is a flip in both components. In other terms, (f, f) ∈ N .
Note that it was shown above that (rif, rjf) ∈ N if and only
if (f, f) ∈ N .

– There will be 2 such groups, one isomorphic to D2m×D2m

and the other isomorphic to (Cm × Cm)� C2.
b) There is an element with a flip in the second component but

there are no elements with a flip in the first component. In
other terms, (ri, rjf) ∈ N for some integers i, j and (f, f) �∈ N

– There will be
��

M

µi=1(αµ + 1)
�
such groups, each isomor-

phic to Ck ×D2m for some value of k.
c) There is an element with a flip in the first component but there

are no elements with a flip in the second component. In other
terms, (rif, rj) ∈ N for some integers i, j, and (f, f) �∈ N

– There will be
��

M

µ=1(αµ + 1)
�
such groups, each isomor-

phic to D2m × Cl for some value of l.
d) There is not a flip in either component. In other terms, (ri, rj) ∈

N for some integers i, j and (e, f), (f, e), (f, f) �∈ N .

– There will be
���

M

µ=1(αµ + 1)
��2

such groups, each iso-

morphic to Ck × Cl for some k and l.

Consider case b) notice that there does not seem to be a hint as to
what k is. Clearly, k must dividem. But how do we decide what k must
be just by knowing what i is? We will do this by being more specific
about the value of i that is chosen. Note that Ck = {rαd : α ∈ Z}
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where d = gcd{j : (rj, x) ∈ D2m × D2m} We will specify cases by
the minimum value of 0 < i ≤ m that shows up in the form (ri, rjf).
Since all integers divide 0, by using the above range for i, we see that
d = i. Thus in the following cases, the assumption that (ri, rjf) ∈ N

for some integer j and some minimal integer i will cover all cases. Note
that with the case determined by that minimal integer i (which is d)
that (rs, x) ∈ N implies that s is a multiple of i.

Now let us start proving these theorems. In general, we will start
by isolating the rotations or flips for a component of an element in
the normal subgroup, denoted N . This will allow us to show that a
certain subgroup, call it H, of D2m × D2m is a subset of N . We will
then assume there is an element in N that is not in H and arrive at a
contradiction. This will show us that N = H.

Lemma 20. Let N be normal in D2m × D2m where m is odd. If
(f, f) ∈ N then N = D2m ×D2m or N = (Cm × Cm)� C2.

Proof. Let N be normal in D2m ×D2m and let (f, f) ∈ N . Note
from above that (f, f) ∈ N if and only if (rif, rjf) ∈ N for any in-
tegers i, j. Further, by closure (ri, rj) = (rif, rjf)(f, f) ∈ N . Thus
{(rifx

, r
j
f
x) : 0 ≤ i, j < m and 0 ≤ x < 2} = (Cm × Cm)� C2 ⊆ N .

I will consider two cases: (e, f) ∈ N and (e, f) �∈ N . Suppose that
(e, f) �∈ N . Since (Cm×Cm)�C2 ⊆ N < D2m×D2m and (Cm×Cm)�C2

has index 2 in D2m × D2m, it follows that N = (Cm × Cm) � C2.
Suppose that (e, f) ∈ N . Then (Cm × Cm) � C2 < N ⊆ D2m × D2m.
Since (Cm × Cm)� C2 has index 2 in D2m ×D2m, it follows that N =
D2m ×D2m. �

Lemma 21. Let m be odd and let N be normal in D2m × D2m. If
the following hold:

(1) (ri, rjf) ∈ N for some integer j and some minimal integer i

(2) (rs, y) ∈ N for some 0 ≤ s < m and y ∈ D2m implies s is a
multiple of i

(3) (f, f) �∈ N

then N = Ck ×D2m for some k.

Proof. Let m be odd. Let N be normal in D2m ×D2m such that
it satisfies the hypothesis. Let k = m/ gcd(m, i). Note that k is the
order of ri.

