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Abstract

Problem 12.82 of the Kourovka Notebook asks for all ordered pairs (n,m) such that the symmetric
group Sn embeds in Sm as a maximal subgroup. One family of such pairs is obtained when m =
n + 1. Kalužnin and Klin [L.A. Kalužnin, M.H. Klin, Certain maximal subgroups of symmetric and
alternating groups, Math. Sb. 87 (1972) 91–121] and Halberstadt [E. Halberstadt, On certain maximal
subgroups of symmetric or alternating groups, Math. Z. 151 (1976) 117–125] provided an additional
infinite family. This paper answers the Kourovka question by producing a third infinite family of
ordered pairs and showing that no other pairs exist.
© 2005 Elsevier Inc. All rights reserved.

1. Introduction

In problem 12.82 of the Kourovka Notebook [5], V.I. Suschanskiı̆ poses the question of
describing the set M of all pairs of positive integers (n,m) such that the symmetric group
Sm contains a maximal subgroup isomorphic to Sn.
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One obvious family of such pairs is

{
(n,n + 1) | n � 1

}
,

which we will refer to as ‘Family 1.’
A second family can be constructed by considering the action of Sn on the set of subsets

of {1,2, . . . , n} of size k. If 1 � k < n, this gives an embedding of Sn into S(n
k)

. This method
was described by Kalužnin and Klin [3], along with certain conditions under which the
embedding is maximal. This work, together with refinements made by Halberstadt [2],
gives the following:

{
(n,m)

∣∣∣ m =
(

n

k

)
, 2 � k � n

2
− 1, and

(
n − 2

k − 1

)
is odd

}
⊆ M.

We shall refer to this subset of M as ‘Family 2.’
This paper gives a third infinite family of pairs in M, and shows that the three families

described yield all possible maximal embeddings of one symmetric group into a larger one.

2. Preliminaries

We begin by reviewing a few basic facts about the maximal subgroups of symmetric
groups. The following is well known, and is not difficult to show.

Proposition 2.1. Let n > 2, and let H be a maximal subgroup of the symmetric group Sn.

(a) If H is intransitive, then H ∼= Sa × Sb, where a and b are positive integers such that
a + b = n and a �= b.

(b) If H is transitive but imprimitive, then H ∼= Sr � Sk , where kr = n and k, r > 1.

It is also fairly easy to demonstrate that every subgroup of Sn matching one of the
descriptions in Proposition 2.1 is maximal.

Note that none of the subgroups of Sn described by Proposition 2.1 can be isomorphic
to a symmetric group except for intransitive subgroups of the form Sn−1 × S1. All such
subgroups appear in Family 1. It follows that any pairs in M not listed in Family 1 must
involve primitive embeddings of Sn into Sm.

So let us suppose that Sn acts primitively and faithfully on some set Ω . Then the stabi-
lizer H of a point in Ω is maximal in Sn. Proposition 2.1 may thus be used to analyze the
forms that H may take.

3. Families in M

We first consider the case where the maximal point stabilizer H is intransitive. We have
that H ∼= Sk × Sn−k , with k �= n/2. As such, H is precisely the stabilizer of a point in the
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action of Sn on k-element subsets of {1,2, . . . , n}. The actions considered in this case will
thus yield exactly the same set of pairs in M as those listed in Family 2.

We now turn to the situation where H is transitive but imprimitive. In this case, H is
isomorphic to Sr �Sk , with k, r > 1 and kr = n. The multiplicative action of Sn on the right
cosets of H is faithful exactly when coreSn(H) = 1. This fails to be true when (k, r) =
(2,2), but for all other k, r > 1, the action gives us a primitive embedding of Sn into
Sf (k,r), where we define

f (k, r) = |Sn : Sr � Sk| = (kr)!
(r!)kk! . (1)

In such situations, we let G(k,r) be the image of Sn under this embedding.
Excepting G(2,3) and G(3,2), the group G(k,r), where defined, is always a maximal sub-

group of either Sf (k,r) or Af (k,r). This is shown in the following theorem.

Theorem 3.1. Let k and r be integers such that k, r > 1, and k + r � 6. If G(k,r) � Af (k,r),
then G(k,r) is maximal in Af (k,r). If G(k,r) � Af (k,r), then G(k,r) is maximal in Sf (k,r).

Proof. We have that G(k,r) is a primitive subgroup of Sf (k,r). Furthermore, since k, r � 2
and k + r � 6, it follows that kr � 8 and that G(k,r)

∼= Skr is almost simple. Thus G(k,r)

is a subgroup of Sf (k,r) of type (f), as described in [4]. According to the main theorem
of that paper, if K is a subgroup of Sd of type (f) and L is a subgroup of Sd such that
K < L < KAd , then L is almost simple and either Soc(K) = Soc(L), or K is in an explicit
list of exceptional cases.

But G(k,r)
∼= Skr where kr > 6, so Soc(G(k,r)) ∼= Akr and G(k,r)

∼= Aut(Akr ). Thus no
almost simple group L exists such that G(k,r) < L and Soc(L) = Soc(G(k,r)).

