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I. Introduction 

Neurodevelopment, or the delicate process of neuronal cell and nervous system development, 

is an incredibly complex and not fully understood process. Human brain development begins 

during the third gestational week and continues through adolescence. Neurons form from neural 

progenitor cells, and the differentiation of these cells is determined by preexisting genetic 

coding. After differentiation, the neural tube is the first brain structure to be formed. Most of the 

brain and spinal cord develop from this neural tube, forming a rudimentary Central Nervous 

System (CNS). Following neural tube formation, neural patterning, the process by which the 

neural progenitor cells acquire individual identities, begins. Neural patterning closely follows the 

overall body patterning of the developing embryo. During this patterning step, several functional 

regions of the CNS further differentiate and develop, including key sensorimotor areas involved 

in motor function (Stiles & Jernigan, 2010). After neural patterning, neurons themselves develop 

in respect to the changing structure of the embryo and embryonic nervous system. These neural 

cells first proliferate and then migrate to the appropriate location in the body, a process mediated 

by adhesion molecules in the extracellular matrix for neural crest cells or a glial cell called radial 

glia for neurons of the spinal cord, cerebral cortex, and cerebellum (Purves, Augustine, & 

Fitzpatrick, 2001). The migrating neurons of the CNS stay within the embryonic neural tube, 

whereas the neurons of the peripheral nervous system – including both sensory and motor 

neurons - migrate away from the neural tube and through various other developing body systems 

before reaching their eventual location in the body (Purves, Augustine, & Fitzpatrick, 2001). 

 After migration, the neural cell bodies develop dendrites and axons in order to form the 

extensive information networks of the nervous system. These cells develop a structure called a 

growth cone that extends toward a target synaptic connection, forming the axon (Stiles & 
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Jernigan, 2010). Among the plethora of synaptic connections forming during this stage of 

development is the formation of sensorimotor pathways in the brain, known as the 

thalamocortical and corticothalamic pathways (Stiles & Jernigan, 2010). This process begins 

during the second trimester and is completed during the 26th gestational week. This development 

is crucial in relaying sensory information received at sensors, such as in the skin, retina, cochlea, 

or from muscle movement, to the thalamus, where this sensory information is integrated and 

appropriate action is initiated (Stiles & Jernigan, 2010). After birth, this abundance of synaptic 

connections is pruned in relation to experience and environmental factors. Additionally, 

oligodendrocytes differentiate and develop, contributing to myelination of neurons; myelination 

causes a myelin sheath to wrap around the axon of the neuron, thereby insulating the electrical 

signal generated by action potentials and subsequently speeding up action potential propagation 

(Stiles & Jernigan, 2010). This process of myelination, synaptic pruning, and some new neuron 

development continues past infancy, with the prefrontal cortex commencing development in 

early adulthood.  

When these crucial developmental processes in the CNS and PNS are disrupted, 

neurodevelopmental disorders (NDD) are the result. NDDs encompass a variety of conditions, 

such as seizure disorders, intellectual disability, and autism spectrum disorders (Maussion, et. al., 

2015). However, the exact mechanisms of disrupted neurodevelopment in many NDDs remain a 

mystery. Abnormal genetic makeup and alterations in gene expression are well-supported factors 

in NDDs. This variability in gene expression indicates that environmental influences could cause 

those who are genetically pre-disposed to neurodevelopmental disorders to express the mutations 

for these disorders or that environmental influences, coupled with genetic markers, account for 

the variability of NDDs. This new perspective of gene-environment interactions in NDDs is of 
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particular interest, especially when one takes into account the high levels of industrial chemicals 

and pesticides that children are exposed to in developed countries from conception – including 

the most crucial periods of brain development (Szpir, 2006). 

Autism is currently a disorder of interest in both scientific research as well as the media. 

Autism is a disorder defined by abnormalities in three domains: 1. social interaction, 2. language 

and imaginative play, and 3. range of interests and activities (Muhle, Trentacoste, and Rabin, 

2004). Another hallmark of autism and neurodevelopmental disorders is repetitive or stereotyped 

motor movements, such as spinning in circles or pulling hair repeatedly. According to Muhle, 

Trentacoste, and Rabin (2004), autism prevalence rates increased by 556% between 1991 and 

1997 (Muhle, Trentacoste, & Rabin, 2004). This rise in prevalence rates is largely attributed to 

greater awareness, stringent pediatric testing for the disorder, and clearer diagnostic criteria, yet 

some researchers also question whether neurotoxins and environmental factors are potential 

contributors to the precipitous rise in autism prevalence.  