Consider the elements of N . First notice that by closure (ri, rjf)2 =
(r2i, e) ∈ N . Since gcd(2,m) = 1 it follows that all elements of the
form (rci, e) for any integer c are in N . Similarly, (rci, rjf) ∈ N for
any integer c. Through conjugation by (e, ra) on (rci, rjf), we see that
(rci, rj−2a

f) = (rci, rjf)(e,r
a) ∈ N . Since a was arbitrary and m is odd,
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we see that (rci, rlf) ∈ N for any integers c, l. Taking c = 0 and l = 0,
we see that (e, f) ∈ N . Then by closure (rci, rl) = (rci, rlf)(e, f) ∈ N

for all integers c, l. Further, (rci, rlf y) ∈ N for any integers c, l, y.
Thus, Ck ×D2m ⊆ N .

Suppose for contradiction that there was some element (rsf t
, r

u
f
v) �∈

Ck × D2m such that (rsf t
, r

u
f
v) ∈ N . Since all elements of D2m are

possible in the second component, it follows that either s is not a mul-
tiple of i or t = 1. Suppose t = 0; then s is not a multiple of i. This
contradicts the hypothesis. Therefore t = 1 and (rsf, ruf v) is our ele-
ment. Note that there is some si such that s + si ≡ 0 mod m. Since
m is odd, 2 has a multiplicative inverse, call it τ . Next, conjugate
(rsf t

, r
u
f
v) by (r−τsi , e). So

(rsf, ruf v)(r
−τsi ,e) = (rτsi , e)(rsf t

, r
u
f
v)(r−τsi , e)

= ((rs+2τsif, r
u
f
v)

= (f, ruf v).

Since N is closed under conjugation, (f, ruf v) ∈ N . However,

(e, (ru(f v)−1)), (e, f) ∈ Ck ×D2m ⊆ N.

Thus by closure [(f, ruf v)(e, (ru(f v)−1))](e, f) = (f, e)(e, f) = (f, f) ∈
N which contradicts the hypothesis.

Therefore N = Ck ×D2m. �
Corollary 22. Let m be odd. Let N be normal in D2m ×D2m. If

the following hold:

(1) (rif, rj) ∈ N for some integer j and some minimal integer j

(2) (x, rt) ∈ N for some 0 ≤ t < m and x ∈ D2m implies t is a
multiple of j

(3) (f, f) �∈ N

then N = D2m × Ck for some k.

Proof. This holds by symmetry of Lemma 21. �
Lemma 23. Let m be odd. Let N be normal in D2m ×D2m . If the

following hold:

(1) (ri, rj) ∈ N for some minimal integers i, j

(2) (rs, y) ∈ N for some 0 ≤ s < m and y ∈ D2m implies s is a
multiple of i

(3) (x, rt) ∈ N for some 0 ≤ t < m and x ∈ D2m implies t is a
multiple of j

(4) (e, f), (f, e), (f, f) �∈ N

then N = Ck × Cl for some integers k, l.
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Proof. Let m be odd. Let N be normal in D2m ×D2m such that
the hypothesis is satisfied. Let k = m/ gcd(m, i) and l = m/ gcd(m, j).
Note that k is the order of ri and l is the order of rj.

Conjugating (ri, rj) by (e, f) gives (ri, frjf) = (ri, f 2
r
−j)

= (ri, r−j) ∈ N . Now, sinceN is closed, it follows that (ri, rj)(ri, r−j) =
(r2i, e) ∈ N . Since gcd(2,m) = 1, for any integer c it follows that
(rci, e) ∈ N . Note that there will be k options for c before repetitions
since m/ gcd(m, i) = k. Similarly, for any integer d it follows that
(e, rdj) ∈ N . Also note that there will be l options for d before repe-
titions since m/ gcd(m, j) = l. Thus, by closure, elements of the form
(rci, rdj) are in N for any c, d. So Ck × Cl ⊆ N .

