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The Probabilistic Zeta Function

Bret Benesh

Abstract. This paper is a summary of results on the PG(s) function, which is

the reciprocal of the probabilistic zeta function for finite groups. This function

gives the probability that s randomly chosen elements generate a group G, and
information about the structure of the group G is embedded in it.

1. Introduction and History

Probabilistic group theory has been a growing field of mathematics for the
past couple of decades. While other papers have considered this field in greater
generality (see [Di], [Shal1], and [Shal2]), we will be focusing on the so-called
PG(s) function, which is the function that gives the probability that s randomly
chosen elements (with replacement) of a finite group G generate G.

The study of the PG(s) function began in 1936, when Philip Hall [H] created
the Eulerian function φG(s), defined to be the number of s-tuples (g1, . . . , gs) ∈ Gs
such that 〈g1, . . . , gs〉 = G. Hall showed that

φG(s) =
∑
H≤G

µG(H)|H|s,

where µG(H) is the Möbius function of the subgroup lattice ofG, defined inductively
as µG(G) = 1 and

∑
H≤K≤G

µG(K) = 0 if H < G.

After Hall, G.E. Wall [W] used a variation of the Eulerian function (the Euler-
ian polynomial) to prove the following theorem.

Theorem 1.1 (Wall’s Theorem). If G is a finite solvable group, then the num-
ber of maximal subgroups in G is less than |G|.

Wall also conjectured that this result holds for nonsolvable groups, and relevant
work has been done to that end in [LiSh1] and [LiPySh].

The most recent wave of interest in this field began in 1996, when Nigel Boston
[Bo] and Avinoam Mann [Ma] independently defined the PG(s) function described

1991 Mathematics Subject Classification. 20E34, 20F05, 20P05, 11M41.
Key words and phrases. group theory, zeta functions, Dirichlet series, subgroup lattices,

Moebius functions.
The author would like to thank Nigel Boston, Erika Damian, and the referee for their thought-

ful comments on the paper.

1



2 BRET BENESH

above. It is clear that PG(s) = φG(s)
|G|s , or

PG(s) =
∑
H≤G

µG(H)
|G : H|s

by using Hall’s result, and thus PG(s) is a Dirichlet series.
A word on the motivation behind this paper: while this topic is interesting in

its own right – the author wrote his thesis ([Be]) on a similar subject – it is also a
viable topic for undergraduate research. The basic idea is rather accessible, as only
some knowledge of groups and proportions are needed. While many of the ideas
below are too advanced for most undergraduates, several of them are not; Boston
made a conjecture about the derivative of PG(s), soon solved by Shareshian in
[Shar], that a calculus student could understand. Moreover, this topic lends itself
well to computational algebra packages like GAP [G] and Magma [BoCaPl]. In
fact, Boston’s 1996 paper references the use of Cayley, an early version of Magma.
Use of a computational algebra package could reduce the amount of background
knowledge needed for an undergraduate to begin research, as the student could use
simple programs to make conjectures about the PG(s) function.

2. The Basics of PG(s)

We begin with some basic facts about PG(s), which are largely from [Bo] and
[Ma]. First, several examples of PG(s), courtesy of Boston:

Cyclic Groups Cn: PCn(s) =
∏

p|n,p prime

(
1− 1

ps

)
The Alternating Group A4: PA4(s) = (1− 2

2s
)(1 +

2
2s

)(1− 1
3s

)

The Alternating Group A5: PA5(s) = 1− 5
5s
− 6

6s
− 10

10s
+

20
20s

+
60
30s
− 60

60s

Sn for a Simple Group S: PSn(s) =
n−1∏
i=0

(
PS(s)− i|Aut S|

|S|s

)
By way of motivation, the probability that two integers chosen at random are

relatively prime can be solved, rather non-rigorously, by∏
primes p

(1− 1
p2

) =
1
ζ(2)

=
6
π2

where ζ(s) is the Riemann zeta function. The left side of the above equation
resembles a product of PCp(s) functions evaluated at s = 2, and by way of analogy,
we can think of 1

PG(s) as a zeta function of G. We define 1
PG(s) to be the probabilistic

zeta function, and it is common to label results for PG(s) as results about the
probabilistic zeta function. While it initially only makes sense to consider natural
numbers s in the function PG(s), we will see below that we can gain insight into G
by expanding the domain to the complex numbers.