A few chemicals, such as lead or mercury have long been known to cause abnormal 

development and intellectual functioning (Jiang, Hsi, Fan, & Chien, 2014). Pre-natal or infant 

lead exposure has been implicated in mental retardation and abnormal development (Jiang, Hsi, 

Fan, & Chien, 2014). As a result, products such as paint and petrol have been made lead-free for 

years and mercury regulations have become more stringent so as to decrease the chance of 

exposure to these chemicals. Now different widely-used chemicals, such as polychlorinated 

biphenyls (PCBs) and organophosphates (OPs), are of interest in the quest to fight autism, 

ADHD, and other neurodevelopmental disorders. Jurewicz, Polanska, and Hanke found that, 

when exposed to organochlorine pesticides, children exhibited deficits in alertness and attention 

span – even at the miniscule amounts of exposure of 5-10 micrograms per deciliter, which is less 



6 
 

than some environmental exposure levels (Jurewicz, Polanska, & Hanke, 2013). A 2015 study by 

Lee et. al. found that two industrial pesticides – endosulfan and cypermethrin – caused newborn 

mice to exhibit altered levels of neuroproteins after a one-time administration of the chemicals. 

The mice then exhibited altered behavior as adults, such as spontaneous movement and inability 

to habituate to a new environment, as well as continued decreased levels of neuroproteins, 

months after exposure (Lee, et. al., 2015). In another study, exposure to phthalates, a common 

component of plastics that easily leeches into water and the environment, during crucial 

developmental periods in infancy and childhood resulted in disruption of hippocampal structural 

and functional plasticity. This disruption may have occurred either as a direct neurotoxic effect 

of the chemicals or as a result of their role as endocrine disrupting compounds (Holahan & 

Smith, 2015). In essence, toxic chemicals implicated in NDDs have expanded beyond the 

common poisons of lead and mercury, yet these new neurotoxins are not heavily regulated like 

lead and mercury, which may facilitate their contribution to NDDs. 

One chemical in particular poses a particularly compelling position in the etiology of 

disrupted neurodevelopment – bisphenol-A, also known as BPA. This ubiquitous chemical is 

used in a variety of products, such as the plastics and epoxy resins in containers and water 

bottles.  BPA waste can leach into wastewater and landfills, further impacting both humans and 

animals (Husain & Quayyum, 2013). One study on BPA revealed that, when injected in rats, the 

chemical caused an increase in expression of dopamine transporters, resulting in hyperactive 

behavior characteristic of ADHD and autism. (Brown, 2008). This same study found that BPA 

exposure also impacted synaptogenesis, apoptosis during neural cell pruning, and myelination of 

neurons (Brown, 2008). A separate study found that BPA exposure accelerated the 

neurodevelopmental processes of cell differentiation and migration, resulting in abnormal 
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cortical patterning and thalamocortical structure, in rats (Nakamura et. al., 2012). BPA also 

functions as an endocrine disrupting chemical, causing widespread effects on the body.  BPA 

specifically acts as a xenoestrogen, which is a chemical that imitates estrogen, as well as impacts 

DNA methylation, a process that affects the transcription of DNA (Wolstenholme, Rissman, & 

Connelly, 2010). Although BPA is man-made, its structure is similar to endogenous estrogen and 

steroid chemicals, such that it can activate estrogen receptors (Wolstenholme, Rissman, & 

Connelly, 2010). Besides its neurotoxic effects, the estrogenic factors of BPA result in advanced 

puberty (Howdeshell et. al., 1999 and Wolstenholme, Rissman, & Connelly, 2010) and decreased 

testosterone levels (Akingbemi et. al., 2004 and Wolstenholme, Rissman, & Connelly, 2010). 

BPA exposure caused behavioral changes in studies done on rats, including impaired learning, 

increased impulsive behavior and decreased interest in novel environments (Wolstenholme, 

Rissman, & Connelly, 2010). However, the amount of research conducted on the effect of BPA 

on motor neurons remains sparse.  

Despite previous and ongoing studies on BPA in animal and epidemiologic studies on human 

populations, the mechanisms by which it affects the brain and behavior is still speculative and 

additional testing is needed to understand how to avoid its toxic effects. Besides the classic 

experimental animal – the rat – another organism presents a compelling role as a model for 

neurodevelopmental studies: the fruit fly, Drosophila melanogaster.  

Drosophila have been used as model organisms in genetics studies as well as neurological 

research for years. They are useful models due to their large numbers of progeny, short 

generation time, easily observable behavioral patterns, and simple anatomy. Drosophila offer the 

potential for examination of complex gene-environment interactions that pertain to humans due 

to the genetic conservation between Drosophila and humans (Makay & Anholt, 2006) as well as 
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the well-developed and widely-available tools for manipulation of the Drosophila genome. 

Drosophila also exhibit complex behavioral patterns, such as circadian rhythms, sleep, drug 

responses, locomotion, and aggressive behavior (Mackay & Anholt, 2006). As a result, 

Drosophila have been used in studies examining many human disorders, such as Parkinson’s, 

Huntington’s, alcohol effects, and Alzheimer’s. It is logical, then, that Drosophila can also 

function as a useful model in examining neurotoxins and their effect on neurodevelopment, such 

as BPA.  

