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Abstract

Partial Differential Equations have important uses in many fields
including physics and engineering. Due to their importance, heavy
research has been done to solve these problems efficiently and ef-
fectively. However, some PDEs are still challenging to solve using
classical methods, often due to the dimensionality of the problem.
In recent years, it has been thought that neural networks may be
able to solve these problems effectively. This research assesses how
well a neural network can estimate a simple example PDE, the heat
equation, as well as the practicality of doing so.
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1 Introduction

Partial Differential Equations (PDEs) have many important appli-
cations in scientific fields including physics, engineering, finance and
more. They are often used to model physical phenomena such as the
diffusion of heat or sound, the flow of fluids, electrodynamics, and
other physical problems [9]. Due to the importance of PDEs, there
already exists a number of methods to approximate the solutions to
these problems. However, many of these methods become less prac-
tical as the dimensionality of the problems increase. Due to this,
there is still a large amount of research being done on additional
methods for solving PDEs. One research area that has received a
lot of attention lately is the use of nerual networks for solving PDEs.
Neural networks are an important sector of machine learning and
are modeled after the human brain. Neural networks are promising
for approximating the solutions of PDEs due to their strong function
approximation capabilities [8].

There are many important PDEs, but this paper will focus on
the heat equation. The heat equation describes the temperature
distribution and diffusion of heat within an object. The majority
of my research dealt with the 1-dimensional heat equation because
data was most readily available in this dimension. Using the 1-
dimensional heat equation also serves as a starting point for assess-
ing the ability of neural networks to approximate the heat equation.
Because the 1-dimensional version is the most simple, it should also
be the easiest to model with a neural network, providing a base es-
timate for how well neural networks can approximate the solution
to PDEs.

This paper will report how accurately different types of neural
networks can estimate the heat equation. A variety of networks are
used, including standard artificial neural networks with a variety of
activation functions, a radial basis function network (RBF network),
and simple example of a ”physics inspired neural network”.

2 Gathering Training Data

In order to estimate the heat equation with neural networks, first you
must have sample solutions to use as training data. Fortunately, in
a series of lecture videos, University of Utah professor Kody Powell
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explained and showed how to solve the 1-Dimensional heat equation
numerically using python [10, 11]. By making some small modifi-
cations to his script, I was able to use this to generate the training
data I needed to train my model. Taking a closer look at the par-
ticular problem this script is solving, it is important to take note of
some characteristics. The script simulates the flow of heat in a wall
where heat only flows in the x direction. Throughout the different
simulations, some things are held constant: the wall is always 10
cm thick, and it is always split into 20 uniformly sized nodes (each
which will have its own unique temperature). Additionally, each
node begins the simulation with an initial temperature of zero de-
grees. The thermal diffusivity of the wall is held constant. The wall
has heat applied at both boundaries, and the temperature at either
boundary is held constant throughout a single simulation. Each
simulation was run for a total of 30 seconds, with the temperature
of each node updated every 0.1 seconds. So for this set of condi-
tions, the simulation finds a temperature at each of the 20 nodes at
every 0.1 second time step, up to 30 seconds. The neural network
will seek to do the same: give a prediction for the temperature of
a given node, at a given time, with the given initial boundary tem-
peratures. To gather training data, a number of simulations were
run, each with unique pairings of boundary temperatures.

3 Artificial Neural Networks

The first model used with the 1-Dimensional data was a basic Ar-
tificial Neural Network, also known as a Multi Layer Perceptron
Network (MLP Network). This model consists of a number of lay-
ers, each layer containing a number of nodes/neurons. The nodes
are densely interconnected between layers, that is, each node has a
connection from every node in the layer before it, and each node has
a connection to every node in the layer after. Figure 1 shows the
basic architecture of a neural network; this particular network has
three layers with eight nodes in the input and middle layers and one
node in the output layer.