The ring of finite Dirichlet series with coefficients in Z is a unique factorization
domain, so factoring PG(s) will be of great interest. In fact, if N is a normal
subgroup of G, then we can factor

PG(s) = PG/N (s)PG,N (s),
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where PG,N (s) is given by the formula

PG,N (s) =
∑

H≤G,HN=G

µG(H)
|G : H|s

and interpreted as the conditional probability that a random s-tuple (g1, . . . , gs) of
Gs generates G given that 〈g1, . . . , gs, N〉 = G.

While one might conjecture that PG,N (s) = PN (s), this is only sometimes true
([Bo]). Consider the symmetric group S5 and its alternating group A5. It is true
that PS5(s) = PC2(s)PA5(s), so that PA5(s) = PS5,A5(s). However, we have

PS3(s) = (1− 1
2s

)(1− 3
3s

),

so PS3,C3(s) = 1− 3
3s 6= 1− 1

3s = PC3(s).
Recall that a chief series

1 = N0 ⊂ N1 ⊂ · · · ⊂ Nn = G

is a collection of normal subgroups Ni of G such that Ni+1/Ni is minimal normal
in G/Ni. Then the factorization PG(s) = PG/N (s)PG,N (s) can be used repeatedly
on a chief series to obtain factors of PG(s). Detomi and Lucchini [DeLu1] proved
that the factorization is independent of the choice of chief series (Gaschütz [Ga]
had previously proved this independence for solvable groups).

Another immediate result from the above factorization is that if PG(s) is irre-
ducible, then G is simple. The converse is not true, however. For instance,

PPSL(2,7)(s) = (1− 2
2s

)(1 +
2
2s

+
4
4s
− 14

7s
− 28

14s
+

21
21s
− 28

28s
+

42
42s

)

is reducible. In fact, PPSL(2,p)(s) is always reducible when p = 2t − 1 and t ≡ 3
(mod 4) ([DamLuMo]).

The Frattini subgroup Φ(G) of a group G is the intersection of all maximal
subgroups and equals the set of non-generators. If we have a normal subgroup N
contained in the Frattini subgroup, N contains only non-generators and we obtain
PG(s) = PG/N (s), since PG,N (s) = 1.

3. A Motivating Application

An important application of the PG(s) function is to help determine the min-
imal number of generators of a group H, denoted d(H). For example, let H be a
finite group such that d(H) = m+ 1 for some m, but all proper quotients Q of H
have the property that d(Q) ≤ m. Dalla Volta and Lucchini [DaLu] proved such
an H must be isomorphic to

Lt = {(l1, . . . , lt) ∈ Lt | l1 ≡ · · · ≡ lt (mod M)},

where L is a group with unique minimal normal subgroup M (the group L is called
a primitive monolithic group) and t is some integer.

The probabilistic zeta function pops up in determining what the integer t is.
In the same paper, Dalla Volta and Lucchini proved that if M is nonabelian, then

t = 1 +
|M |mPL(m)

|CAutL(L/M)|PL/M (m)
= 1 +

|M |m

|CAutL(L/M)|
PL,M (m).
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The group Lt is useful in contradiction proofs that consider minimal counterex-
amples, and therefore PL,M (s) can be useful in proving that minimal counterexam-
ples do not exist.

4. What PG(s) Says About G

As evidenced by the formula

PG(s) =
∑
H≤G

µG(H)
|G : H|s

,

PG(s) is tied to the subgroup structure of the group G. Because of this, one can
think of it as encoding information about the structure of G. This section focuses
on the information one can gain about a group G solely from knowing the PG(s)
function.