Suppose for contradiction that there was some element of the form
(rsf t

, r
u
f
v) ∈ N where s or u are not multiples of i and j respect-

fully or where t or v are nonzero. If t is zero, then s must be a
multiple of i in order to satisfy condition two of the hypothesis; if
v is zero, then u must be a multiple of j to satisfy condition three of
the hypothesis. So at least one of t or v is nonzero. Suppose with-
out loss of generality that t = 1. Note that there is some si such
that s + si ≡ 0 mod m. Since m is odd, 2 has a multiplicative in-
verse in Zm, call it τ . Now lets conjugate (rsf, ruf v) by (r−τsi , e). So
(rτsi , e)(rsf, ruf v)(r−τsi , e) = ((rs+2τsif, r

u
f
v) = (f, ruf v). Now, sup-

pose v = 0, then u is a multiple of j. Then we can multiply by (e, r−u)
which will be in N since −u will also be a multiple of j. So by closure,
(f, ru)(er−u) = (f, e) ∈ N which contradicts condition five of the hy-
pothesis. So v = 1. We can find ui such that u+ ui ≡ 0 mod m. Now
consider (r, ruf)(e,r

−τui ) = (e, rτui)(f, ruf)(e, r−τui) = (f, ru+2τuif) =
(f, f) ∈ N . This gives (f, f) ∈ N which is a contradiction.

Thus, N = Ck × Cl. �

Theorem 24. If N is normal in D2m×D2 where m is odd then N

must be one of the following:

D2m ×D2m D2m × Cl

Ck ×D2m Ck × Cl

(Cm × Cm)� C2

Proof. Lemmas 20, 21, 23 and Corollary 22 show exhaustively
that these are the normal subgroups of D2m ×D2m. �

Theorem 25. There are (1+
�

M

µ=1(αµ+1))2+1 normal subgroups

of D2m ×D2m where m =
�

M

µ=1 p
αµ
µ is odd.
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Proof. This follows directly Theorem 24.

Normal Subgroup Category Number in Category

D2m ×D2m 1

D2m × Cl

�
M�

µ=1

(αµ + 1)

�

Ck ×D2m

�
M�

µ=1

(αµ + 1)

�

Ck × Cl

�
M�

µ=1

(αµ + 1)

�2

(Cm × Cm)� C2 1

The total of the right column is



�

M�

µ=1

(αµ + 1)

�2

+ 2

�
M�

µ=1

(αµ + 1)

�
+ 1



+ 1

=

��
M�

µ=1

(αµ + 1)

�
+ 1

�2

+ 1.

Hence there are (1+
�

M

µ=1(αµ+1))2+1 normal subgroups of D2m×D2m

when m =
�

M

µ=1 p
αµ
µ is odd. �





CHAPTER 3

Semidirect Products

Let us now consider a generalization of the Dihedral Group. We
defined, in the background section, a semidirect product of two cyclic
groups to mimic the structure of a dihedral group. Recall that G =
{aαbβ : 0 ≤ α < p and 0 ≤ β < q} with action (ai)b

j
= a

im
j
. With

motivation from the Dihedral Group, a’s are generalized rotations and
the b�s are generalized flips. Finally, recall that we can change the order
so that aibj = b

j
a
im

j
and b

j
a
i = a

i(m−1)j
b
j.

1. G = Cp � Cq where prime p ≡ 1 mod q with q prime

For the remainder of the chapter, the following notation will be
employed:
G = Cp � Cq = {aαbβ : 0 ≤ α < p and 0 ≤ β < q} where

• a
α are generalized rotations

• a
α
b
β for β �= 0 are generalized flips

• p, q are prime such that p ≡ 1 mod q.

Lemma 26. Let N be a normal subgroup of G. If b ∈ N then
N = G.

Proof. Let N be a normal subgroup of G where G = Cp � Cq.