Each node receives an input and produces an output. The type
of input depends on the layer, the first layer will receive the train-
ing/testing data. All other layers will receive input that is based on
the outputs of nodes in the previous layer. The values are passed
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Figure 1: A basic three layer neural network, with 8 nodes in the input and
hidden layers, and one node in the output layer.
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Figure 2: The ReLu activation function.

between layers through connections, where each incoming connec-
tion is associated with a weight [6]. Weights essentially control the
strength of the connection between two nodes [4]. Once the node
has received all inputs, it must calculate the value of the node and
determine whether the value meets the threshold for the neuron to
fire or be considered activated. The value is calculated as follows:

x = Σ(Weight ∗ Input) + bias (1)

The bias value is simply used to shift the result either positively
or negatively [3]. Since x has infinite possible values, an activation
function is applied to determine whether the neuron is activated or
not. There are many different functions used, I experimented with
three: ReLu, Sigmoid, and tanh.

ReLu is likely the most commonly used activation function. One
of ReLu’s greatest benefits is its simplicity; the equation is as follows
(Figure 2):

A(x) = max(0, x) (2)

If x is greater than zero, then there is no change to the value of
the neuron, and it is activated with its full value. If the value is
less than zero, then the neuron is not activated at all. This can also
provide benefit due to the concept of “Sparse Activation”. Since
such a large range of values (x <= 0) will cause a neuron to not be
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Figure 3: The Sigmoid activation function.

activated, layers further on in the network will receive less inputs
because the network will have less activated neurons. This sparse
activation results in lighter computations[14].

Sigmoid is another common activation function, and it acts very
differently compared to ReLu. While ReLu is uncapped in the pos-
itive direction, and bounded to zero for all negative inputs, sigmoid
is different in both of these cases. It has a strict range, (0, 1). The
formula is for the sigmoid function is this (Figure 3):

A(x) = 1/(1 + e−x) (3)

The tight range offers the advantage that activations will not “blow
up”, reducing the influence of the more extreme inputs.

Tanh is the final activation function I experimented with during
this phase of the project. It is very similar to the sigmoid function
(Figure 4):

A(x) = tanh(x) = 2/(1 + e−2x) − 1 (4)

Like sigmoid, the activation range is tightly bound, but tanh allows
for values between (-1, 1). Sigmoid and tanh both lack the charac-
teristic of ReLu where high positive values are represented at their
full intensity.
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Figure 4: The Tanh activation function.

After the basic construction of the network, it is not already
skilled at solving the heat equation or any other problems it is fed. In
fact, the weights within the model are often entirely random to begin
with [13]. For the network to learn, it must be trained. Training a
neural network requires significant access to training data; without
enough data, the network will likely not perform to its full potential.
In the simplest terms, the training process works like this: the model
is fed sample data, and makes a prediction for each example it is
given. The network is fed labeled data, meaning the correct result
is known, so after making its own prediction, it is compared to the
expected output. The model’s weights are then adjusted to improve
the model’s accuracy based on the new information it has “learned”.
More concretely, the training process is about minimizing a loss
function. A loss function indicates how well an algorithm performs
on a given data set. A high loss value signals poor performance, that
is, the predicted results are not close to the expected. By minimizing
this function, we can expect better predictions. There are a number
of loss functions, and they differ based on whether the algorithm
is performing a classification or regression task. Modeling the heat
equation is a regression task. In this case, a common loss function,
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and the one I used, is Mean Squared Error (MSE),

MSE = 1/n
n∑
i=1

(Yi − Ŷi)
2 (5)

where n is the number of data points, Yi is the observed values and
Ŷi is the predicted values.

This loss function is minimized by adjusting and optimizing the
weights of the neural network. This is done through a process called
back-propagation. While predictions are made by the neural net-
work in a feed-forward fashion, back-propagation is the opposite as
it begins in the final layer an propagates backwards. While mov-
ing backwards, the algorithm calculates how much the final output,
and therefore the error, has been affected by each weight, essentially
determining which weights are to blame for the error in the previ-
ous prediction. Then, new optimal weights are calculated and the
weights are updated to reflect this [1]. The weights are update con-
tinuously throughout the training phase as the network alternates
between feeding data forward and back-propagation.