4.1. The primes dividing |G|. The first piece of data we can get from PG(s)
is that we can determine exactly which primes divide |G|. Damian and Lucchini
[DamLu1] proved that if PG(s) is written as

∑ an

ns , then:

Theorem 4.1. A prime p divides |G| if and only if p divides n for some n with
an 6= 0.

4.2. The coset poset. The second example is a case where it is advantageous
to view PG(s) as having a domain greater than the non-negative integers. Brown
and Bouc [Br] found that letting s = −1 gives interesting topological information
about the group G. The coset poset C(G) is the set of cosets xH (x ∈ G and
H < G) ordered by inclusion. We can use a simplicial complex ∆(C(G)) whose
simplices are the finite chains in C(G) to define the Euler characteristic χ(C(G)).
We may then define the reduced Euler characteristic χ̃(C(G)) = χ(C(G))− 1. Then
Bouc discovered:

Theorem 4.2. PG(−1) = −χ̃(C(G)).

Moreover, Brown defined an analogue of PG(s) for finite lattices (instead of
groups). Using this analogue, Brown shows that the entire PG(s) function, not
only its value at s = −1, can be recreated from a coset lattice defined from the
coset poset C(G).

4.3. Solvability, supersolvability, and nilpotency. Since PG(s) encodes
information about the structure of G, it is natural to wonder whether solvability
questions can be answered based solely on PG(s). Gaschütz [Ga] began working on
this question in the 1950s, and this question was completely answered by Detomi
and Lucchini [DeLu2] by the following theorem.

Theorem 4.3. G is solvable if and only if PG(s) is a product of factors of the
form (1− ci

(p
ni
i )s ), where pi is a prime.

A group is supersolvable if it has an invariant normal series where all factors are
cyclic. Detomi and Lucchini describe a condition for supersolvable groups.

Theorem 4.4. G is supersolvable if and only if PG(s) is a product of factors
of the form (1− ci

ps
i
) where each pi is prime and each ci is positive.
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This begs the question about such a result for nilpotent groups, but Gaschütz
demonstrated that no such result can exist. Indeed, the PG(s) functions for C2 ×
C3 × C3 (nilpotent) and for S3 × C3 (solvable, but not nilpotent) are both

(1− 1
2s

)(1− 1
3s

)(1− 3
3s

).

Therefore, it is impossible to determine nilpotency strictly from the PG(s)
function. However, Damian and Lucchini [DamLu2] did find the following result
on nilpotency. First, define

PG(H, s) =
∑

H≤K≤G

µG(K)
|G : K|s

.

Then:

Theorem 4.5. A group G is nilpotent if and only if PG(H, s) divides PG(s)
for all H ≤ G.

Finally, suppose that PG(s) =
∑ an

ns . Then Detomi and Lucchini [DeLu2]
proved that G is solvable if and only if anm = anam when (n,m) = 1. Damian and
Lucchini [DamLu1] were able to generalize this to p-solvable groups.

Theorem 4.6. Suppose PG(s) =
∑ an

ns . Then G is p-solvable if and only if
aprd = aprad whenever (p, d) = 1.

4.4. Simple groups. We now turn our attention to nonsolvable groups, the
results of which are found in [DamLu3] [DamLu4] [DamLuMo]. All three papers
work toward the same result, which culminates in the following theorem.

Theorem 4.7. Let G be a nonabelian finite simple group, let H be a finite
group with trivial Frattini subgroup, and assume PG(s) = PH(s).

(1) If G is an alternating group or a sporadic simple group, then G ∼= H.
(2) If G and H are groups of Lie type defined on a field of characteristic p,

then G ∼= H.

Finally, Nigel Boston [Bo] conjectured that P ′G(1) = 0 whenever G is simple
nonabelian. This conjecture was proved and generalized by John Shareshian [Shar]
in the following theorem.