Let x be a multiplicative generator of Cp and m = x
p−1
q ( the order of

m is q). Let b ∈ N . Since N is closed b
β ∈ N for all 0 ≤ β < q. Since

N is normal, then b
a
m ∈ N . So b

a
m
= a

−m
ba

m = a
−m

ab = a
1−m

b ∈ N .
Since N is closed a

1−m
bb

q−1 = a
1−m ∈ N . Since p is prime and m �= 1,

it follows that a
α ∈ N for all 0 ≤ α < p. Finally, since N is closed

a
α
b
β ∈ N for all 0 ≤ α < p and 0 ≤ β < q. Thus since N contains all

elements of G, it follows that N = G. �
Lemma 27. Let N be a normal subgroup of G. If b �∈ N then

N = Cp or N = T .

Proof. We will consider two cases: a ∈ N and a �∈ N . Let a ∈
N . Then a

α ∈ N for all 0 ≤ α < p since N is closed. Suppose for
contradiction that aibj ∈ N for some 0 ≤ i < p and nonzero 0 ≤ j < q.
Since q is prime there exists some 0 ≤ k < q such that kj ≡ 1 mod q.

25
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Similarly, there exists some 0 ≤ l < p such that i+ l ≡ 0 mod p. Then
since N is closed and a

l
, a

i
b
j ∈ N , it follows that a

l(aibj) = a
l+i

b
j =

b
j ∈ N . Thus b

kj = b ∈ N and we have a contradiction. Therefore
if aibj ∈ N then j = 0. Since all elements of the form a

α are in N it
follows that N = Cp.

Consider the second case such that a �∈ N . Since p is prime, it
follows that a

α �∈ N for 0 �= α ∈ N . Suppose for contradiction that
a
i
b
j ∈ N for some nonzero 0 ≤ i < p or nonzero 0 ≤ j < q. If i = 0,

then j �= 0 and b
j ∈ N , which implies b ∈ N since q is prime. This is a

contradiction. If j = 0, then i �= 0 and a
i ∈ N which is a contradiction.

Therefore i �= 0 and j �= 0. Define 0 ≤ l < p so that l ≡ (m−1)j −
1 mod p. Note that l = 0 implies that (m−1)j = 1. However, this
implies that j = 0 which is a contradiction, so l �= 0. Since p is prime,
l
−1 exists, so we can find a k such that k ≡ −il

−1 mod p. So then
kl + i ≡ 0. Now, since N is normal, we can conjugate by any element
in G, so conjugate by a

k. Then

(aibj)a
k
= a

−k
a
i
b
j
a
k = a

i−k
b
j
a
k = a

i−k+k(m−1)j
b
j

= a
k((m−1)j−1)+i

b
j = a

kl+i
b
j = a

0
b
j = b

j ∈ N.

Thus b ∈ N , which is a contradiction. Therefore N = T .
Thus N = Cp or N = T , as desired. �
Theorem 28. There are exactly 3 normal subgroups of G where

G = Cp � Cq.

Proof. Lemma’s 26 and 27 show exhaustively that there are three
normal subgroups of G. �

Corollary 29. The number of normal subgroups of G × G is
greater than or equal to 9.

Proof. By Theorem 28 there are exactly 3 normal subgroups of
G. By Corollary 7 there are at least k

2 normal subgroups of G × G

when there are k normal subgroups of G. Thus the number of normal
subgroups of G×G is greater than or equal to 9. �
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2. G×G where G = Cp � Cq when prime p ≡ 1 mod q with q

prime

The following series of lemmas will be used to exhaustively pinpoint
how many normal subgroups are in G× G where G = Cp � Cq. I will
show that there are 9 + (q − 1) normal subgroups of G × G. The
9 are the expected groups from simply taking the direct products of
normal subgroups of G. The other q − 1 subgroups are related to
the special normal subgroup of the dihedral group mentioned in the
section regarding D2m for odd m. In that normal subgroup, which was
isomorphic to (Cm×Cm)�C2, we saw that either both components of
the tuple had a flip, or neither did. In the special normal subgroups of
G×G, we will see a fixed relationship between the exponent of b in the
first component of the tuple and the second component of the tuple.
This special normal subgroup will be denoted as (Cp × Cp) � Cq . It
can be defined in the following way: (Cp × Cp) � Cq = {(aibj, akbjl) :
i, j, k are integers and l is fixed}.

