Characterization of a *Saccharomyces cerevisiae* strain deleted for the RAD27 gene; a structural homolog of the RAD2 nucleotide excision repair gene

Michael S. Reagan
College of Saint Benedict/Saint John's University, mreagan@csbsju.edu

Wolfram Siede

Errol C. Friedberg

Follow this and additional works at: https://digitalcommons.csbsju.edu/biology_pubs

Part of the Biology Commons, and the Molecular Genetics Commons

Recommended Citation

*This is the peer reviewed version of the following article: Reagan MS, Pittenger C, Siede W, Friedberg EC. 1995. Characterization of a *Saccharomyces cerevisiae* strain deleted for the *RAD27* gene; a structural homolog of the *RAD2* nucleotide excision repair gene. *Journal of Cellular Biochemistry* 59 Suppl. 21A: 303, which has been published in final form at http://dx.doi.org/10.1002/jcb.240590607. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.*
We have constructed a strain of the yeast *Saccharomyces cerevisiae* which is deleted of the YKL510 open reading frame, initially identified in chromosome XI as a homolog of the RAD2 nucleotide excision repair gene (A. Jacquier, P. Legrain, and B. Dujon, Yeast 8:121-132, 1992). The mutant strain exhibits moderate sensitivity to ultraviolet (UV) light and severe sensitivity to the alkylating agents methylmethane sulfonate, methylnitrosourea, and N-methyl-N'-nitro-N-nitrosoguanidine, but is not sensitive to ionizing radiation. We have renamed the YKL510 open reading frame the RAD27 gene, in keeping with the accepted nomenclature for radiation-sensitive yeast mutants. Epistasis analysis indicates that the gene is in the RAD6 group of genes involved in DNA damage tolerance and mutagenesis. The mutant strain is temperature-sensitive, with the cells arresting uniformly as large-budded dumbell shaped cells containing a single nucleus with a 2N DNA content. The strain also exhibits increased plasmid loss and increased spontaneous mutagenesis, but is normal with respect to UV-induced mutagenesis. Transcript levels of the RAD27 gene are cell cycle regulated in a manner similar to that of several other genes whose products are known to be involved in DNA replication. These data are consistent with the Rad27 protein having a role in both DNA replication and DNA repair.