After the training phase is complete, the weights of the neural
network are solidified and no longer change during the testing phase.
The purpose of the testing phase is to evaluate how accurate the
model is. This is accomplished by providing new data to the model,
so the testing samples must be kept separate from the training data
set. Again, the network’s predictions will be compared to the ex-
pected output. But this is done only with the goal of evaluating the
model’s accuracy, rather than as part of the process for improving
the model itself. Two common metrics that I used to evaluate the
accuracy are the same as the common loss functions, MSE and Mean
Average Error (MAE). MAE is even simpler than MSE, it is simply
the average distance between the predicted and expected values.

Testing how well my neural network estimated the heat equa-
tion involved these same steps. The first step involved generating
a dataset to use for training and testing. As noted earlier, I used
a slightly modified python script originally created by Kody Pow-
ell to generate the data. My dataset included 119600 data points
in the training set and had 29900 points in the testing set. Each
data point included the following features: HeatTempLeft, which
was the temperature of the heat applied to the left side of the rod,
HeatTempRight, which was the temperature of the heat applied to

10



the right side of the rod, InitialTemp, which was the initial temper-
ature of the non-boundary points, time, which indicates the time
within the simulation that a given point represents, TestPointPo-
sition which can be used to measure the distance of the given test
point to the leftmost point of the rod, and ResultingTemp, which is
the simulated temperature of the point at that position and time.
The resulting temp is what the network will be predicting.

To create the neural network, I used the Python library Tensor-
Flow as well as the Keras library which acts as an interface for the
TensorFlow library. The model I used in this portion of the exper-
iment was quite simple, it consisted of three explicit layers: two 64
node layers and a one node output layer; Keras also adds one im-
plicit layer that handles the shape of the input based on the number
of features in the dataset. I had the best results using sigmoid as
my activation function, but I also tested the network with ReLu and
tanh functions. The model used MSE as its loss function. The train-
ing time for the neural network was relatively short. On average,
it took about 80 seconds to complete an epoch. One epoch means
that the entire training set has been passed through the network
one time. Generally, the training phase lasts multiple epochs as the
model will be underfit if there are too few epochs. I typically had
my network complete 20 epochs during the training phase. Test-
ing follows the training phase. The model makes predictions for all
29900 data points in the test set and then the testing metrics are
calculated. These metrics are the primary way to evaluate how well
the neural network can estimate the 1-dimensional heat equation.
The main model, which had the three layers described above, and
used the sigmoid function as its activation function performed best.
Over the course of five complete runs, the neural network had an
average MAE of 0.24494. For context, the actual temperatures var-
ied between 0 and 45 degrees, so for any given point in time and
any given point within the wall, the model was an average of only
0.24494 degrees from the expected temperature. The average MSE
throughout the five runs was only 0.12984. The other models using
different activation functions performed well but had worse results
by a noticeable margin. Using ReLu, the model had an MAE of
0.35638 and an MSE of 0.31504. The model using tanh as the acti-
vation function had an average MAE of 0.4359 and an average MSE
of 0.3450. The results from each activation function’s five runs are
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shown in figure 5. These results were somewhat surprising to me.
When I was doing my initial building and testing of the network,
I had used ReLu by default, as it is often considered to perform
consistently well, more so than the other two activation functions
used. It was not until much later when I began to experiment with
the construction of the model that I tried using the sigmoid func-
tion for the activation and realized it performed much better on this
particular problem.

