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Abstract

The influence of a vertex set S ⊆ V (G) is I(S) =
∑

v∈S(1 + deg(v)) =
∑

v∈S |N [v]| ,
which is the total amount of domination done by the vertices in S . The efficient domination
number F (G) of a graph G is equal to the maximum influence of a packing, that is, F (G)
is the maximum number of vertices one can dominate under the restriction that no vertex
gets dominated more than once.

In this paper, we consider the efficient domination number of some finite and infinite

knights chessboard graphs.

Keywords: efficient domination number,knights graphs

2000 Mathematics Subject Classification: 05C69

1. Introduction

Corresponding to the chess pieces queen, rook, bishop, knight, and king there are graphs
Qj,k, Rj,k,KNj,k , and KIj,k , each of order n = jk , where the vertex set corresponds
to the jk squares of a j-by-k board, and two vertices are adjacent if and only if the
given chess piece can go from one of the two vertices’ corresponding squares to the other
corresponding square in one move. In this paper we let vi,j or simply (i, j) denote
the vertex in the i th row and j th column. For example, in Q8,8 the vertex v3,2 =
(3, 2) has the closed neighborhood N [v3,2] = {v1,2, v2,2, v3,2, v4,2, . . . , v8,2, v3,1, v3,3, . . . ,
v3,8, v2,1, v4,3, v5,4, . . . , v8,7, v4,1, v2,3, v1,4} with cardinality |N [v3,2]| = 1 + deg(v3,2) = 24 .
As noted in Sinko and Slater [8], (upper and lower) independence, domination and irredun-
dance parameters for these graphs have been extensively studied. For an excellent survey
see Hedetniemi, Hedetniemi, and Reynolds [7]. Another wonderful exposition concerning
these parameters is given by Watkins in [11].

In [8], we introduced the study of influence parameters for chessboard graphs, namely,
efficient domination F , closed neighborhood order domination W , closed neighborhood
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order packing P , and redundance R , along with the linear programming versions of the
parameters, Ff = Wf and Pf = Rf . See, for example, Grinstead and Slater [5] and
Slater [9]. In this paper, we consider the efficient domination number of both finite and
infinite knights chessboard graphs.

Unlike the cases where one seeks, for example, a vertex set S in a graph G = (V,E) that
is a packing, independent set, dominating set, etc. and is interested in the cardinality of S ,
for the influence parameters F and R one is interested in how much domination is done by
S . Because each vertex v in S dominates precisely the vertices in its closed neighborhood
N [v] , the influence of S is defined in [5] to be I(S) =

∑
v∈S |N [v]| =

∑
v∈S(1 + deg(v)) ,

where deg(v) = |N(v)| , the cardinality of the open neighborhood of v .

A vertex set S is called a perfect code (see [4]) or an efficient domination set (see
[2, 3]) for a graph G if every vertex in G is dominated exactly once, that is, for each
v ∈ V (G) we have |N [v] ∩ S| = 1 . Not every graph G has an efficient dominating set,
and the efficient domination number of G (see [1, 5, 6]) equals the maximum number
of vertices that can be dominated by a vertex set S that does not dominate any vertex
more than once. Because S must not dominate any vertex more than once, any two
vertices u and v in S must have distance d(u, v) ≥ 3 , that is, S must be a packing.
Thus, the efficient domination number of a graph G is F (G) = max{I(S) : S is a
packing}= max{

∑
v∈S(1 + deg(v)) : S ⊆ V (G) and u, v ∈ S implies d(u, v) ≥ 3} .

An F (G) -set S is a set that is both a packing and I(S) = F (G) . For definitions of
parameters W , P , and R , one can see [8].

v v v v
vvvv

v v v v
vvvv

Figure 1: Two representations of KN4,4 .

Figure 1 illustrates the knights graph KN4,4 . Notice that each vertex corresponds
to one of the squares of a j-by-k rectangular board. We consider the coordinate neigh-
bors of a vertex v to be the vertices corresponding to the vertices/squares immedi-
ately to the left, right, below, or above the vertex/square corresponding to v . They
are not adjacent to v in KNj,k . The neighbors of va,b are {va±1,b±2} ∪ {va±2,b±1} .
We let v1,1 be the lower, left vertex/square. For the five-by-five knights graph
KN5,5 with S = {v1,1, v3,3, v3,4} , as illustrated in Figure 2, we have deg(v1,1) =
2, deg(v3,3) = 8 , and deg(v3,4) = 6 , and S is a packing with influence I(S) =
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(1 + 2) + (1 + 8) + (1 + 6) = 19 . One can show that (F (KN1,1), F (KN2,2), . . . ,
F (KN5,5)) = (1, 4, 7, 12, 19) . The 19 vertices dominated by the F (KN5,5) -set
{v1,1, v3,3, v3,4} are marked in Figure 2. A general formula for F (KNk,k) is, at this
time, unknown.