Theorem 4.8. P ′G(1) = 0 unless G/Op(G) is cyclic for some prime p.

5. Computing PG(s)

While PG(s) can be tedious to compute by hand, computer algebra systems
such as Magma and GAP can quickly generate the formula and numerical values
for PG(s). The key to computing such a function for a group G is knowing its
subgroups, their indices, and the Möbius function. These can all be obtained from
Magma and GAP, although the subgroups are typically given as conjugacy classes.
Because of this, the length, or number of subgroups in a conjugacy class, of each
conjugacy class is also required.

The computer algebra system GAP offers a convenient shortcut for computing
examples of the PG(s) function: it has a command to compute the table of marks.
Briefly, the table of marks of a group is a matrix whose entries describe the number
of fixed points when a representative of one conjugacy class of subgroups of G acts
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on another via conjugation. Specifically, the Möbius function can be determined
from the table of marks, as described by Pfeiffer in [Pf].

GAP makes it very easy to access this information from the table of marks. In
fact, a program - in its entirety - that computes the numerical answer to P (G, s)
is:

P1:=function(G,s)
return EulerianFunctionByTom(TableOfMarks(G),s)/Order(G)^s;
end;

Creating a string that returns the formula is slightly more complicated, although
not much more so. Easy access to the Möbius function values, lengths, and orders
of the conjugacy classes of subgroups are gotten through the TableOfMarks(G)
command. Below is a very basic program for GAP that returns the formula as a
string:

P2:=function(G)
local i,tom,mob,ord,len,finalstring;
tom:=TableOfMarks(G);
mob:=MoebiusTom(tom).mu;
ord:=OrdersTom(tom);
len:=LengthsTom(tom);
finalstring:="";

for i in [1..Length(mob)] do
if IsBound(mob[i]) then
finalstring:=Concatenation(finalstring,"+",String(len[i]*mob[i]),
"/",String(Order(G)/ord[i]),"^s);
fi;
od;

return finalstring;
end;

This particular program was designed for simplicity, and the resulting string lacks
a certain beauty. Because of this, readers are implored to add additional code to
make a more readable output. Additionally, shortcuts can be made for efficiency,
such as inserting the line of code G:=G/FrattiniSubgroup(G); at the beginning of
the program to take advantage of the fact that PG(s) = PG/Φ(G)(s).

The logic is similar when using Magma; the main difference is that Magma does
not have a command to access the table of marks, and cannot immediately access the
Möbius function of a group. However, the command SubgroupLattice(G) contains
the lengths and orders of the subgroups ofG. Additionally, the SubgroupLattice(G)
command contains information about the containment of the subgroups, and one
can use SubgroupLattice(G) and the recursive definition of the Möbius function
to create a function that returns the Möbius value of a subgroup.
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6. Conjectures and Open Problems

We conclude with several unsolved conjectures and avenues for exploration.
(1) Shareshian [Shar] proved that P ′G(1) = 0 for simple nonabelian G. It is

also true that P ′′A6
(1) = 0. Describe all groups G such that P ′′G(1) = 0.

(2) Boston [Bo] observes that PSn
(s) = PAn

(s)PC2(s) for n = 2, 5, and 6, but
not for n = 3, 4, 7, 8, and 9. Determine for which n the above equation
holds.

(3) A generalization of the previous question: describe the nonabelian finite
simple groups S such that PS(s) = PAutS,S(s).

(4) If PG,N (s) 6= PN (s), describe the possibilities for PG,N (s). Detomi and
Lucchini [DeLu1] gave a partial answer to this challenge in 2003. Let L
be a finite group with unique minimal normal subgroup M . Then define
the following:
• P̃L,1(s) = PL,M (s)

• P̃L,i(s) = PL,M (s)− (1+qM +···+qi−2
M )γM

|M |s if i > 1
where γM = |CAutML/M |, qM = |EndLM | if M is abelian, and qM = 1
otherwise. Detomi and Lucchini proved that each factor of PG(s) is equal
to P̃L,i(s) for some primitive monolithic group L and positive integer i,
thereby reducing the problem to the study of monolithic groups. Deter-
mine the possible values of PL,M (s).