Drosophila have genetic homology to humans, but obvious differences in body patterns and 

development. In order to understand Drosophila as a model organism for human 

neurodevelopment, it is important to have a grasp on how Drosophila motor neurons – the 

neuron type explored in this study – develop and how this development differs from or mirrors 

human neurodevelopment. Drosophila neurons develop from neuroblasts, which divide to 

produce a variety of cells. From 30 neuroblasts, approximately 400 larval neurons are produced, 

38 of which are motor neurons (Kim, Wen, & Jan, 2009). The body of the fly larva has 30 

muscle segments, which are innervated by one or more of these 38 motor neurons (Kim, Wen, & 

Jan, 2009). Motor neurons with similar dendrites originate from the same neuroblast and their 

axons innervate muscles that are functionally related (Landgraf, et. al., 2003). Kim, Wen, & Jan 

discovered a large degree of overlap between dendritic branches from many neurons, providing 

full motor coverage and integration through a topographic map of the Drosophila body wall 

(Kim, Wen, & Jan, 2009). There is, however, a gap in understanding how these neurons create 

specific synaptic connections during development. Drosophila neurodevelopment is a complex 

process liable to disruption leading to adverse effects, much like human neurodevelopment. 
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 Studies on the effect of BPA have been conducted on this model organism in the hopes of 

investigating the detrimental effects of this chemical on humans and other organisms. 

Drosophila  exposed to BPA were more susceptible to starvation due to inhibited lipolysis and 

inhibited expression of insulin-like peptides (Williams, et. al., 2013). Administration of BPA in 

both food and through body wall absorption resulted in a marked decrease in fecundity for the 

flies. This decrease was attributed to the endocrine-disrupting properties of BPA (Atli, 2013). 

The previous study of BPA and Drosophila by Kaur et. al. was the most relevant to this study 

examined the effects of BPA exposure on behavior in an effort to examine the potential link 

between BPA and neurodevelopmental disorders. Kaur’s study found that adult flies exposed to 

BPA exhibited greater mobility, angular velocity, turn angle, meander, and number of grooming 

episodes as compared to control subjects (Kaur et. al., 2015).  

The purpose of this study is to examine whether behavioral abnormalities arise in third-instar  

Drosophila melanogaster larvae in response to prenatal BPA exposure, as well as to determine 

whether morphological differences are caused in peripheral neuronal processes, including motor 

and/or sensory neurons. Third-instar is the last stage for larvae before they begin to pupate and 

when larvae begin to “wander” and move around. To date, little is known about morphological 

differences in neurons of those with NDDs and whether such differences are a response to 

chemical and endocrine-disrupting compound exposure in neurons. This study expands upon the 

discoveries of behavioral abnormalities in the Kaur studies by exploring morphological anatomy 

differences in addition to behavioral changes. Similar methods to the Kaur study were used, but 

they were adapted to be appropriate to the study of larval behavior as opposed to adult. By 

administering BPA to the parental generation and testing resultant offspring, this study mimics 

an environment of prenatal BPA exposure for the etiology of NDDs.  
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Methods 

Fly Stock and Experimental Set-Up 

 Drosophila melanogaster from three genetic strains were used: 1010T10, ELAV-GAL4, 

and UAS-2XeGFP. All fly strains were obtained from a commercial supplier (Bloomington 

Stock Center). The 1010T10 strain was used for the behavioral assays, and a cross of ELAV-

GAL4 X UAS-GFP was used for both behavioral assays and dissection. All fly strains were kept 

in glass vials in the same room temperature controlled environment under similar light-dark 

cycles, with light exposure from about 8 AM and 6 PM. All flies were fed a standard diet of 

Drosophila food (Drosophila Instant Food, Formula 4-24 from Carolina Biological Supply 

Company, Burlington, NC). 

 Drosophila were exposed to one of four conditions: control, 0.44 mM, 4.4 mM, and 44 

mM concentrations of bisphenol-A (BPA). BPA solutions were prepared with powdered 97% 

pure BPA from Sigma-Aldrich (Sigma Aldrich Co., St. Louis, MO). All amounts of BPA were 

measured using an electronic balance and a plastic weighing boat. The powdered BPA was then 

transferred to a liter of water and allowed to dissolve. An electronic heating apparatus and 

magnetic stir bar were utilized to aid in dissolution. The highest concentration of BPA in 

particular required this equipment in order to dissolve. Once dissolved, the solutions were stored 

in plastic canisters and kept at 5ºC. The doses represented typical environmental exposure for 

humans (Atli, 2013). These BPA solutions were used in place of water when preparing the 

Drosophila food. 

 All experiments were carried out on F1 third-instar wandering larvae. All experiments 

were initiated using parental adult Drosophila in glass vials filled with prepared Drosophila 

food. During sexing of flies for crosses, adults were anesthetized using carbon dioxide gas and 
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examined on a Leica EZ4 dissecting microscope (North Central Instruments). Two or three male 

flies from the ELAV-GAL4 genetic strain and three to four female flies from the UAS-GFP 

genetic strain were identified and transferred to the experimental vial on the head of a paintbrush. 

