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Deconstructing Bases
Fair, Fitting, and Fast Bases

Thomas Q. Sibley
St. John’s University

Collegeville, MN 56321-3000
tsibley@csbsju.edu

Elementary school students wrestling with decimals quickly realize not all fractions are created
equal. While the relatively awkward fraction 17

32 turns into the modestly nice finite decimal
0.53125, other seemingly simple ones, like 2

3 0.66666666 or 1
7 0.14285714 , confront us

with the sophisticated notion of infinite repeating decimals. Can we find a “finitely fair” base, one in
which all fractions have finite representations?

It is natural to start our hunt for a finitely fair base by changing from the familiar base 10 to base
b, where b is any integer greater than 1. Unfortunately, the following review of representations base
b reveals that for any b some fractions must have infinite repeating representations, while other
fractions have finite representations. Recall that 0.a1a2a3 b

a1
b

a2

b2
a3

b3 n 1
an
bn ,

where the subscripted b indicates the base and an is an integer satisfying 0 an b 1. A fraction
p
q in reduced form has a k-place representation in base b exactly when q divides bk but doesn’t
divide bk 1. For example, 32 25 divides 105 but not 104, so base 10 uses five decimal places for
17
32 . If q has a prime factor not in b, the reduced fraction p

q has an infinite repeating representation
base b. Since no fixed b has every prime factor, every base has some fractions with infinite repeating
representations.

Clearly, a finitely fair base requires something new, a mathematical “deconstruction” of the idea
of a base. The postmodern term “deconstruction” describes something mathematicians have done
two centuries: probe a familiar concept more deeply to find new interpretations and understandings.
An initial deconstruction of base in the next section leads to a finitely fair base, called base n! . A
further deconstruction in the middle section leads more generally to variable bases, which we use to
find bases that “fit” a given real number with a specified representation. The final section critiques
bases in yet another way, leading to competing measures for finitely fair bases. A curious use of the
Prime Number Theorem shows that we can control both of these measures. For ease we consider
only representations of real numbers between 0 and 1, although the reader is invited to extend these
ideas to the integer parts.

A Finitely Fair Base Finite representation for all fractions requires a reinterpretation of the
concept of a base. The familiar infinite series ex

n 0
xn

n! suggests replacing the powers bn in
the denominators of the base with the factorials n!. We will denote this new base with the subscript

n! . For example, 1
3! becomes 0.001 n! and 3

5! becomes 0.00003 n! . Then e 2
n 2

1
n! has

the memorable representation 2 0.01111 n! and 5
6 equals 0.012 n! .

Definition. By 0.a1a2a3 n! we mean
n 1

an
n! , where an is an integer satisfying

0 an n 1.
The first place in base n! is always a useless 0, but retaining it makes the nth place correspond

to 1
n! .) Since q divides q!, the representation of p

q never needs more than q places, showing base
n! is finitely fair. Indeed, only when q is a prime or 4 does the reduced fraction p

q need q places.
The condition 0 an n 1, which corresponds to the condition 0 ai b 1 in base b,

ensures that every fraction has a unique finite representation. Suppose, to illustrate the uniqueness of
this representation, we try to find a second representation for 1

3! 0. 001 n! . The most we can put



in the fourth place is a 3, but 0.0003 n!
3
4! , which is 1

3!
1
4! since 1

3!
4
4! . Again, the most we

can add in the fifth place is a 4, and 0.00034 n!
1
3!

1
5! . In general i 1

i!
i
i!

1
i!

1
i 1 !

1
i! ,

and so 0.000345 k 1 n!
1
3!

1
k! .

Irrationals related to e can have nice representations base n! . Recall the series
cosh x ex e x

2 n 0
x2n

2n ! 1 x2

2!
x4

4! . Then cosh 1 1 0.010101 n! , and
similarly sinh 1 1 0.00101010 n! . Since e 1 cosh 1 sinh 1 we can use elementary
borrowing in base n! to find the representation of e 1:

1. 010101010 n!

1. 001010101 n!

0. 002040608 n!

In base n! the representation of starts off 3 0.00031565 n! . It seems unlikely that the
integers in this representation will form a pattern anyone could describe, although that might well be
a deep mathematical question. Some might hope to improve on base n! so that every irrational
would have a repeating representation or other easily recognized pattern. However a cardinality
argument shows that not all of the uncountably many real numbers can have recognizable patterns,
even in such a lovely base as n! . Whatever the term “recognizable” might mean, such a pattern
must at least be describable in finitely many terms. For example we can describe the pattern
0.00204060 n! for e 1 by “the digit in the 2n 1st place for n 1 is 2n and elsewhere is 0.” In
any language or base there are only countably many symbols and so only countably many things
describable in a finite number of terms. (See [Fletcher and Patty, 223].) Thus no matter what base
we invent, there will always be uncountably many real numbers with nonrepeating, and even
indescribable representations. However in the next section we see how to find a base fitting any real
number with almost any desired representation.