I also experimented with adding layers to the model, as well as
expanding layers by adding more nodes to them, but these changes
led to marginal decreases in accuracy and also increased the training
and testing times of the model. From these experiments, sigmoid
using more neurons per layer performed best, but it was still not
as good as the 64-neuron original. With 128 neurons per layer, the
neural network averaged an MAE of 0.27106 and an MSE of 0.16332,
so it still performed significantly better than the other activation
functions (Figure 6).
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Figure 5: The MAE and MSE of each activation function througout 5 runs.
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Figure 6: Updated MAE chart to include 128 node Sigmoid model

Another method for evaluating these results were graphs and vi-
sualizations. I used matplotlib to create a graph that represented
the changes in heat over time. Both the expected and predicted
values were plotted so it was easy to compare the visual differences
between the lists. The visualizations also gave context to the error
results, and illustrated where and when the biggest errors occurred.
The first tenths of the first second has by far the most error. Here
is what the graph looks like at very beginning. Red is used to show
the neural network’s predictions, and blue is the expected results.
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Here, there is some very clear error, especially at either end of
the wall. By 0.3 seconds, the results begin to look a little better:
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At one second, the lines begin to match up closely:
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And from this point forward, the predicted results and the actual
results are typically a near match, here it is again at 15 seconds
where the lines are almost indistinguishable from one another:
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The simulation lasts 30 seconds; this is what the graph looks like
at the very end:

18



Based on these visualizations, it was clear that the first second
was the weakest part of the network’s predictions. I decided to inves-
tigate that further, and found over the course of five more runs (with
the sigmoid based neural network) that during the first second, the
average MAE was 0.612688. During the rest of the simulation, 29
seconds, the average MAE was only 0.175114. This is a major dis-
crepancy, and something that would definitely need to be addressed
if future research took a similar approach.

4 Radial Basis Function Network

The second model used is called a radial basis function network
(RBF Network). They are capable of universal function approxima-
tion, just like MLP networks. The architecture of an RBF network
is also very similar to traditional neural networks; they consist of an
input layer, a hidden middle layer, and an output layer [16]. How-
ever, an RBF network has only one middle layer, while an MLP
network may have multiple. This simplicity means that RBF net-
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works typically have faster training speeds compared to other neu-
ral networks. Additionally, RBF networks operate differently than
MLP networks because they are based on clustering using ellipses
and circles rather than an MLP network which is based on linear
separation [16]. Within the hidden layer, each node uses a radial
basis function (RBF) as a nonlinear activation function [17]. The
RBF is denoted as φ(r). Each node also has a center due to the
clustering nature of RBF networks. Picking the center of each node
is typically the first part of the learning phase for a RBF network.
Two common ways to select RBF centers are to select them ran-
domly from the training sets, or more commonly, to use k-means
clustering to choose RBF centers. I tried both of these approaches.
Like traditional neural networks, there are also weights associated
with the connections between layers. The second part of the learning
phase focuses on optimizing the weights by minimizing the MSE.

There are many different functions that can be used as the RBF,
but the most common, and the one I used was the Gaussian function:

φ(r) = e−r
2/2σ2

(6)

where r > 0 is the distance from a data point x to a center c, and
σ is the standard deviation that is used to “control the smoothness
of the interpolating function” [17].

The implementation of a RBF network is not as straightforward
as the neural networks used in the previous section because it is
not a default option in the Keras library like the other models were.
Fortunately, a faculty member of the Czech Academy of Sciences,
Petra Vidnerová, had created a custom RBF keras layer which was
available on her GitHub [15]. Using this RBF layer, I was able to
test a basic RBF network on the same data used in the previous sec-
tion. The model I used had 64 nodes in the hidden layer. Due to the
high training speed attributed to RBF networks, the network com-
pleted 8000 epochs during the training phase. Those 8000 epochs
lasted about as long as 150 epochs for the models in the previous
section. I tested the RBF network with random centers as well as
with centers initialized by k-means. The results were unsurprising;
the model with centers initialized by k-means was more consistent
than the random centers models, but both were able to come close
to the sigmoid network’s accuracy during the best runs. The av-
erage MAE over the course of five runs for the RBF network with
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Figure 7: Updated MAE and MSE charts to include both types of versions of
the RBF networks.

random initial centers was 0.3171. The average MSE was 0.18364.
For the RBF network which used k-means to determine centers, the
average MAE was 0.29818 and the average MSE was 0.17128. Both
models compare favorably to ReLu and tanh, but they are not quite
as accurate as a sigmoid based model (Figure 7).