Adult flies were allowed to mate and lay eggs in food made with either water or one of three 

BPA doses, and progeny were allowed to mature in the vial to third-instar, approximately a week 

after set-up of cross.  

Behavioral Assays 

 All behavioral assays were performed at room temperature and between the hours of 9 

AM and 3 PM in order to rule out changes in behavior due to circadian rhythms. Behavioral 

assays were based on a study performed by Chauhan et. al. (study cited in article by Kaur et. al., 

2015) and video recorded using a plastic petri dish as an arena for larval movement. The plastic 

petri dishes were placed on grid patterned graph paper in order to facilitate quantitation of 

locomotor behaviors. A small lamp was shone on the arena in order to aid video analysis. Videos 

of larval behavior were recorded using a Canon Vixia Camcorder HF-R Series on a three-leg 

tripod (camera rented from Saint John’s University Media Services). 

 Third instar larvae were transferred from vials to the arena using a paint brush. All larvae 

were allowed 30 seconds to acclimate to the test environment before videos were recorded. After 

the 30 second acclimation period, third instar larvae were recorded for 30 seconds each. Larvae 

were either dissected or disposed of after video recording. Video data was analyzed through the 

Windows video viewer (videos in MTS format) and the aid of graph paper placed under the petri 

dish arenas where the assays were recorded. 

 Video recordings were analyzed for four behavioral paradigms commonly exhibited by 

third instar Drosophila larvae: time spent in seeking behavior, number of peristaltic contractions, 



12 
 

linear movement, and angular movement. All video analyses were conducted using careful naked 

eye analysis of each video. In order to provide the most accurate analysis possible, operational 

definitions of each behavioral paradigm were defined prior to analysis. Definitions were based 

on Kaur, et. al. and for larvae. Time spent in seeking behavior was defined as the number of 

seconds the larvae spent stationary moving their heads repeatedly and in an exploratory fashion. 

Number of peristaltic contractions were defined as the number of times in a 30 second period 

that a wave of peristaltic muscle contraction moved from the head of the larvae to the tail, or vice 

versa. Linear movement was defined as the linear distance a larvae traveled within the 30 second 

recording period. Linear movement was measured using the underlying graph paper and was 

recorded in respect to the number of graph squares the larvae moved. Angular movement was 

defined as the number of times the larvae changed direction within the 30 second period and an 

estimation of the degree of each change from initial body position. These recordings were also 

made with respect to the underlying graph paper squares. Twenty-five replicates of each 

condition were analyzed, with 25 organisms in each condition tested for all paradigms. The 

mean, standard error, and one-way ANOVA of each condition were recorded from this data. 

ANOVA was followed by t-test with Bonferroni correction (p-value).  

Dissection and Motor Nerve Morphological Analysis 

 Five larvae from each condition were dissected for morphological analysis. Larvae were 

transferred from the plastic arena used for behavioral assays to the agar-coated petri dish used for 

dissection via the end of a paintbrush. The dissection dish was then placed under a dissection 

microscope (Leica EZ4, North Central Instruments). Larvae were pinned, ventral side down, to 

agar in dish using insect pins and forceps. Pins were placed in tail and close behind mouth combs 

at head of larvae. The dish was then filled with PBS saline. The PBS solution was prepared with 
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130 mM NaCl, 5 mM Na2HPO4, 5 mM NaH2PO4 X H2O, and water until the solution was a liter 

in volume. The body wall of the larva was cut longitudinally along the dorsal midline between 

paired trachea using a microscissors and pinned open in a fillet preparation. All organs were 

removed from the animal with the exception of the brain nerve cord, and peripheral nerves. 

When the animal was cleanly dissected, leaving the peripheral nerves intact, the PBS was 

discarded and the specimen was prepared for the staining procedure.  

 The dissected specimen was fixed and stained using immunohistochemical staining. The 

dissected larvae were fixed in 4% paraformaldehyde at room temperature for 30 minutes. The 

specimen was then washed three times for ten minutes each in TBS, which was produced by 

adding Triton X to prepared PBS in a 1:100 ratio. After the wash, the specimen was blocked and 

agitated for 30 minutes. The block solution used was comprised of 10 mL of normal goat serum 

(NGS), 4 g of bovine serum albumin (BSA), 20 mL TBS, and water to reach a volume of 200 

mL. At the conclusion of the block period, primary antibody, anti-GFP, was applied to the 

preparation in a 1:1000 ratio in block and incubated overnight in a refrigerator. After the 

incubation period, the specimen was washed and agitated for three ten-minute washes in block 

solution. The secondary antibody, Alexa 488, was added to the block in a 1:500 ratio and 

incubated for 1-2 hours a room temperature. The specimen was washed 3 times for 10 minutes in 

TBS and once for 10 minutes in PBS before being unpinned and mounted on a glass slide. 

