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Contemporary Mathematics
Volume 470, 2008

A Classification of Certain Maximal Subgroups of

Alternating Groups

Bret Benesh

Abstract. This paper addresses an extension of Problem 12.82 of the Kou-
rovka notebook, which asks for all ordered pairs (n, m) such that the symmetric
group Sn embeds in Sm as a maximal subgroup. Problem 12.82 was answered
in a previous paper by the author and Benjamin Newton. In this paper, we
will consider the extension problem where we allow either or both of the groups
from the ordered pair to be an alternating group.

1. Introduction

While graduate students enrolled in a computational group theory course, the
author and Benjamin Newton encountered problem 12.82 of the Kourovka Note-
book [5]. This problem, submitted by V. I. Suschanskĭı, poses the question of
describing the set M of all pairs of positive integers (n, m) such that the symmet-
ric group Sm contains a maximal subgroup isomorphic to Sn. One obvious family
of such pairs is

{(n, n + 1) | n ≥ 1}.

The goal of the course was to provide an answer to this question with the help
of the computational group theory system Magma [1]. A review of the literature
indicated that a second family [2, 3] was known:

{

(n, m)

∣

∣

∣

∣

m =

(

n

k

)

, 2 ≤ k ≤ n/2− 1,

(

n − 2

k − 1

)

is odd

}

.

Magma was used to check the maximal subgroups of symmetric groups of
small degree, and it was determined that these two families did not constitute a
complete solution to Suschanskĭı’s question. The data generated by Magma led to
a discovery of a third family [6]:

{(

kr,
(kr)!

(r!)kk!

) ∣

∣

∣

∣

k, r > 1, k + r ≥ 6, (k, r) ∈ C

}

,

where C is defined to be the set of all ordered pairs of the form (2, 2d+1), (3, 2e+1),
or (2l, 2) for d ≥ 0, e ≥ 1, and l ≥ 2. It was proved in [6] that these are the only
three possible families, and all such ordered pairs lie in one of the three families. In
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this paper, we examine an extension of the question answered in the computational
group theory course: the case when one or both of the groups in Suschanskĭı’s
question is allowed to be an alternating group.

2. Preliminaries

We begin by stating the following three questions:

Q1: For what ordered pairs (n, m) does Sm have a maximal subgroup that is
isomorphic to An?

Q2: For what ordered pairs (n, m) does Am have a maximal subgroup that is
isomorphic to Sn?

Q3: For what ordered pairs (n, m) does Am have a maximal subgroup that is
isomorphic to An?

We can answer the first question immediately with the following easy proposition.

Proposition 2.1. Suppose that a symmetric group Sn has a subgroup H that

can be generated by a subset that only contains elements of odd order. Then H is

a subgroup of the alternating group An. �

Since any group isomorphic to an alternating group can be generated by the
images of 3-cycles, this proves that the only time Sm has a maximal subgroup
isomorphic to An is if n = m.

To answer the remaining two questions, we simply need to look at maximal
subgroups of the alternating group Am. We will answer these questions by finding
families of ordered pairs, and then showing that there can be no other ordered pairs
outside of these families. There will be seven families that compose the answer to
Q2, and these will be denoted F(S)i; the families that answer Q3 will be denoted
F(A)i.

We reviewie a few basic facts about the maximal subgroups of symmetric and
alternating groups. The following is well-known, and is not difficult to show.

Proposition 2.2. Let m > 2, Xm be either Sm or Am, and M be a maximal

subgroup of Xm. Then one of the following holds:

(a) M acts intransitively on {1, . . . , m} and M ∼= (Sk × Sm−k) ∩ Xm, where

k 6= m
2 .

(b) M acts transitively but imprimitively on {1, . . . , m}, M ∼= (Sr oSk)∩Xm,

where kr = m and k, r > 1.
(c) M acts primitively on {1, . . . , m}. �

The cases where the maximal subgroup does not act primitively are relatively
easy and can be dealt with immediately. Suppose that Am has a maximal sub-
group M that is isomorphic to Sn, and that M acts intransitively on {1, . . . , m}.
Then M has the structure from Proposition 2.2(a), and it is an easy exercise to see
that M must lie in the following family:

F(S)1 := {(n, n + 2) | n ≥ 3} .

The only case where Am has a maximal subgroup that is isomorphic to a
symmetric group Sn that acts transitively but imprimitively on {1, . . . , m} is when
(n, m) = (4, 6). This ordered pair is already in F(S)1, although that instance
represented an intransitive maximal subgroup isomorphic to S4.
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Now suppose that Am has a maximal subgroup M that is isomorphic to An,
and that M does not act transitively on {1, . . . , m}. Then M has the structure
from part (a) of Proposition 2.2, and it is again an easy exercise to see that M
must lie in the following family:

F(A)1 := {(n, n + 1) | n ≥ 3} .