N X X
X X X X X
X X N X
X N X
X X X X

Figure 2: F (KN5,5) = 19

It is easy to see that KN1,k and KN2,k are efficiently dominatable (that is, each of
these graphs has an efficient dominating set).

Theorem 1.1. [8] F (KN1,k) = k and F (KN2,k) = 2k for all k ≥ 1 .

Note that KN3,3 consists of a cycle, C8 , and an isolated vertex corresponding to v2,2 ,
and F (KN3,3) = 7 < |V (KN3,3)| = 9 , so KN3,3 is not efficiently dominatable.

Theorem 1.2. For 3 ≤ j ≤ k , KNj,k is efficiently dominatable if and only if j = 3
and k = 4 .

Proof. Assume that 3 ≤ j ≤ k and KNj,k is efficiently dominated. Consider the lower
left corner vertex, (1,1). Take S to be an efficient dominating set.

Case 1. Assume that (1,1) is an element of S . Consider (2,1), the vertex immediately
to the right of (1,1). In the closed neighborhood of vertex (2,1), (1,3) and (4,2) can not
be in S because each of these two vertices has a common neighbor with (1,1). So, to
dominate (2,1) either (2,1) is an element of S or (3,3) is an element of S . If (2,1) is in
S , (1,2) cannot be dominated by an element of S . If (3,3) is in S , to dominate (2,2),
only (3,4) or (4,3) can be used since S is a packing. Without loss of generality, we can
assume that (3,4) is in S . But then, (3,1) cannot be dominated by the packing S .

Case 2. Assume that (1,1) is not an element of S . Without loss of generality, we can
assume that (1,1) is dominated by (2,3). Consider vertex (1,2). (1,2) cannot be in any
packing S that contains (2,3), so to dominate (1,2), either (3,3) must be in S or (2,4)
must be in S .

Assume that (3,3) is in S . If k ≥ 5 , (1,3) cannot be dominated by S . If k = 4 ,
(2,4) cannot be dominated since every vertex in its closed neighborhood has a common
neighbor with either (3,3) or (2,3).

Assume that (2,4) is an element of S . Consider the vertex (2,1). If j ≥ 4 , (2,1) cannot
be dominated. If j = 3 , then (2,1) can be dominated only by itself. So (2,1) is an element



196 Efficient Domination in Knights Graphs

of S and j = 3 . To dominate (2,2), (2,2) must also be in S . If k ≥ 5 , (2,5) cannot
be dominated. Thus k = 4 and S = {(2, 1), (2, 2), (2, 3), (2, 4)} . Note that S dominates
KN3,4 and is a packing. Thus, KNj,k is efficiently dominatable if and only if j = 3 and
k = 4 .

2. Infinite Knights Graphs

In this section, we consider infinite boards. Let S and T be subsets of Z , then
KNS,T is the knights board defined by S cross T . For the following discussion, let
Sj = {1, 2, . . . , j} . Thus, KNSj ,Sk

is equivalent to the finite knights graph KNj,k . Other
special cases include KNZ,Z , the infinite plane which for convenience we will denote as
KN∞,∞ , KNZ,Sj , or simply KN∞,j to denote the two-way infinite strip, KNN,Sj to
denote the one-way infinite strip opening to the right, KNN,N to denote the quarter plane
and KNZ,N to denote the half-plane opening upward. See [10] for a formal definition of
”percentage parameters” for infinite graphs. Informally, F%(G) is simply the maximum
possible percent of vertices dominatable by a packing. For example, F%(KN∞,3) = 5

6 as
depicted in Figure 3 and discussed in [8].

N N N N
N N

N N N N
X

X

X

X

X

X

X

X

X X X X

X X X X
X X

X X X X
X X

X

X

X X X X X

X X X X X

Figure 3: One pattern that achieves F%(KN∞,3) = 5
6 .

In Figure 4, we show a set of knight positions (knight locations indicated by an N) that
efficiently dominates 90% of the vertices in KN∞,∞ , that is, F%(KN∞,∞) ≥ 9

10 . In fact,
as the following theorem demonstrates, equality holds. The pattern of knight positions
involves using every other square in every fifth diagonal. Squares marked with an X (or
an N) are those that are dominated.