Finding Fitting Bases. For any given real number between 0 and 1 we seek a base with a
specified representation of that number. First we need to deconstruct the idea of a base beyond base
n! or base b. Note that the successive denominators in either case (1,2, 6, 24, or b,b2,b3, )

are multiples of previous denominators. To see the advantage of this property, consider an attempted
base $ built on making change with American coins. We could write
0.a1a2a3a4 $

a1
4

a2
10

a3
20

a4
100 , where a1, a2, a3 and a4 are the number of quarters, dimes,

nickels and pennies, respectively. To make change, we never need more than four pennies, so we
restrict 0 a4 4. Similarly, 0 a3 1 since two nickels equals a dime. We need up to two
dimes to make change, so 0 a2 2. Even with this restriction, we don’t have a unique way to
make change since 0.0210 $ 0.1000 $ . This ambiguity occurs because a quarter can’t be evenly
divided into dimes.

Definition. A sequence bn of positive integers is a variable base provided each bn divides
bn 1 and limn bn . Define place ratios rn recursively by r1 b1 and rn 1

bn 1
bn

. We define
the base bn representation 0.a1a2a3 bn to equal

n 1
an
bn

, where an is an integer satisfying
0 an rn 1.

Base b and base n! clearly qualify as variable bases: in base b, we have bn bn and rn b,
whereas bn n! and rn n in base n! . Recall the earlier example showing that 1

3! has a unique
finite representation in base n! . The keys underlying that argument generalize to the conditions
bn rnbn 1 and 0 an rn 1, which correspond to the requirements for a variable base
representation Thus for all variable bases bn finite representations in base bn are unique.
Because limn bn every real between 0 and 1 is approximated by finite representations, and so
it has a finite or infinite representation base bn .



Let’s take as our test case , whose representation in base n! appears as indescribable as its
representation in base 10. Can we find some bn so that 3 0.1111 bn ? For a1 to be 1,

1
b1

0. 14159 10
2
b1

. Then 8 b1 14. Once we pick b1, say b1 8, we have
1
b2

0. 14159 10
1
b1

0. 01659 10
2
b2

. Thus 60 b2 120. Further, b2 must be a
multiple of b1 8. If we always pick the smallest denominator at each step, we get the base
bn 8,82, 82 17,82 17 19, , although this sequence seems no more memorable than the

digits of in base 10. Still, Theorem 1 below provides an explicit construction of a base fitting any
number between 0 and 1 with a specified infinite representation.

Theorem 1. Let 0 1 and let an be any sequence of positive integers. Then there is a
base bn such that 0.a1a2a3 bn n 1

an
bn

.
Proof. We use recursion to construct a base bn . Because 0 and limk

a1
k 0, there are

values k such that a1
k . Let b1 be the smallest k such that a1

k
a1 1

k . Set 1
a1
b1

, so
that 0 1

1
b1

a2
a2b1

. Choose b2 to be the least multiple of b1 such that a2
b2

1
a2 1
b2

. In
general, suppose we have bi for 1 i n such that bi divides bi 1 for i n and

i 1

n ai
bi i 1

n ai
bi

1
bn

. For n i 1

n ai
bi

we have 0 n
1
bn

an 1
bnan 1

. Let bn 1

be the least multiple of bn such that an 1
bn 1

n
an 1 1
bn 1

. Clearly bn properly divides bn 1 so
limn bn and bn is a base. Further,

i 1

n 1 ai
bi i 1

n 1 ai
bi

1
bn 1

and
limn

1
bn 1

0. Hence
i 1

ai
bi

.

While the preceding proof chooses the smallest possible bn 1 each time, there may be other
choices of bases fitting the same representation to . For example by suitably continuing the
sequence cn 9,36,396,5940, we would also have 3 0.111 cn . Determining how
many different bases fit a given real with a specific representation appears quite difficult. We
illustrate the range of possibilities for the number of bases giving a particular representation using
perhaps the easiest examples. The reader is invited to fill in the details of the induction proofs.

–There is a unique base bn (namely bn 3n) such that 1
2 0. 111 bn .

–There are uncountably many bases bn such that 1
3 0. 111 bn .

Sketch of the proof. For each k N consider the options r2k 1 4 and r2k 4 and
r2k 1 5 and r2k 2 . Using the notation in the preceding proof, either way 2k

1
3b2k

, so the
next step will have the same options. Since 2N is uncountable, there are uncountably many ways of
choosing the values rn in pairs. (There are other possible bases as well.)

–There is a countable infinity of bases bn such that 1
4 0. 111 bn .

Sketch of the proof. If the first k choices of rn are all 5 then k
1

4bk
and we have three

choices for rk 1, namely 5, 6, and 7. Choosing rk 1 5 leaves these options open for rk 2. However,
if rk 1 6, then rk i 3 for all i 2. Similarly, the choice of rk 1 7 forces rk 2 2 and for all
i 3, rk i 3. Thus there are countably many times one can choose to deviate from rn 5.
However, once that choice is made, there are no further options.