Finally, note that an alternating group An for n ≥ 5 can never have the form
of the wreath product from part (b) of Proposition 2.2, since the wreath product
is not simple. For n < 5, we may check the cases individually to see that there are
no maximal subgroups of the form described in part (b) that answer Q3.

3. The primitive case

For the remainder of the paper, we will be considering a subgroup Xn of Am

such that Xn is isomorphic to Sn or An, and that acts primitively on {1, . . . , m}.
Then Xn is in family (f) from [4] (all of the families (a) through (f) are listed after
the following paragraph), and is therefore maximal in Am unless one of following
holds:

(1) n = 6 and Xn < M ≤ Aut(Sn), where M also embeds into Am.
(2) Xn

∼= An, and Xn is contained in the image of Sn in Am.
(3) The pair (n, m) is explicitly listed as an exception in [4].

It remains to determine exactly when Sn and An act primitively on a set of
cardinality m 6= n. To do this, we assume Xn acts primitively and we look at a
point stabilizer H in Xn. Because the action of Xn on {1, . . . , m} is primitive, H is
maximal in Xn, and m = |Xn : H |. The possibilities for H were enumerated in [4]:

(a) H ∼= (Sk × Sn−k) ∩ Xn where k 6= n
2 (the intransitive case).

(b) H ∼= (Sr o Sk) ∩ Xn where n = kr and k, r > 1 (the imprimitive case).
(c) H ∼= AGL(k, p) ∩ Xn where n = pk and p prime (the affine case).
(d) H ∼= (T k.(Out(T )×Sk)∩Xn where T is a nonabelian simple group, k ≥ 2,

and n = |T |k−1 (the diagonal case).
(e) H ∼= (Sr o Sk) ∩ Xn where n = rk , r ≥ 5, and k > 1 (the wreath case).
(f) T / H ≤ Aut(T ) with T a nonabelian simple group, T 6= An, and H acts

primitively on {1, . . . , n} (the almost simple case).

Moreover, [4] states that any subgroup of Xn of one of these forms is maximal,
save for a list of explicit exceptions. The action of Xn on the cosets of a maximal
subgroup yields a primitive action, and so we may simply consider the action of Xn

on subgroups of the six forms listed above. We now only need to determine the
values of n where Sn (respectively An) has a maximal subgroup of each type, taking
into account the exceptions listed in [4]. Once again, Magma was useful in working
with these exceptions.

Note that for cases (c)–(f), Sn embeds in Am rather than the more general Sm

by results from [6]. Therefore, if H is of one of these four types with H 6≤ An, then
the image of An will always be contained in the image of Sn in Am. In this case,
the image of An will never be maximal. Similarly, we may conclude in cases (a)
and (b) that Am has no maximal subgroup isomorphic to An if the image of Sn

embeds into An.
We will examine the six cases for H individually.
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3.1. The intransitive case. Suppose now that H is intransitive. If Xn
∼= Sn,

then H ∼= Sk × Sn−k (k 6= n/2), and m = |Sn : H | =
(

n

k

)

. The results from [2, 3]
and the exceptions from [4] tell us that we get the following maximal embeddings
of Sn into Am:

F(S)2 :=















(

n,

(

n

k

)

)

∣

∣

∣

∣

∣

∣

∣

∣

2 ≤ k ≤
n

2
− 1,

(

n − 2

k − 1

)

is even,
(

n,

(

n

k

))

6= (6, 15), (10, 120), (12, 495)















.

If Xn
∼= An, then H ∼= (Sk × Sn−k) ∩ An and m = |An : H | =

(

n

k

)

. This will
not be maximal if the image of Sn is contained in Am, which leaves:

F(A)2 :=

{(

n,

(

n

k

)

) ∣

∣

∣

∣

∣

2 ≤ k ≤
n

2
− 1,

(

n − 2

k − 1

)

is odd

}

.

3.2. The imprimitive case. Suppose now that H is transitive but imprim-
itive. If Xn

∼= Sn, then H ∼= Sr o Sk (kr = n, and k, r > 1), and m = |Sn : H | =
(kr)!

(r!)kk!
. The results from [6] and the exceptions from [4] tell us that we get the

following maximal embeddings of Sn into Am:

F(S)3 :=

{(

kr,
(kr)!

(r!)kk!

) ∣

∣

∣

∣

k, r > 1, k + r ≥ 6, (k, r) 6∈ C

}

,

where C was defined in the introduction.
If Xn

∼= An, then H ∼= (Sr o Sk) ∩ An (kr = n, and k, r > 1), and

m = |An : H | =
(kr)!/2

(r!)kk!/2
=

(kr)!

(r!)kk!
.

This will not be maximal if the image of Sn is contained in Am, which leaves:

F(A)3 :=

{(

kr,
(kr)!

(r!)kk!

) ∣

∣

∣

∣

k, r > 1, k + r ≥ 6, (k, r) ∈ C

}

.