21



5 Physics-Informed Neural Networks

The final class of neural networks that I used was a little more ab-
stract. Physics-Informed Neural Networks (PINNs) are described
as “neural networks that are trained to solve supervised learning
tasks while respecting any given laws of physics” [12]. These models
are considered “data-efficient” because they are typically used with
problems where data acquisition is especially difficult. To fill in the
gaps caused by the lack of data, PINNs encode physical laws as prior
information which is then used to make better predictions [12]. This
concept is a very recent development, the first paper published on
physics informed neural networks or deep learning that I found was
published in late 2017 by Maziar Raissi, Paris Perdikaris, and George
Em Karniadakis. Their research and subsequent research has pri-
marily been focused on approximating nonlinear partial differential
equations in high dimensions. The “curse of dimensionality” has
caused there to be very few practical high-dimensional alrgorithms
which have been developed [5]. This has provided the opportunity
for deep learning algorithms to offer new and competitive methods
for approximating these PDEs, though it is made clear that the new
methodologies should not be considered replacements of classical
methods for solving PDEs [12]. Some example PDEs where neural
networks have the potential to provide the most benefit are brought
up by Jiequn Han, Arnulf Jentzen, and Weinan E. They include:
the Schrodinger equation, where the dimensionality is about three
times the number of electrons or quantum particles in the system,
the nonlinear Black-Scholes equation which is used for pricing finan-
cial derivatives where the dimensionality is based on the number
of financial assets under consideration, and the Hamilton-Jacobi-
Bellman equation, a game theory or resource allocation problem
where the dimensionality increases linearly based on the number of
actors or resources [5]. All this is to say that while these prob-
lems are very interesting, and the research done so far appears very
promising, it is not all that similar to my own as there are no di-
mensionality issues within my problem scope and there are already
practical and effective solutions to the heat equation. However, the
basic premise of a ”physics-informed” neural network was interest-
ing and I expected it to improve my results with a simple addition
to account for prior information and physical laws.
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Figure 8: With the ReLu model, many of the initial predictions are for temper-
atures below zero.

One of my earliest observations while testing the networks per-
formance on estimating the heat equation was the inaccuracy that
was most prevalent during the initial seconds of the simulation. The
simulated results I used as training and test data had the interior
points of the wall begin with initial temperatures of zero degrees
while the boundary points, to which the heat was applied, were
much higher. This effectively created a range of physically possi-
ble temperatures throughout the simulation that was between zero
and the highest applied temperature. However, the neural network
is not informed of this implicit range and would make predictions
which fell outside of the possible values. Over time as time as the
testing error was reduced through further improvements, this flaw
became less noticeable, especially when using sigmoid as the activa-
tion function. When using ReLu, it is still clearly visually apparent
(Figure 8). When using sigmoid, it is sometimes visible, but usually
to a much smaller degree, shown in figure 9.
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Figure 9: The sigmoid model sometimes made slightly negative initial predic-
tions, but to a much smaller degree.
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Figure 10: The ReLu model’s predictions again, this time with a range enforced.

To combat this error, which is especially jarring (particularly for
the ReLu network) because it is immediately noticeable as the pre-
dictions begin, I limited the range of guesses the neural network
could make to the physically possible range. This eliminated the
negative guesses and improves the initial visual of the networks pre-
dictions, if only by a small amount. Here is the graph for the ReLu
neural network again, this time with a range enforced (Figure 10).