We abandon the difficulties of fitting bases to desired representations of given numbers. Instead,
we return our attention to finitely fair bases, considering competing comparisons of them with base
n! .

Fast Finitely Fair Bases. To consider alternatives to base n! we need to determine when a
base is finitely fair. Minimally every fraction m

pk , where p is a prime, needs to be finitely
represented. That is, for all primes p and all natural numbers k, there is a natural number n such that
pk divides bn. Actually this condition also suffices: factor the denominator of m

q into powers of



primes q p1
k1 pj

kj and pick bn to be the maximum of the bi corresponding to the pi
ki . While base

n! is finitely fair, it seems slow in one way and fast in another. First of all it is “slow” in that it
can need as many as q places to represent p

q . However, its place ratios, rn n, grow fast and without
bound. Each criterion alone seems mathematically uninteresting: we could “speed up” how quickly
we represent fractions by choosing huge values for the rn, or we could, on average, slow the growth
of the place ratios small by taking “almost all” of the rn to be 1, sprinkling in the primes just often
enough to get infinitely many of each eventually. Combining these two senses of speed leads to a
more interesting result. We measure the overall growth of the place ratios rn with their geometric
mean rather than their arithmetic mean because of their multiplicative nature.

Definition. The nth average place ratio of bn is n bn n
i 1

n
ri .

For base b the nth average place ratio is constant: n bn b. From Stirling’s approximation for
n! the nth average place ratio for base n! is n n! n 2 n n

e
n n

e , which goes to infinity as
n does. (See [Woodroofe, 127-128].)

Definition. A finitely fair base bn is q-fast if the representation in base bn of a reduced
fraction p

q never needs more than q places.
Although base n! is q-fast, factorials lead to fairly fast growth of the average place ratios.

Fortunately, a q-fast base doesn’t need factorials. We need r2 2, and r3 3 to handle halves and
thirds by the second and third place, respectively. But we only need r4 2 to accommodate fourths
in the fourth place since r4 2 gives b4 2 3 2 12, a multiple of 4. Similarly, r6 1 suffices
since b4 12 is already a multiple of 6. The slowest q-fast base increases the denominators bn only
as much as needed. This base has the sequence of smallest place ratios, which are rpk p for every
power of a prime pk and rn 1 otherwise. The following table gives initial values of rn, bn and
n bn for this slowest q-fast base.

n 1 2 3 4 5 6 7 8 9 10 11
rn 1 2 3 2 5 1 7 2 3 1 11
bn 1 2 6 12 60 60 420 840 2520 2520 27720
n bn 1 1.41 1.86 1.9 2.27 1.98 2.37 2.32 2.39 2.19 2.53

Table 1. Values of rn, bn and n bn for the slowest q-fast base.

While the preceding table suggests the average place ratios n bn increase slowly but unevenly,
surprisingly the sequence n bn has a bound related to e.

Theorem 2. The slowest q-fast base bn has n bn e1.105 3. 02 for all n.
Proof. In a q-fast base if n pk, for a power of a prime, then pk must divide bn. The slowest

q-fast base has no extra powers of any p, meaning when we factor bn into primes, for any prime p
there are exactly k factors of p in bn, where pk n pk 1. The needed power of a prime p is

logpn , where x is the floor function of x, the greatest integer less than or equal to x. Hence
bn p 2

n p logpn , where p varies over all primes between 2 and n. Now

p 2
n p logpn

p 2
n plogpn and plogpn n, so bn np n , where p n is the number of primes less

than or equal to n. The Prime Number Theorem gives the approximation p n n
ln n with an upper

bound of p n 1.105n
ln n . (See [Kline, 830].) Thus

n bn n1.105n/ ln n 1/n n1.105/ ln n n1.105 logne e1.105.
Remarks. The value n bn exceeds e for the first time when n 19, giving approximately 2.76.



The maximum value of n bn appears to be just under 2.8 when n 31.
We can readily generalize the idea of the slowest q-fast base. A base bn is q-fast if its

representation of p
q never needs more than q places (or 1 place if q 1). For example, the

slowest q
2 -fast base needs r1 b1 6 to take care of halves and thirds by the first place, r2 10 to

take care of fourths and fifths by the second place, and so on. The preceding theorem generalizes as
follows.

Corollary. The slowest q-fast base bn has n bn e1.1/ .
Proof. We need only replace bn np n in the previous proof with bn np n / .
Thus a suitable fast finitely fair base can slow the growth of the place ratios and simultaneously

represent fractions as quickly as desired.
Mathematicians derive much pleasure from “deconstructing” a commonly accepted concept to

find a more fundamental and general one. Often these generalizations give profound insights and
applications. Others, such as fair, fitting, and fast bases, are simply fun.

Acknowledgments. I am indebted to a long forgotten person who spoke at a Boston University
graduate school seminar between 1975 and 1978 and gave the original idea of base n! . I thank
Frank Farris for drawing my attention to the article on an irrational base [Bergman], another,
although unrelated, “deconstruction” of base.
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