3.3. The affine case. Suppose now that H ∼= AGL(k, p) is affine; then n is
equal to pk. We will use the fact that the affine general linear group AGL(k, p) is
contained Apk iff p = 2.

If Xn
∼= Spk , then Spk only has a maximal affine subgroup if p is odd. There is

an infinite family of exceptions listed in [4] that occur when k = 1. This gives us
an infinite family:

F(S)4 :=
{(

pk, |Spk : AGL(k, p)|
) ∣

∣

∣
p is an odd prime, k > 1

}

.

If Xn
∼= Apk , then Xn will always be contained in the image of Spk unless

p = 2. Then Xn
∼= A2k embeds maximally in Am in the following conditions:

F(A)4 :=
{(

2k, |A2k : AGL(k, 2)|
) ∣

∣

∣
k ≥ 3

}

.

3.4. The diagonal case. Suppose now that H is diagonal, let T be a non-
abelian simple group, let k ≥ 2, and let D = T k.(Out(T ) × Sk). Then n = |T |k−1

and H ∼= D. We would like to be able to determine exactly when this H is con-
tained in An, but we only have an incomplete answer. It is known that H can lie
outside of An iff one of the following occurs:

(1) k = 2 and |{t ∈ T | t2 = 1}| ≡ 2 (mod 4).
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(2) k > 2, and Out(T ) contains an automorphism of T that acts of T k−1 via
an odd permutation.

If Xn
∼= S|T |k−1 and D contains an odd permutation of T k−1, then m = |Sn : D|.

This yields:

F(S)5 :=
{(

|T |k−1, |S|T |k−1 : D|
)
∣

∣

∣
k ≥ 2, D contains an odd permutation

}

.

If Xn
∼= A|T |k−1 and D contains only even permutations of T k−1, then m is

equal to |An : D|. This yields:

F(A)5 :=
{(

|T |k−1, |A|T |k−1 : D|
)
∣

∣

∣
k ≥ 2, D contains only even permutations

}

.

There were no exceptions in [4] for this case.

3.5. The wreath case. Suppose now that H ∼= Sr o Sk for n = rk, r ≥ 5,
k > 1. Then H always contains an odd permutation, and is never a subgroup of An;
then the image of An will always be contained in the image of Sn and will never be

maximal. We conclude that m = |Sn : H | = (rk)!
(r!)kk! , and we get the following two

families of ordered pairs:

F(S)6 :=

{

(

rk ,
(rk)!

(r!)kk!

)

∣

∣

∣

∣

∣

r ≥ 5, k > 1

}

F(A)6 := ∅.

There were no exceptions in [4] for this case.

3.6. The almost simple case. Suppose now that H is almost simple. We
would like to determine when H < An, but this is currently an intractable problem.
However, we can provide an implicit solution. Note that all simple groups are
generated by their elements of odd order. Then by Proposition 2.1, all simple groups
must be contained in alternating groups. Other almost simple groups, however, can
lie outside of the alternating group.

We now consider the exceptions from [4] for the almost simple case. Define the
four sets of exceptions as follows:

E(S) :=
{

(8, 120), (10, 2520), (22, |A24 : M24|)
}

X(A) :=

{

(7, 15), (9, 120), (11, 2520), (23, |A24 : M24|),

(175, |A176 : HS|), (275, |A276 : Co3|)

}

I(A)1 :=
{(

c − 1, |Ac : Sp(2d, 2)|
) ∣

∣

∣
c = 22d−1 ± 2d+1, d ≥ 3

}

I(A)2 :=
{(

2d − 1, |A2d : AGL(d, 2)|
)
∣

∣

∣
d ≥ 3

}

.

For convenience, define E(A) = X(A) ∪ I(A)1 ∪ I(A)2. Then we get two more
families of ordered pairs:

F(S)7 :=

{

(

n, |Sn : H |
)

∣

∣

∣

∣

H almost simple, primitive,
H 6≤ An,

(

n, |Sn : H |
)

/∈ E(S)

}

,

F(A)7 :=

{

(

n, |An : H |
)

∣

∣

∣

∣

H almost simple, primitive,
H ≤ An,

(

n, |An : H |
)

/∈ E(A)

}

.
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4. Conclusion

Save for the implicit definitions the diagonal and almost simple cases, we may
now explicitly answer the original three questions posed in this paper. These are
complete lists of solutions to Q2 and Q3 because we have exhausted every possible
type of maximal subgroup of symmetric groups and alternating groups by [4].

Theorem 4.1. The set of all ordered pairs (n, m) such that Sm has a maximal

subgroup that is isomorphic to An is exactly
{

(n, n)
∣

∣ n ≥ 2
}

.

Theorem 4.2. The set of all ordered pairs (n, m) such that Am has a maximal

subgroup that is isomorphic to Sn is exactly

7
⋃

i=1

F(S)i.

Theorem 4.3. The set of all ordered pairs (n, m) such that Am has a maximal

subgroup that is isomorphic to An is exactly

7
⋃

i=1

F(A)i.
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