(5) Similar to the earlier result on simple groups, we may conjecture:

Conjecture 6.1. If G is a simple nonabelian finite group, H a finite
group with trivial Frattini subgroup, and PG(s) = PH(s), then G ∼= H.

This conjecture would follow if the next conjecture were true. First,
some notation. Let an(G) =

∑
n=|G:H|

µG(H), let bn(G, p) be an(G) if p 6 |n

and 0 otherwise, and let P (p)
G (s) =

∞∑
n=1

bn(G, p)
ns

. Then

Conjecture 6.2. Let G be a group of Lie type. Except for finitely
many exceptions, a prime p is the characteristic of the defining field if and
only if

∣∣∣P (p)
G (0)

∣∣∣ is a nontrivial p-power.

Patassini [Pat] has provided some evidence that this conjecture is
true.

(6) There have been many theorems of the form PG,N (s) > γ whenever
s ≥ f(G) for some constant γ and some function f of G (see [DamLuMo],
[DeLuMo], [LuMo], or [Pak], for instance). Improve one of these bounds,
or determine similar bounds for PG(s) (Pak [Pak] proves something sim-
ilar to this).
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[Br] K. S. Brown, The coset poset and probabilistic zeta function, J. Algebra, 225 (2000), 989-

1012.

[DaLu] F. Dalla Volta and A. Lucchini, Finite groups that need more generators than any proper
quotient, J. Austral. Math. Soc. Ser. A 64 (1998), no. 11, 82-91.

[DaLuFo1] F. Dalla Volta, A. Lucchini and F. Morini, On the probability of generating a minimal

d-generated group, J. Austral. Math. Soc. 71 (2001), no. 11, 177-185.
[DaLuFo2] F. Dalla Volta, A. Lucchini and F. Morini, Some remarks on the probability of gener-

ating an almost simple group, Glasgow Math. J. 45 (2003), 281-291.

[DamLu1] E. Damian and A. Lucchini, Finite groups with p-multiplicative probabilistic zeta func-
tion, Communications in Algebra 35 (2007), no. 11, 3451-3472.

[DamLu2] E. Damian and A. Lucchini, A probabilistic generalization of subnormality, Journal of
Algebra and its Applications, 4 No. 3 (2005), 313-323.

[DamLu3] E. Damian and A. Lucchini, The probabilistic zeta function of finite simple groups,

Journal of Algebra, 313 (2007), 957-971.
[DamLu4] E. Damian and A. Lucchini, Recognizing the alternating groups from their probabilistic

zeta function, Glasgow Math. J. (2004) 46 595-599.

[DamLuMo] E. Damian, A. Lucchini and F. Morini, Some properties of the probabilistic zeta
function of finite simple groups, Pacific. J. Math., 215 (2004), 3-14.

[DeLu1] E. Detomi and A. Lucchini, Crowns and factorization of the probabilistic zeta function

of a finite group, J Algebra, 265 (2003), 651-668
[DeLu2] E. Detomi and A. Lucchini, Recognizing soluble groups from their probabilistic zeta func-

tion, Bull. London Math. Soc., 35 (2003), 659-664

[DeLuMo] E. Detomi, A. Lucchini and F. Morini, How many elements are needed to generate a
finite group with good probability?, Israel J. Math 132 (2002) 29-44

[Di] J. Dixon, Probabilistic group theory, C.R. Math. Rep. Acad.. Sci. Canada 24 (2002) 1-15.
[G] The GAP group, GAP - Groups, Algorithms and Programming, Version 4.4.12

(http://www.gap-system.org).
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