Clearly, there are still major inaccuracies within the first fractions
of the first second, especially for the non-sigmoidal networks, as the
vast majority of the error still comes from predictions greater than
zero. Still, the negatives were the lowest hanging fruit, and still
provided some small improvement. For the model which used ReLu
as the activation function, the average MAE over five runs went
from 0.331084 using the original model, to 0.315684 when enforcing
the range. The predictions were made using the same training and
test set for both the standard and range-enforced results in a single
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run. While this improvement appears to be quite small, it is nearly
a five percent improvement in accuracy. These changes had less of
an impact on the sigmoid based network because this network did
not tend to predict negative values nearly as often or as extreme.
Still, there was a slight improvement. Using the predictions from the
same test set, the original network had an average MAE of 0.230186
over five runs and the updated version had an MAE of 0.224988.
This is only an improvement of just over two percent.

These are certainly not drastic improvements, but they can only
improve the results of the predictions, so there is really no down-
side to implementing them. This is probably the simplest possi-
ble “physics informed” idea that can be implemented, so it does
not show even a small amount of the potential improvement that
physics informed nerual networks can offer. This is only a small
example of how a basic concept can be useful and provide a small,
but guaranteed improvement.

6 Going Beyond the First Dimension

The results discussed up to this point have only dealt with the one
dimensional heat equation, but it is important to confirm that the
performance will hold up beyond the simplest problem. Fortunately,
I was again able to find an online resource to generate training data
for the two dimensional diffusion equation [2]. This is done in a
two dimensional plane where one rectangular area has heat applied
(Figure 11). Then over the course of the simulation, the heat diffuses
over the plane (Figure 12). It is important to note that in this
simulation, unlike the one dimensional data, the area that is initially
heated is not held to that temperature throughout the simulation.
Instead, it is initially heated and then diffuses over time.

Neural networks using the sigmoid function proved again to pro-
vide the best approximation for this problem. The training set gen-
erated consisted of 323200 samples and took about 50 minutes to
complete 15 epochs of training. The test set had 80800 samples. For
the 2-dimensional problem, the network predicted the temperature
of a point given by its x and y coordinates, the time, the initial
temperature of the applied heat, along with some other constants.
Like the 1-dimensional experiment, the range of expected temper-
atures ranged between 0 and 45 degrees so the scale of the loss
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Figure 11: The initial state of the 2D simulation.

27



Figure 12: The state of the 2D simulation after beginning the diffusion.

28



functions should not be significantly different. The model used with
the 2-dimensional data was very similar to the network used with
the original 1-dimensional set. It was the same three layer model
with a 64 node input layer, a 64 node middle/hidden layer, and a
single node in the output layer. The main difference is that the data
inputted to the second model was shaped differently, containing a
few additional features.

The neural network performed well with the new data set. The
test set predictions had a MAE of 0.26268 and a MSE of 0.26008.
While this is slightly worse than the same metrics for the top per-
forming model on the 1-dimensional data set, the difference is small.
Assuming this trend continues, a neural network should continue to
be capable of estimating the heat equation at higher dimensions
with small margin of error.

7 Discussion of Results and Future Work

The results obtained show that neural networks can estimate the
heat equation with a reasonably small error. However, when looking
specifically at the heat equation, it would be a stretch to conclude
there is practical application for these networks. There already ex-
ists a number of ways to solve the heat equation, both quickly and
accurately. Given this, there is not much need for a neural network
which can approximate the PDE more slowly and with less accuracy.
To put this more concretely, the basic feed-forward neural network
took 1.1794 seconds to predict a full 30 second 1-dimensional sim-
ulation. For the simulation script that was used to generate data,
it took only 0.00876 seconds. Classic methods for solving the heat
equation are certainly not too slow in the lower dimensions. How-
ever, this is not to say speedup is not possible. In a recent Stanford
study, the authors solved the 2D Poisson equation using a deep neu-
ral network and had 2-3 times speedup in comparison to standard
iterative solvers [7]. This model is built on top of existing linear
solvers so one limitation to this approach is that it cannot be used
solve some of the nonlinear problems stated earlier. They do believe
the method can be extended to PDEs beyond the Poisson equation
in future work.