 In order to visualize the stained specimens, the prepared slides were viewed using a 

fluorescent microscope (Olympus IX71) using a blue excitation wavelength. Fluorescence 

images and brightfield images were taken at 10x, 20x, and 40x magnifications. The 

neuromuscular junction between muscles 6 and 7 were examined for qualitative appearance of 

axon terminals, and significant differences in the surface areas of terminal boutons. The mean, 
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standard error of the mean, one-way ANOVA, and t-tests with Bonferroni correction were 

collected from these analyses.  

II. Results 

Behavioral Assays: 

 Four conditions of larvae were studied in this experiment: control, .44 mM BPA (A), 4.4 

mM BPA (B), and 44 mM BPA (C) experimental conditions. Larval behavioral data was 

analyzed in regards to five behavioral paradigms: time spent in seeking behavior, number of 

peristaltic contractions, linear movement, angular movement, and degree of turns. Easily 

observable qualitative differences in larval behavior were also noted and will be detailed below.  

Time Spent in Seeking Behavior 

 Time spent in seeking behavior was assessed as the number of seconds that an individual 

larva spent exploring its environment within a 30 second testing window. The data collected 

from this behavioral assay is shown in Figure 1. The control group spent an average of 8.12 

seconds engaged in seeking behavior. The experimental groups A-C showed increased time 

spent in seeking behavior, with Group A spending an average of 9.24 seconds, Group B spending 

11.24 seconds, and Group C spending 15.28 seconds in seeking behavior within a 30 second 

testing window. Group C, with a 44 mM concentration of exposure of BPA was the only 

experimental group that varied significantly from control. From a one-way ANOVA analysis, the 

F ratio for seeking behavior was over 1.0, with a value of 4.5. The ANOVA analysis also showed 

a low P value, of 0.0053. The best test of significance was t-tests among the various 

experimental groups. Due to multiple comparisons among data, a Bonferroni correction was run, 

which indicated a significance value of 0.0167. P-values comparing each BPA treatment group 
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to the control are as follows: .44 mM (0.59), 4.4 mM (0.17), and 44 mM (0.006). Since the 44 

mM condition showed a t-test p-value, it is statistically significant. 

Number of Peristaltic Contractions 

 Number of peristaltic contractions was assessed as the number of times in a 30 second 

testing window that a wave of peristalsis moved from tail to head or vice versa. The control 

group exhibited a mean value of 6.64 contractions per 30 second testing window. The three 

experimental groups all showed significantly increased numbers of peristaltic contractions, with 

Experimental Condition A undergoing an average of 9.56 contractions, Experimental Condition 

B undergoing 10.6 contractions, and Experimental Condition C undergoing 12.36 contractions, 

all within a 30 second testing window (Figure 2). From one-way ANOVA analysis, the F ratio 

was higher than 1.0, with a value of 8.69, and the P value was 3.72 X 10-5. Due to the unequal 

variance among all conditions, a Bonferroni correction was run on the data, with a new 

significance threshold calculated to be 0.0167. The t-test p-values comparing each BPA 

treatment to the control were as follows: .44 mM (0.003), 4.4 mM (0.0001), and 44 mM (3.25 X 

10-5). All conditions had p-values lower than this value, indicating statistical significance.  

Linear Movement 

 Linear movement of each larva in a 30 second testing window was measured as the 

number of graph paper squares that each larva traversed in the testing window. The number of 

squares was measured using the graph paper placed under each clear petri dish arena. To 

distinguish this data from angular movement, the larva must move along one of the lines on the 

graph paper or without diverting its body orientation from initial body positioning. The control 

group moved an average of 0.02 graph paper squares in a 30 second testing window. The three 

experimental groups exhibited significant increases in the number of graph paper squares moved 
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within a 30 second testing window, with Experimental Condition A traversing 0.11 squares, 

Experimental Condition B traversing 0.26 squares, and Experimental Condition C traversing 

0.38 squares per 30 seconds (Figure 3). From one-way ANOVA analysis, the F ratio was 

calculated to be greater than 1.0, at a value of 5, and the P value was calculated to be 0.0029. The 

p-values comparing each BPA treatment to the control were as follows: .44 mM (0.0029), 4.4 

mM (0.003), and 44 mM (0.003). Due to unequal variance among conditions, a Bonferroni 

correction was run on the data, with a corrected significance threshold of 0.0167. All conditions 

had t-test p-values lower than this corrected significance threshold.  

Angular Movement 

 Angular movement for each larva was recorded as the number of times that each larva 

changed direction from initial orientation in a 30 second testing window. The control group 

turned an average of 1.48 times within the 30 second testing window. Experimental Condition A 

turned an average of 1.56 times, Experimental Condition B an average of 2.76 times, and 

Experimental Condition C an average of 2.84 times (Figure 4). From one-way ANOVA analysis, 

an F ratio was calculated over 1.0, with a value of 3.5, and a P value was calculated to be 0.012. 