X X X X X X X N
X X N X X X X X
X X X X X N X X
N X X X X X X X
X X X X N X X X X
X X X X X X X N
X X N X X X X X
X X X X X N X X
N X X X X X X X

Figure 4: F%(KN∞,∞) = 9
10 . Note that the blocked region consists of one repetition of

the pattern.
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Theorem 2.1. F%(KN∞,∞) = 9
10 .

Proof. Every element of an F%(KN∞,∞) -set S for KN∞,∞ will dominate itself plus
its eight neighbors. We will show that for each element v of S , there is a vertex v′

uniquely associated with v such that v′ is undominated by S . For example, in Figure
4 each knight can be associated with its northeast coordinate neighbor. That is, a knight
located at (i, j) is associated with (i + 1, j + 1) . It follows that F%(KN∞,∞) ≤ 9

10 .

Consider an element v of S . Call this element N1 and, without loss of generality,
define its position as (0,0).

Case 1. Assume there is an N2 ∈ S within coordinate distance one of N1 , so that
N2 ∈ {(1, 0), (0, 1), (−1, 0), (0,−1)} . Since these four positions are symmetric with respect
to N1 , we can, without loss of generality, assume N2 is at (1,0). If (0,1) is undominated
by S , let v′ = (0, 1) . Otherwise, every element in N [(0, 1)] except (-2,2) dominates
a vertex also dominated by (0,0) or (1,0), so to dominate (0,1), (-2,2) must be in the
dominating set S . Similarly, to dominate (0,-1), (-2,-2) must be in the dominating set.
But, both of these points cannot be in a packing because (-3,0) is a common neighbor, so
either (0,1) or (0,-1) remains undominated. Similarly, to dominate (1,1), (3,2) must be in
the dominating set and to dominate (1,-1), (3,-2) must be in the dominating set. Again,
only one of these can be in a packing, so either (1,1) or (1,-1) remains undominated. Thus
we can associate an undominated vertex from the pair (0,1) and (0,-1) with N1 and the
undominated vertex from the pair (1,1) and (1,-1) with N2 .

Case 2. Assume no vertex within coordinate distance one of N1 is in
S and N2 ∈ S is within coordinate distance two of N1 . Note that
the only possible vertices available for N2 are in the set {(−2, 2), (2, 2),
(−2,−2), (2,−2)} . Since these four positions are symmetric with respect to N1 , we can,
without loss of generality, assume N2 =(-2,2). The only vertex in the closed neighborhood
of (1,0) that can be in a packing with N1 and N2 is (2,-2). We can assume N3 = (2,−2)
or else (1,0) can be associated with N1 .

To dominate (-1,-1), either N4 = (−3,−2) or N4 = (−2,−3) must be in set S .
Otherwise, (-1,-1) can be associated with N1 . Similarly, to dominate (1,1), either N5 =
(2, 3) or N5 = (3, 2) must be in set S . Otherwise, (1,1) can be associated with N1 .

Case 2A. Assume N4 and N5 are on opposite sides of the line y = x . That is, N4 is
at vertex (-2,-3) and N5 is at vertex (2,3) or N4 is at vertex (-3,2) and N5 is at (3,2).
Without loss of generality, assume N4 = (−2,−3) and N5 = (2, 3) are in S .

If (1,-1) is not dominated by S , then N1 can be associated with (1,-1). If (1,-1) is
dominated by S , (3,-2) must be in set S . Call this vertex N6 and call (-3,2) N7 where
N7 ∈ S and dominates (-1, 1). Using Case 1, N3 can be associated with (2,-3) and N6

can be associated with (3,-1). Similarly, N2 can be associated with (-2,3) and N7 can be
associated with (-3,1). Also, (2,2), (1,3), (-1,-3), and (-2,-2) cannot be dominated if S is
a packing. So, N5 can be associated with (1,3), N4 can be associated with (-1,-3), and
N1 can be associated with either (2,2) or (-2,-2).
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Now consider S such that (-3,2) is not in S irrespective of whether (3,-2) is an element
of S . Use N6 =(0,5) to dominate (-1,3) or else N2 can be associated with (-1,3) and N1

can be associated with (-1,1). Then, (-4,-1) is an element of S which dominates (-2,0) or
(-1,1) can be associated with N2 and (-2,0) can be associated with N1 . Call (-4,-1) N7 .
N8 =(-4,4) is in S or else N1 can be associated with (-1,1) and N2 can be associated
with (-2,3) and (-3,2). If N9 = (−5, 4) is in S , then by Case 1, N8 and N9 have unique
associations and N1 can be associated with (-1,1). Otherwise, N9 =(-2,7) dominates
(-3,5), N10 =(-6,6) dominates (-4,5) and N11 =(6,1) dominates (-5,3). The {N9, N10, N11}
pattern repeats, or as above, a Case 1 termination results in unique assignments allowing
v = (0, 0) to be uniquely associated with v′ = (−1, 1) . Alternatively, this chain continues
diagonally so that N1 is associated with (-1,1), N2 is associated with (-3,3), and so on.