My results are more a demonstration of how proficient machine
learning can be on a challenging problem. Even with very simple
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networks, the predictions have a relatively small margin of error,
especially after the first few time steps. As my first experience
with neural networks, I did not stray far from the keras library
when creating the models; these are certainly not hand-crafted, high
performance neural networks. I think it would be interesting to see
just how far the error could be taken down by someone with more
experience using neural networks.

Additionally, this research did not venture into the deep learning
sector of machine learning as I was immediately met with reduced
accuracy after increasing the number of layers within the network. I
would be curious if deep learning could be applied in a more sophis-
ticated way to this problem and have serious performance boosts.
Again, applying these more advanced techniques to the heat equa-
tion and similarly simple PDEs may not have as many practical
uses, but they are still interesting problems to solve.

Where there is real potential for practical use is the problems that
are currently challenging to due dimensionality and non-linearity
concerns. Recent studies have already shown impressive results
for estimating the Burgers’ equation and the nonlinear Schrodinger
Equation, both problems which have proved to be difficult for clas-
sical methods to solve [12]. However, as seen in my own results,
there still exists the error and uncertainty associated with the predic-
tions of neural networks. Reducing or even eliminating this problem
would make neural networks a far more practical choice for solving
PDEs, and I expect this will continue to be studied in the near
future.

8 Contribution

The research detailed in this paper, while not presenting ground-
breaking results, is still a worthwhile contribution. For other under-
graduate students who may be interested in working on the same, or
a similar problem, this paper provides a good starting point. Within
the associated repository I have consolidated a number of useful ma-
terials, including the scripts I used to generate training, and simple
neural networks that approximate the solution to the heat equa-
tion with generally good results. Future students interested in this
research can expand on this research and focus on producing bet-
ter models without needing to spend as much time setting up the
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problem. Additionally, for more experienced researchers, the results
presented within this paper can be seen as a baseline for how well
simple neural networks can predict the solution for the heat equa-
tion. It should be expected that the models they are building will
perform better than mine.

9 Conclusion

Neural networks can be a powerful tool when used for the right
problems. Even further, these results show that neural networks
still perform well on problems where they are not entirely necessary.
Even though it is unlikely that anyone will be using neural networks
to estimate the 1 or 2-dimensional heat equations for any practical
purposes, the fact that the predictions are good enough to the point
of being almost indistinguishable to the expected results visually
(after the first second) only reaffirms the function approximation
capabilities of neural networks.

Within my own results it is clear that the standard neural net-
work using the sigmoid function as an activation function had the
best results. The RBF network also performed competitively, but
was not quite as consistent or as accurate as the best network.
Adding physics informed constraints to the model also was shown
to be effective in reducing the error, though only in a small way.

Given the amount of work done in the past five years on topics like
this, I expect much progress to be made in the near future. While
my research and results are certainly not cutting edge, it was an
interesting way to begin looking at and working with a challenging
problem.
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11 Source Code

Below is the Keras/TensorFlow implementation of the basic neural
network used to make predictions as well as the visualizations. Any
additional code, including the scripts to generate training and test-
ing data and the custom RBF layer can be found at https://github.com/Collegeville/Jordre-
Nathan-Work or as they are cited.

import t en so r f l ow as t f

import pandas as pd

import numpy as np

import matp lo t l i b . pyplot as p l t

from sk l e a rn import met r i c s

p r i n t (”Num GPUs Ava i l ab l e : ” , l en ( t f . c on f i g . exper imenta l . l i s t p h y s i c a l d e v i c e s ( ’GPU’ ) ) )

d a t a f i l e = open (” heatData . csv ” , ’ r ’ )

df = pd . r ead c sv ( d a t a f i l e , i nd ex c o l=None )

t a r g e t = df . pop ( ’ ResultingTemp ’ )

f u l l d a t a s e t = t f . data . Dataset . f r om t e n s o r s l i c e s ( ( df . va lues , t a r g e t . va lue s ) )

unshu f f l ed = f u l l d a t a s e t . batch (1 )