The t-test p-values comparing each BPA treatment to control were as follows: .44 mM (0.89), 

4.4 mM (0.03), and 44 mM (0.04). Due to unequal variance among all conditions, a Bonferroni 

correction was run, which resulted in a corrected significance threshold of 0.0167. With the 

standard significance threshold of 0.05, the 4.4 mM and 44 mM conditions would have been 

statistically significant, but with the corrected value, none of the conditions showed statistically 

significant differences from the mean. 

Degree of Turn 



17 
 

 Degree of turn estimated as the degrees of each angular turn that each larva completed 

during a 30 second testing window. These turn degree values were estimated using initial body 

positioning as the point of reference and the graph paper underlying the clear petri dish arena as 

a helpful guide. Due to the varying numbers of turns within each group, the population sizes are 

not equal across the four groups. The control condition exhibited an average turn degree of 41.51 

degrees. Experimental Conditions A and B decreased in turn angle value from control and 

Experimental Condition C increased in turn angle value from control. Experimental Condition A 

showed an average turn angle of 28.26 degrees, Experimental condition B an angle of 29.79 

degrees, and Experimental Condition C an angle of 53.29 degrees (Figure 5). From a one-way 

ANOVA analysis, an F ratio was calculated over 1.0, with a value of 6.5, and a P value was 

calculated to be 0.0003. The t-test values are as follows: .44 mM (0.096), 4.4 mM (0.079), and 

44 mM (0.13). Due to unequal variance among the conditions, a Bonferroni correction was run, 

resulting in a corrected significance threshold of 0.0167. All conditions did not meet this 

threshold and did not exhibit statistical significance. 

Qualitative Observations 

 A few important qualitative observations were notated during the behavioral assays. For 

the control group, one larva came into contact with dried Drosophila food, potentially impacting 

its locomotion in the sticky dried substance. Another larva was markedly smaller than the other 

tested larvae, suggesting either small-for-development size or a younger than third-instar larva 

was tested. 

 For the .44 mM (A) group, one larva rolled over three times during the 30 second testing 

window, and one larva rolled over once during the recording. One larva lifted its body up once 

during the testing window, and one larva came into contact with a dried Drosophila food spot, 
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such as in the control condition. Two larvae had their rear or tail ends elevated during most of 

the 30 second recording. 

 For the 4.4 mM (B) group, three larvae had their rear or tail ends elevated during most of 

the recording window. One larva exhibited notable lengthwise stretching during most of the 

recording, and one larva moved its tail end considerably during most of the 30 second window. 

 For the 44 mM (C) group, the tested larvae were markedly smaller than the other 

conditions, indicating developmental abnormalities resulting in small-for-development sizes. 

One larva came into contact with a dried Drosophila food spot, much like the control and .44 

mM conditions. Two larvae had their rear or tail end elevated for one-third of the testing 

window, whereas another larvae exhibited this behavior for approximately one-half of the 

recording.  

Neuron Morphology 

Synaptic Area 

 Five specimens each of the control, .44 mM (A), and 4.4 mM (B) conditions were 

dissected, stained immunohistochemically, and mounted on slides. Pictures of these slides were 

taken on a fluorescent microscope under blue and white light. Due to challenges with mold and 

insufficient staining, images of GFP and brightfield were collected only for the control and 4.4 

mM BPA (B) conditions.  Qualitative abnormalities in neuron morphology were also be noted in 

slides. The 4.4 mM condition was selected to be the most useful dosage in determining the effect 

of BPA on neuron development and morphology due to the fact that lower dosages might not 

show any changes and the highest dosage was potentially lethal, often resulting in the deaths of 

the adult flies placed in these high dosage vials prior to breeding.  
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 The area of muscles 6 and 7, the length of the neuromuscular junction innervating this 

muscle, and the ratio of length:area were measured in the resulting slides. For the control flies 

(c360), the area was found to be 2.27 X 10e5 units on imageJ with a standard deviation of 2.4 X 

10e4, a neuromuscular junction length of 128 units and standard deviation of 1.4, and a 

length:area ratio of 5.63 X 10e-4 and a standard deviation of 5.35 X 10e-5. For the experimental 

condition (4.4 mM, or B, in dish 36444), the area was 2.09 X 10e5 units with a standard 

deviation of 6.48 X 10e4, a neuromuscular junction length of 208 units with a standard deviation 

of 33.42, and ratios of 9.94 X 10e-4 with a standard deviation of 2.19 X 10e-4.   

 Due to the shortage of data, it is difficult or near impossible to calculate averages from 

populations of one or two data points. To compare these values to the control condition, the area 

of the control condition area was 18,077.25 units greater than the experimental condition. The 

neuromuscular junction for the control condition had a neuromuscular length 80 units less than 

the experimental condition, which is multiple standard deviations from the mean. 

 In regards to the neuromuscular length to muscular area ratio, the control ratio was 4.31 

X 10e-4 units less than the experimental condition, which is a few standard deviations away from 

the mean. 