Let N be a normal subgroup of G× G. I will show the number of
normal subgroups by exhaustion based on which elements are known
to be in N . All cases to be used in the lemmas that follow are outlined
below:

a) There is a generalized flip in both components. In other terms
(b, bl) ∈ N for some 0 ≤ l < q.

– There are q such normal subgroups of this form, one is
isomorphic to G × G. The others are the special normal
subgroups mentioned above. Each is isomorphic to (Cp×
Cp)� Cq.

b) There is only a generalized flip in the second component. In
other terms, (ai, akbβ) ∈ N for some integers i, k and l �= 0
and (b, bl) �∈ N for all l. Further, we will note that minimal i
implies if (as, x) ∈ N for some integer s and some x ∈ G then
s is a multiple of i.

– There two such groups of this form and they are isomor-
phic to Cm × G. Note that if i �= 0 since p is prime, we
will have m = p. If i = 0 we will have m = 1.

c) There is only a generalized flip in the first component. In
other terms, (aibj, ak) ∈ N for some integers i, k and j �= 0
and (b, bl) �∈ N for all l. Further, we note that minimal i
implies if (x, at) ∈ N for some integer t and some x ∈ G then
t is a multiple of k.
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– There are two such groups of this form and they are iso-
morphic to G× Cn. This will follow by symmetry of the
previous case

d) There are no generalized flips in either component. In other
terms, (ai, ak) ∈ N for some integers a, k , (as, x) ∈ N for
some integer s and some x ∈ G implies s is a multiple of i,
(x, at) ∈ N for some integer t and some x ∈ G implies t is a
multiple of k, and (b, bl) �∈ N for all l.

– There are four such group of this form and they are iso-
morphic to Cm × Cn. Similarly to above, m = 1 if and
only if i = 0 and n = 1 if and only if k = 0. Otherwise
m,n = p.

Lemma 30. Let G = Cp�Cq. Let N be normal in G×G such that
(b, bl) ∈ N for some 0 ≤ l < q then N = G×G or N = (Cp×Cp)�Cq.

Proof. Let N be normal in G × G such that the hypothesis is
satisfied. Since N is normal it is closed under conjugation.

To determine what kinds of generalized rotations N has, let us
attempt to isolate the a’s. So let us consider the conjugation of (b, bl)
by some arbitrary rotations. Then

(b, bl)(a
i
,a

k) = (a−i
, a

−k)(b, bl)(ai, ak)

= (a−i
ba

i
, a

−k
b
l
a
k)

= (a−i
a
i(m−1)

b, a
−k
a
k(m−1)l

b
l)

= (a−i+i(m−1)
b, a

−k+k(m−1)l
b
l).

Therefore (a−i+i(m−1)
b, a

−k+k(m−1)l
b
l) ∈ N . Note that since m

−1 is not
1 and l �= 0, it follows that −i + i(m−1) �= 0 and −k + k(m−1)l �= 0.
Since p is prime, and i, k were arbitrary, it follows that (aαb, aγbl) ∈ N

for all integers α, γ. Now, since N is a group, it has inverses. Namely,
(b−1

, b
−l) ∈ N . Thus by closure, (aα, aγ) = (aαb, aγbl)(b−1

, b
−l) ∈ N .

Since α, γ are arbitrary Cp ×Cp ⊂ N . Note that the inclusion is strict
since (b, bl) �∈ Cp × Cp.

Now consider an index argument:

q
2 = |G×G : Cp × Cp| = |G×G : N ||N : Cp × Cp|.