It therefore remains only to verify that G(k,r) does not appear in the list of exceptional
cases in [4]. We need only consider groups of type (f) on this list which possess a socle
isomorphic to an alternating group of degree at least 8. The paper lists four infinite families
of such groups. Twelve additional groups of this description are also given. In the cases
where the socle of such a group is isomorphic to Akr for integers k and r satisfying the
hypotheses of the theorem, we may compare the degree of the non-maximal subgroup
listed to f (k, r), which is the degree of the symmetric group into which G(k,r) embeds. In
none of these cases do the two degrees coincide. We therefore have that G(k,r) is maximal
in G(k,r)Af (k,r), and the result follows. �

We now wish to determine the circumstances under which G(k,r) is contained in Af (k,r).
Succinct conditions for this occurrence can be found using a method similar to the one used
in [3, §6, Lemma 2].

For this purpose it will be useful to describe in a concrete manner the set Ω on which Sn

acts. For k, r > 1, with kr = n, let Ω be the set of partitions of {1,2, . . . , n} into k disjoint
subsets, each of cardinality r . If (k, r) �= (2,2), then Sn acts primitively and faithfully on
this set. Note that |Ω| = f (k, r), and the stabilizer in Sn of a point in Ω has exactly the
form under consideration, namely Sr � Sk .
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Consider an arbitrary transposition (α β) in Skr . The permutation of Ω induced by (α β)

may be expressed as the product of disjoint transpositions in Sf (k,r). Note that the number
of transpositions in this product is independent of our choice of α and β , and is a function
of k and r alone. Let c(k, r) be this function.

We may compute c(k, r) as one half of the number of elements of Ω which are not fixed
by the action of (α β). So c(k, r) is equal to the number of partitions of {1, . . . , n} in which
α and β appear in distinct parts. We have that

c(k, r) = 1

2

(
kr − 2

r − 1

)(
kr − r − 1

r − 1

)
f (k − 2, r) = (kr − 2)!r2k(k − 1)

2(r!)kk! . (2)

(For convenience, we define f (0, r) to be 1.)
As Skr is generated by its transpositions, G(k,r) is contained in Af (k,r) if and only c(k, r)

is even. An analysis of Eq. (2) yields the following.

Proposition 3.2. Let k and r be integers such that k, r > 1. Then c(k, r) is odd if and only
if k and r satisfy one of the following conditions:

(i) k = 2, and r = 2d + 1 for some integer d � 0.
(ii) k = 3 and r = 2d + 1 for some integer d � 1.

(iii) k � 4 is even, and r = 2.

Finally, combining this result with Theorem 3.1, we obtain a description of a family of
ordered pairs in M.

Corollary 3.3. Let k and r be integers such that k, r > 1 and k + r � 6. Suppose that k

and r also satisfy one of the conditions listed in Proposition 3.2. Then (kr, f (k, r)) ∈ M.

The set of pairs obtained from Corollary 3.3 will be referred to as ‘Family 3.’

4. The primitive case

In this section, we will prove that there are no ordered pairs in M outside of the three
families already described. We have already considered cases where the maximal point
stabilizer H is either intransitive or transitive but imprimitive. It remains to check the case
where H is primitive. The following lemma goes most of the way toward that end. Its proof
was supplied to the authors by Jan Saxl.

Lemma 4.1. Let n > 8, and suppose that H is a primitive subgroup of Sn that does not
contain An. Then the multiplicative action of Sn on the set of right cosets of H in Sn

involves only even permutations of this set.

Proof. Let m = |Sn : H |. Let x ∈ Sn be a transposition, and consider the permutation of
the m right cosets of H in Sn induced by x. This permutation is of order 2, so it may
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be represented as the product of disjoint transpositions in Sm. Let l be the number of
transpositions in this product. Since Sn is generated by its transpositions, it suffices to
show that l is even. We assume toward a contradiction that l is odd.

By a theorem of Jordan (see [1, Theorem 3.3A]), the subgroup H contains no transpo-
sitions, so for every g ∈ Sn, we have that xg /∈ H . Thus the permutation induced by x is
without fixed points. It follows that m = 2l.

Now take P ∈ Syl2(H) and T ∈ Syl2(Sn) such that P � T . Note that since l is odd,
|T : P | = 2. Let y ∈ T be a 4-cycle. Then y2 ∈ P ⊆ H is a permutation that fixes all but 4
points. By further results of Jordan (see [1, Theorem 3.3A, Example 3.3.1]), however, H

contains no such element. With this contradiction, the proof is complete. �
The main result now follows easily.

Theorem 4.2. The set M is the union of Family 1, Family 2, and Family 3.

Proof. As noted above, it remains only to consider the situation where Sn is acting faith-
fully on a set in such a way that the point stabilizer H of the action is maximal in Sn and
primitive. We must show that no such action yields a maximal embedding of Sn into S|Sn:H |
that is not already accounted for in Families 1, 2 and 3.

No maximal embeddings arise when An � H , so we may assume that this is not the
case. Thus when n > 8, we have by Lemma 4.1 that Sn embeds via this action into A|Sn:H |,
and does not embed maximally in S|Sn:H |.

For n � 8, we may examine all primitive maximal subgroups H of Sn individually. In
only one case does the action associated with H yield a maximal embedding, and this is
the primitive embedding of S5 into S6. But the pair (5,6) is already contained in Family 1,
and thus the proof is complete. �

As a final thought, it is interesting to note that when the action of Sn on the cosets of a
primitive maximal subgroup H gives an embedding of Sn into Am (where m = |Sn : H |),
the image of Sn is almost always maximal in Am. This can be seen by appealing to [4], as
in the proof of Theorem 3.1. The only exceptions occur when (n,m) ∈ {(7,120), (8,120),

(10,2520), (22, |A24 : M24|)}.
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