Qualitative Observations 

 As stated above, higher dosages of BPA often resulted in a higher rate of adult fly deaths 

prior to breeding. Higher dosages of BPA often appeared to be more susceptible to mold than 

control. Additionally, higher concentrations of BPA often resulted in lower fecundity and smaller 

larval size than control. It was also observed that the time between the genetic crosses being set 

up and the development of third instar progeny was greater for the experimental conditions with 

higher BPA dosages and this gap was largest for the 44 mM (C) experimental condition.  
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 Fluorescent images of the CNS for each condition were taken and analyzed for 

qualitative changes. From a qualitative analysis, the CNS of the control (c360) condition had 

fewer nerves emanating from the CNS than the experimental (36444) condition.  

III. Discussion 

Behavioral Assays 

 The potential effect of bisphenol-A on Drosophila melanogaster neurodevelopment was 

explored using five behavioral paradigms. These behaviors were chosen due to three factors: 1.) 

they are common larval behaviors that would be manageable to measure using video analysis, 2.) 

they are similar to and therefore allow comparisons to behaviors measured by Kaur, et. al in 

adult Drosophila, and 3.) Drosophila behaviors correlate to common behavioral abnormalities 

caused by neurodevelopmental disorders. It is recommended that, in future experiments, 

analytical software be used to better quantitatively assess Drosophila behavior during behavioral 

assays. 

 Neurodevelopmental disorders are characterized by hypersensitivity to sensory stimuli 

and a variety of behavioral abnormalities, including those of stereotyped and repetitive behaviors 

(Futoo et. al., 2014). The Kaur study demonstrated that Drosophila behavior provides a 

quantifiable model for BPA-mediated neurodevelopmental abnormalities in their finding that 

adult fly social interaction was abnormal in BPA treated flies, mimicking unusual social behavior 

exhibited in neurodevelopmental disorders such as autism. In general, behavioral changes in 

response to administration of a suspected neurotoxin offer the opportunity to explore the effects 

of this chemical on disorder etiology and may point toward a stronger than correlational 

relationship between exposure to substances such as BPA and neurodevelopment. 
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 Seeking, a common larval behavior that is not observed in adult flies due to differences 

in body shape and structure, is a correlate to altered sensory sensitivity characteristic of autism 

and other disorders of neurodevelopment. During seeking behavior, third-instar larvae use 

sensory structures located near their mouth combs and head end to explore their sensory 

environment as well as to direct movement. Only the highest dosage group of larvae showed a 

statistically significant increase in time spent in seeking behavior, this change in behavior can 

only be definitively attributed to high doses of BPA exposure. It is important to note that 

recordings were conducted in an open arena and in the presence of approximately two other 

larvae. The element of the open field assay could affect seeking behavior. Open field assays are 

often used as measures of anxiety in animal research. Within a petri dish arena, effects due to 

anxiety of a new environment were minimized due to a 30 second acclimation period prior to 

recording. However, larvae may still have been acclimating to the environmental change during 

the testing window, thereby affecting seeking behavior as they explore their new, open 

environment. Nonetheless, there is no reason to believe that the effect of this environment would 

be different between the control and treatment groups. 

Peristaltic may be analogous to repetitive and stereotyped motor behaviors that are a 

hallmark of some neurodevelopmental disorders. Since all experimental conditions exhibited a 

statistically significant increase in peristaltic contractions from control, it can be asserted that 

exposure to BPA causes an increase in repetitive behavior in Drosophila melanogaster. The 

number of peristaltic contractions, on average, also increased with increased BPA dosage. This 

increase may indicate that prenatal BPA exposure causes an increase in repetitive or stereotyped 

movements, with severity increasing with increasing BPA exposure concentration.  
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Linear movement distance provided a measure of how far each larval group traveled and 

moved around their environment within a 30 second testing window. Greater linear movement 

may indicate greater sensory exploration and/or differences in circuitry. Since each experimental 

condition exhibited a significant increase in the number of graph paper squares traversed in a 

linear fashion within the 30 second testing window, it can be asserted that exposure to BPA 

results in increased linear movement and sensory exploration.  

Number and degree of angular turns provided a measure of sensory exploration and 

locomotion, similarly to linear movement. Interpreted together, angular and linear movements 

give a measure of how much each larval condition moved about the petri dish arena in the given 

30 second testing window. Since none of the groups exhibited either statistically significant 

differences in number of angular turns or degree of angular turns, the null hypothesis would fail 

to be rejected and all differences would be due to chance. This is an important finding that 

coincides with the statistically significant linear movement data as well as the seeking behavior 

data, both of which pertain to exploratory sensory behavior. This failure to reject the null could 

indicate that abnormalities in sensory exploration and movement due to BPA exposure in 

Drosophila are either smaller in magnitude than that seen in the linear movement and seeking 

behavior paradigms, or that any differences in sensory exploratory behavior in response to BPA 

exposure occur in some behavioral patterns but not all. This could indicate a greater potency of 

BPA in the development of certain neuron types or locations within the CNS or PNS.  