Since |N : Cp × Cp| �= 1 and q is prime, then |G × G : N | = 1 or q.
If |G × G : N | = 1, then N = G × G and we’re done. If |G × G :
N | = q, then since (b, bl)β ∈ N and (Cp × Cp) � Cq = {(aibj, akbjl) :
i, j, k are integers and l is fixed} we have N = (Cp × Cp � Cq).

�
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Lemma 31. Let N be normal in G×G where G = Cp � Cq. If the
following hold:

(1) (ai, akbl) ∈ N for some integers k, l such that k, l �= 0 and
some minimal integer i

(2) (as, x) ∈ N for some integer s and some x ∈ Cp � Cq implies
that s is a multiple of i

(3) (b, bt) �∈ N for all t

then N = Cm ×G for some m.

Proof. Let N be normal in G × G such that the hypothesis is
satisfied. Let m = p/ gcd(i, p). Note that m is the order of ai. Further,
m = p if i �= 0 and m = 1 if i = 0. When m = 1, then Cm is the trivial
subgroup.

Define 0 ≤ s < p so that s ≡ (m−1)l − 1 mod p. Note that s = 0
implies that (m−1)l = 1. However, this implies that l = 0 which is a
contradiction, so s �= 0. Since p is prime, s−1 exists, so we can find a
w such that w ≡ −ks

−1 mod p. So then ws + k ≡ 0. Now, since N is
normal, we can conjugate by any element in G, so conjugate (ai, akbl)
by (e, aw). Then

(ai, akbl)(e,a
w) = (ai, a−w

a
k
b
l
a
w) = (ai, ak−w

b
l
a
w) = (ai, ak−w+w(m−1)l

b
l)

= (ai, aw((m−1)l−1)+k
b
l) = (ai, aws+k

b
l) = (ai, a0bl) = (ai, bl) ∈ N.

Since p ≡ 1 mod q, and a
p = e, by closure (ai, bl)p = (aip, blp) =

(e, blp) ∈ N . Thus, since q is prime and gcd(q, p) = 1, (e, bβ) ∈ N for
all 0 ≤ β < q. By closure, (ai, bl)(e, b−1) = (ai, e) ∈ N . Since p is prime
(aαi, e) ∈ N for all integers α. Further, sinceN has inverses, (a−i

, b
−l) ∈

N . Recall that (ai, akbl) ∈ N . By closure, (ai, akbl)(a−i
, b

−l) = (e, ak) ∈
N . Thus (e, aγ) ∈ N for all integers γ. Therefore, (aαi, aγbβ) ∈ N for
all integers α, γ, β. Thus Cm ×G ⊆ N .

Suppose there was some element (asbt, aubv) ∈ N , but not in Cm ×
G. Then t �= 0 or s is not a multiple of i. If t = 0, then s is not a
multiple of i, which contradicts the hypothesis. So t �= 0. If s is a
multiple of i then by closure (asbt, aubv)(a−s

, b
−v)(e, a−u) = (bt, e) ∈ N .

Since q is prime, then (b, e) ∈ N , and this contradicts that (b, bt) �∈ N

for all t. So t �= 0 and s is not a multiple of i. First, since N is closed
and (e, (aubv)−1) ∈ N , we have (asbt, e) = (asbt, aubv)(e, (aubv)−1) ∈ N .
Define 0 ≤ r < p so that r ≡ (m−1)t−1 mod p. Note that r = 0 implies
that (m−1)t = 1. However, this implies that t = 0 which is a contradic-
tion, so r �= 0. Since p is prime, r−1 exists, so we can find a w such that
w ≡ −sr

−1 mod p. So then wr + s ≡ 0. Next, conjugate (asbt, e) by
(aw, e). Then (asbt, e)(a

w
,e) = (a−w

, e)(asbt, e)(aw, e) = (aw−s
b
t
a
w
, e) =
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(as−w
a
w(m−1)t

b
t
, e) = (as+w((m−1)t−1)

b
t
, e) = (as+wr

b
t
, e) = (bt, e) Since

N is closed under conjugation, (bt, e) ∈ N . This contradicts the hy-
pothesis. Therefore, there is no element in N that is not in Cm ×G.