# s h u f f l e data s e t to ensure randomness o f t r a i n i n g and t e s t s e t s
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f u l l d a t a s e t = f u l l d a t a s e t . s h u f f l e ( l en ( df ) ) . batch (1 )

# take 20% of datase t to use as t e s t i n g data

t e s t d a t a s e t = f u l l d a t a s e t . take ( t f . data . exper imenta l . c a r d i n a l i t y ( f u l l d a t a s e t ) . numpy( ) ∗ . 2 )

# sk ip the 20% of data used f o r t e s t i n g and take the other 80% to use f o r t r a i n i n g

t r a i n d a t a s e t = f u l l d a t a s e t . sk ip ( t f . data . exper imenta l . c a r d i n a l i t y ( f u l l d a t a s e t ) . numpy( ) ∗ . 2 )

# can use t h i s opt ion i f c r e a t i n g a v i s u a l i z a t i o n

# must manually c r e a t e the t r a i n i n g and t e s t s e t s in t h i s case

# t r a i n d a t a s e t = f u l l d a t a s e t

de f get compi led mode l ( ) :

t f . ke ras . backend . s e t f l o a t x ( ’ f l o a t64 ’ )

model = t f . keras . Sequent i a l ( [

t f . ke ras . l a y e r s . Dense (64 , a c t i v a t i o n=”sigmoid ”) ,

t f . ke ras . l a y e r s . Dense (64 , a c t i v a t i o n=”sigmoid ”) ,

t f . ke ras . l a y e r s . Dense (1 )

] )

model . compi le ( opt imize r=t f . keras . op t im i z e r s .RMSprop ( 0 . 0 0 1 ) ,

l o s s =’mse ’ ,

met r i c s =[ ’mae ’ , ’mse ’ ] )

r e turn model

model = get compi led mode l ( )

#can use f o l l ow i ng l i n e to switch between cpu and gpu

with t f . dev i c e ( ’ cpu : 0 ’ ) :

model . f i t ( t r a i n da t a s e t , b a t ch s i z e =128 , epochs=20)

l o s s , mae , mse = model . eva luate ( t e s t d a t a s e t , verbose=2)

# To proper ly c r e a t e v i s u a l s without mixing data se t s ,

# you must manually c r e a t e the t r a i n i n g and t e s t i n g data s e t s

d a t a f i l e = open (” smallHeatData . csv ” , ’ r ’ )

df = pd . r ead c sv ( d a t a f i l e , i nd ex c o l=None )
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t a r g e t = df . pop ( ’ ResultingTemp ’ )

f u l l d a t a s e t = t f . data . Dataset . f r om t e n s o r s l i c e s ( ( df . va lues , t a r g e t . va lue s ) )

unshu f f l ed = f u l l d a t a s e t . batch (1 )

p r e d i c t i o n s = model . p r ed i c t ( unshu f f l ed )

x = np . l i n s p a c e ( ( . 1 / 20 ) /2 , .1 − ( .1/20)/2 , 20)

T = [ ]

N = [ ]

i = 0

time = 0 .0

whi l e i < l en ( p r e d i c t i o n s ) :

T = [ ]

N = [ ]

p l t . ion ( )

p l t . c l f ( )

targ = i + 20

whi l e i < targ :

T. append ( p r e d i c t i o n s [ i ] )

N. append ( t a r g e t [ i ] )

i += 1

p l t . f i g u r e (1 )

p l t . p l o t (x , T, ’ r ’ )

p l t . p l o t (x , N, ’b ’ )

p l t . ax i s ( [ 0 , . 1 , −5, 5 0 ] )

p l t . x l ab e l ( ’ Distance (m) ’ )

p l t . y l ab e l ( ’ Temperature (C) at time : ’ + s t r ( round ( time + 0 . 1 , 1 ) ) + ’ s ’ )

p l t . show ( )

p l t . pause ( 0 . 0 5 )

time += 0.1
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