Morphological Anatomy 

 Despite the shortage of concrete data from slides, it was possible to make conjectures 

from this sparse data as well as published studies. According to a 2015 study by Kimura, et. al., 

mice exposed to BPA during development were tested to determine the effect of BPA exposure 
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on neurons in the hippocampal area. Kimura, et. al. discovered that BPA exposure resulted in 

decreased length and number of branches for basal dendrites in the hippocampal neurons 

(Kimura, et. al., 2015). Additionally, a study by Ling, et. al. found that neuronal migration in the 

central nervous system was disrupted in a dose-dependent manner (Ling, et. al., 2016). These 

studies help facilitate the interpretation of the results of this study   

 Previous studies, such as those by Kimura et. al. and Ling et. al., have discovered that 

prenatal BPA exposure in rats results in a decrease in dendritic length and branching density. In 

other words, BPA in certain doses results in either decreased development of these receptive or 

synaptic structures or increased pruning of dendrites. Based on the finding that the length of the 

dendrites was diminished, one could predict that the prevailing effect of prenatal BPA exposure 

is halted development of these dendritic structures. With this assumption, the likely mechanism 

of BPA action on the development of dendrites is through decreasing the amount of 

synaptogenesis during neurodevelopment and diminishing the amount of signaling molecules 

involved in the creation of these synapses. BPA exposure may also impede the growth of these 

dendrites and prematurely stunt their lengthwise growth. The net result of this decreasing 

dendritic surface area would presumably be less communication between neurons and fewer 

connections between them, diminishing the coordination and initiation of certain nervous 

functions. From a basic standpoint, this could be linked to a lack of control over stereotyped 

movements and decreased development of social function, characteristic of NDDs. However, 

according to a 2014 study by the University of North Carolina School of Medicine, genetic 

evidence shows that increased dendritic growth, rather than decreased, may be an autism risk 

factor, further complicating the relationship between behavioral symptoms and neuronal 

development.  
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 These conflicting studies complicate the interpretation of the effect that BPA in particular 

has on neurodevelopment and what behavioral changes occur as a result of these effects. 

However, it is important to distinguish between the specifics of these studies to best come to 

conclusions on the effect of BPA on neuron morphology, if any. In the Kimura et. al. study, for 

example, the diminished dendritic branching and dendrite length was detected specifically in the 

hippocampus. This study focused motor neurons, specifically those involved in innervating 

muscles 6 and 7 of the Drosophila body wall. While it is plausible that chemical exposure has 

the same effect on all neurons, make conjectures about the expected outcome of this study based 

on the Kimura et. al. study may be inaccurate. Perhaps the greatest inaccuracy in using this study 

as a way to make predictions on BPA’s effect on motor nerves is the behavioral effects that 

would stem from both outcomes. Diminished neuron-to-muscle surface area ratios in the 

hippocampus would have greatly different effects on behavior and motor function – which were 

studied in the other part of this study – than would this ratio in motor neurons, which were the 

particular targets in this study. In order to make predictions on a potential decrease in dendrite 

surface area on the motor neurons specifically, one would have to differentiate any 

hippocampus-specific effects from the Kimura et. al. study from those that could be expected for 

other types of neurons.  

 The most important values in determining the effect of BPA on motor neuron 

development is by examining the neuromuscular junction length to muscle area ratios. It is 

difficult to compare since the ratios for the experimental GFP and brightfield junctions have 

standard deviations of 0. However, the experimental condition has larger length-to-area ratios 

than control conditions. This aligns more with the University of North Carolina School of 

Medicine findings if one interprets these results to mean that BPA exposure results in greater risk 
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for NDDs. In other words, BPA exposure causes an increase in dendritic length along the 

neuromuscular junction in comparison to control, yet due to the extremely small data pool, these 

results cannot be declared statistically significant. Longer dendrites along neuromuscular 

junctions could result in greater activation and firing of these muscles, resulting in the increased 

motor activity, such as seeking behavior, peristaltic contractions and linear movement, 

discovered in the behavioral analyses. The qualitative observation of the control CNS showing 

fewer nerves emanating from the brainstem than experimental also aligns with this discovery. 

IV. Conclusion 

In conclusion, the administration of BPA in the prenatal environment had significant impacts 

on some aspects of Drosophila behavior, as well as potentially significant impacts on motor 

nerve morphology. These findings are an interesting look into the way a ubiquitous neurotoxin 

acts upon the delicate process of neurodevelopment. The conclusions reached by this study 

support previous findings of BPAs effect on both behavior and anatomy in the developing 

organism as well as opens discussion as to future directions in  researching this chemical.  
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 Figure 6: The ratio of neuromuscular junction length to muscle area of muscles 6 and 7. The 

experimental condition (blue) had an average length:surface area ratio of 9.94 X 10e-4 with 

a standard deviation of 2.19 X 10e-4 . The control condition (green) has a ratio of 

length:area ratio of 5.63 X 10e-4 and a standard deviation of 5.35 X 10e-5. The control ratio 

was 4.31 X 10e-4 units less than the experimental condition, which is a few standard 

deviations away from the mean. 
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