Therefore N = Cm ×G. �
Corollary 32. Let N be normal in G×G where G = Cp�Cq. If

the following hold:

(1) (aibj, ak) ∈ N for some integers i, j such that i, j �= 0 and
some minimal integer k

(2) (x, at) ∈ N for some integer t and some x ∈ Cp � Cq implies
that t is a multiple of k

(3) (b, bt) �∈ N for all t

then N = G× Cn for some n.

Proof. This holds by symmetry of Lemma 31. �
Lemma 33. Let G = Cp � Cq. Let N be normal in G × G. If the

following hold:

• (ai, ak) ∈ N for some integers i, k
• (as, au) ∈ N implies s is a multiple of i and u is a multiple of
k.

• (b, bl) �∈ N for all 0 ≤ l < q

then N = Cm × Cn for some m,n.

Proof. Let N be normal in G×G such that the hypothesis holds.
Let m = p/ gcd(i, p) and n = p/ gcd(k, p). Note that m is the order of
a
i and n is the order of ak.
Since N is normal, we see by conjugation of (ai, ak) by (e, b) that

(ai, ak)(e,b) = (e, b−1)(ai, ak)(e, b) = (ai, b−1
a
k
b)

= (ai, b−1
ba

km) = (ai, akm) ∈ N.

N is a subgroup, so it has inverse. Thus (a−i
, a

−k) ∈ N . By closure,
(ai, akm)(a−i

, a
−k) = (e, ak(m−1)) ∈ N . Since m �= 1 and p prime, it

follows that (e, aγk) ∈ N for all integers γ. Then (ai, ak)(e, a−k) =
(ai, e) ∈ N by closure. Thus, (aαi, e) ∈ N for all integers α. Therefore
(aαi, aγk) ∈ N for any integers α, γ. Since m is the order of ai and n is
the order of ak, we have Cm × Cn ⊆ N .

Suppose for contradiction that there was some (asbt, aubv) ∈ N and
not in Cm ×Cn. Then s is not a multiple of i, u is not a multiple of k,
t �= 0 or v �= 0. If t = 0 and v = 0 then either s is not a multiple of i or
u is not a multiple of k. Either would contradict condition two of the
hypothesis. Suppose without loss of generality that t �= 0. If v = 0,
then u is a multiple of k. So (asbt, au) ∈ N and by closure (asbt, e) =
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(asbt, au)(e, a−u) ∈ N . If s is a multiple of i, we can left multiply by
(a−s

, e) to contradict condition three of the hypothesis. Now we will
show that even if s is not a multiple of i, we have a contradiction to
condition three. Define 0 ≤ l < p so that l ≡ (m−1)t − 1 mod p. Note
that l = 0 implies that (m−1)t = 1. However, this implies that t = 0
which is a contradiction, so l �= 0. Since p is prime, l−1 exists, so we
can find a q such that q ≡ −sl

−1 mod p. So then ql + s ≡ 0. Now,
since N is normal, we can conjugate by any element in G, so conjugate
(asbt, e) by (aq, e). Then

(asbt, e)(a
q
,e) = (a−q

a
s
b
t
a
q
, e) = (as−q

b
t
a
q
, e) = (as−q+q(m−1)t

b
t
, e)

= (aq((m
−1)t−1)+s

b
t
, e) = (aql+s

b
t
, e) = (a0bt, e) = (bt, e) ∈ N.

This contradicts condition three of the hypothesis. So t �= 0 and v �=
0. By a similar conjugation to above, we can see that (bt, bv) ∈ N .
But since t has a multiplicative inverse, it follows that (bt, bv)t

−1
=

(b, bvt
−1
) ∈ N . This contradicts the fourth condition of the hypothesis.