Case 2B. Assume that N4 and N5 are on the same side of the line y = x . That is, N4

is at vertex (-2,-3) and N5 is at vertex (3,2) or N4 is at vertex (-3,-2) and N5 is at vertex
(2,3). Without loss of generality, N4 = (−2,−3) and N5 = (3, 2) . (4,-4) must be in S
to dominate (3,-2) or else N1 can be associated with (1,-1) and N3 can be associated
with (3,-2). Call (4,-4) N7 . Then, N8 =(5,0) must be in S to dominate (3,-1) or else N1

can be associated with (1,-1) and N3 can be associated with (3,-1). Similarly, N9 =(0,-5)
is in S or N1 can be associated with (1,-1) and N3 can be associated with (1,-3).
The {N3, N8, N9} pattern repeats at {N7, N10, N11} where N10 =(7,-2) and N11 =(2,-1).
Otherwise a Case 1 termination occurs resulting in unique assignments. Otherwise, this
chain continues diagonally so that N1 can be associated with (1,-1), N3 can be associated
with (3,-2), and so on.

In general, each knight in the chain is associated with the vertex diagonally up or
down depending on the direction of the chain itself. These chains continue indefinitely
unless two knights are placed coordinately adjacent resulting, effectively, in a termination.
Associations are made from this termination up (or down) the chain as needed. Thus, for
any element v of S , a unique assignment to an undominated vertex v′ can be made.
Therefore, F%(KN∞,∞) = 9

10 .

Using similar assignments, we can bound the efficient domination number of all two-way
infinite strip knights graphs KN∞,j , provided j ≥ 3 , indicating that these graphs are
not efficiently dominatable. However, as shown in [8], the two-way infinite strips KN∞,1

and KN∞,2 are efficiently dominatable. That is, F%(KN∞,1) = F%(KN∞,2) = 1 .

Theorem 2.2. F%(KN∞,j) ≤ 9
10 for j ≥ 3 .

Proof. As in the proof of Theorem 2.1, each knight’s location not within the three rows
or columns along an edge can be associated with an undominated square. Hence, it suffices
to show that each knight v within three rows or columns of the boundaries can also be
uniquely associated with one undominated vertex v′ . Let S denote an F% -set.

Consider knights’ locations within three rows or columns of a boundary. Without loss of
generality, we can consider only the top three rows and for convenience we will denote them
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row one, row two, and row three where row one is on the ’top’ boundary, row two is the
next row down, and row three is the third row from the top. If j = 3 , F%(KN∞,j) = 5

6
as shown in [8]. Assume then that j ≥ 4 .

Notice that at most two knights can be coordinately adjacent in a single row when
j ≥ 4 . With this in mind, we will first consider a single knight with no coordinately
adjacent neighbors and then two coordinately adjacent knights in three separate cases:
the knights are in row one, in row two, and finally, in row three.

Case 1. The knights to be considered are in row one. Assume there is a knight on the
boundary such that the knight has no coordinately adjacent neighbors as in Figure 5a. At
most one of the a ’s can be in a packing, so at most one vertex coordinately adjacent to N
in row one is dominated. Associate N with a horizontally adjacent undominated vertex.

N

a a

N1N2

b1 b2

a
5a 5b

Figure 5: Case 1. The knights are in row one.

Assume there are two coordinately adjacent knights in row one as in Figure 5b. Assume
b1 is not in S . Then a and the vertex immediately below N1 are undominated. Associate
a with N1 and the other vertex with N2 . By symmetry, if b2 is not in S , the vertex
immediately to the right of N2 and the vertex immediately below N2 are undominated.
Associate N2 with the vertex to the right and N1 with the vertex below N2 . Now assume
that both b1 and b2 are in S . Then the vertex two to the left of N1 and the vertex two
to the right of N2 are undominated. Associate N1 with the vertex to its left and N2

with the vertex to its right.