So no such element exists. Therefore N = Cm × Cn.
�

Corollary 34. Let N be normal in G × G where G = Cp � Cq.
Then N is one of the following:

G×G G× Cn

Cm ×G Cm × Cn

(Cp × Cp)� Cq

Proof. Lemmas 30, 31, 33 and Corollary 32 show exhaustively
that these are the normal subgroups of G×G. �

Theorem 35. There are 9 + (q − 1) normal subgroups of G × G

where G = Cp � Cq when prime p ≡ 1 mod q with q prime.

Proof. This follows directly from Corollary 34.

Normal Subgroup Category Number in Category

G×G 1

G× Cn 2

Cm ×G 2

Cm × Cn 4

(Cp × Cp)� Cq q − 1

The total of the right column is 9+(q−1) and hence there are 9+(q−1)
normal subgroups of G×G where G = Cp � Cq.

�





CHAPTER 4

Closing Remarks

1. Open Questions

This honors thesis leads to a wide variety of open questions, ap-
proachable and difficult.

• If m is even, how many normal subgroups do D2m and D2m ×
D2m have?

• Can the result found inD2m for oddm be extended to Cm�Cq?
This honors thesis considered Cp � Cq for p, q prime and p ≡
1 mod q. It was important that p was 1 modulo q so that
conjugacy classes could be constructed to the correct size. So
we know that if this result were to be extended, we would
need m ≡ 1 mod q. This still fits the dihedral case, since
D2m = Cm � C2 and an odd number is 1 mod 2. What is yet
unknown is how restrictive the condition would need to be for
m in the general Cm � Cq case. Would it be enough to say
m ≡ 1 mod q, or would each of its prime factors need to be
1 mod q?

• If we are able to answer the previous bullet point, the next
logical question is: what happens to the semidirect product
group Cm�Cn for compositem,n? Does it have similar growth
to Cm � Cq and Cp � Cq?

• On a different line of thinking, what happens if we consider
D2m ×D2m ×D2m? How many normal subgroups does D2m ×
D2m ×D2m have? What about D2m × · · · ×D2m for n direct
products? If we can have a result with dihedral groups, can we
find a similar one with semidirect products? I believe that this
problem will generalize by looking at how many components
have flips. If we have k flips and n direct products, we can then
count isomorphic copies using

�
n

k

�
. The trick will be to look

at how the flips interact together. Some components may act
independently and others may act together. This was shown in
D2p×D2p by the normal subgroups D2p×D2p and (Cp×Cp)�
C2. I do not believe that this will be a huge leap, however,
time did not allow me to reach results in this area.

33
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• Why does the subgroup count of some groups grow so quickly
while others grow slowly and predictably like the dihedral
group? This question stems from computer research at the
beginning of my thesis. To begin my research, I searched for
the normal subgroup count of small groups and their direct
product through a program called GAP. I made lists of these
numbers for all nonabelian groups of order less than 150. I
then started manually looking for patterns. I noticed that all
groups of order 2p where p was prime followed a 3 − 10 pat-
tern: three normal subgroups and 10 for the direct product.
I was able to use the GAP program to search for what the
structure of this group of order 2p was. When I found out
that it was the dihedral group, I was able to start trying to
prove my goal, that this pattern held for all primes, and not
just primes under 75. From there I was able to extend my
result to dihedral groups of order 2pn and then 2m. When I
had this result, I looked for groups of order pq where p and
q were prime. This, along with the dihedral group result led
me to semidirect products. Not all groups had such a small
growth pattern, though. For example, there were groups of
order 2k that had normal subgroups growing approximately
linearly but under the direct product they seemed to be grow-
ing exponentially. Further, there is one group of order 20 with
5 normal subgroups and 36 under the direct product. But
there is another group of order 20 with 7 normal subgroups
and 104 under the direct product. What is so different about
their structure that can account for that discrepancy?
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