Case 2. The knights to be considered are in row two. Assume there is a knight in
the second row with no horizontal coordinately adjacent neighbors. Either the vertex
immediately above this knight is in S or it is undominated. If it is in S , the vertices
immediately to its right and left are undominated. Associate the original knight in row
two with the vertex to the right and the other to the left. Otherwise, associate the knight
in row two with the vertex immediately above it.

Assume there are two coordinately adjacent knights in row two. The vertices immedi-
ately above the knights are undominated. Associate each knight with the vertex above
it.

Case 3. The knights to be considered are in row three. Assume there is a knight, N , in
row three with no horizontal coordinately adjacent neighbors as in Figure 6a. The vertex
two above N in row one cannot be dominated.

Let A be the vertex immediately above N . If A is in S , the vertex above A is
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associated with A by case 2, and N can be associated with either vertex immediately to
the left or right of A .

Assume now that A is not in S . From case 1, a b2 can be associated with the vertex
two above N in row one under certain circumstances. Assume that neither b2 is in S .
N can now be uniquely associated with the vertex two above it. Furthermore, if at most
one bi (either b1 or b2 ) to the left side of Figure 6a and at most one bi to the right side
of Figure 6a are in S then, by case 1, each bi in S is associated with one of its horizontal
coordinate neighbors, and N can still be associated with the vertex two above it in row
one. Also note that at most one b2 is in S since the b2 ’s have A as a common neighbor.

It remains to define unique assignments when one b1, b2 pair is in S . Without loss of
generality, assume it is the pair on the left side of Figure 6a. Note that by case 1, b2 can
be associated with the square two above N . If j ≤ 5 , a is undominated. Associate a
with N. If j > 5 , consider c1 and c2 . If both c1 and c2 are not in S , a is undominated
and N can be associated with a .

If c1 is in S , consider the vertex, w immediately below N. Note that w cannot be
in S because it has a common neighbor with b1 which is, by assumption, an element of
S . So, either w is undominated or it is dominated by d . If it is dominated, consider
e . Either e is undominated or it is dominated by f . If f is not in S , associate N
with either w or e , whichever is undominated. It is easy to see that w will not have
an association from Theorem 2.1 with an interior knight. Being interior vertices, c1 and
d have associations defined in Theorem 2.1. Otherwise, f is an element of S and the
vertex diagonally up and to the right of N is undominated. Associate N with this vertex.
As interior vertices f , d , and c1 have associations as defined in Theorem 2.1.

If c2 is in S , w cannot be dominated. N can be associated with w and c2 can be
associated as in Theorem 2.1.

b1 b2 b2 b1

N
A

a

c1 c2

ew
d f

a

N1N2

b

6a

6b

Figure 6: Case 3. The knights are in row 3.

Assume there are two horizontal coordinately adjacent knights in row three as in Figure
6b. If a is not in S , associate N1 with the undominated vertex immediately above it.
If a is in S , associate N1 with the undominated vertex immediately below it. Similarly,
N2 can be associated with either the vertex immediately below or above depending on
whether b is or is not an element of S , respectively.
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Note that the above assignments are unique, and so every knight within three rows, or
columns, of a boundary can be uniquely associated with an undominated vertex. Thus,
F%(KN∞,j) ≤ 9

10 .

Using the previous results, it is easy to see that the same bound holds for one-way
infinite strips.

Corollary 2.3. F%(KNN,j) ≤ 9
10 for j ≥ 3 .

Proof. As in the previous results, each knight’s location not within three rows or columns
of an edge can be associated with an undominated vertex. Also, each knight’s location
within three rows or columns of an edge can be associated with an undominated vertex
when the knight is not in a corner location. Thus, it suffices to show that a knight in a
corner can be uniquely associated with an undominated square.

Without loss of generality, assume the knight is located in the lower left corner. Denote
this vertex (1,1) and call it N1 .

Consider (2,1) and assume it is undominated. If (2,2) is an element of S , by Theorem
2.2 (2,2) can be associated with (2,1). If (1,2) is not an element of S , it cannot be
dominated and thus N1 can be associated with it. If (1,2) is an element of S , consider
(4,2). Either (4,2) is undominated or it is dominated by (6,3). If (4,2) is not dominated,
N1 can be associated with (4,2). Otherwise, (4,2) is dominated by (6,3) and (5,3) cannot
be dominated. N1 can now be associated with (5,3). Notice that from Theorem 2.2, no
other knight was associated with (5,3).

Now suppose that (2,1) is dominated.

First, assume (2, 1) is an element of S . Call this vertex N2 . If (2,2) is an element
of S and j ≥ 4 , unique assignments can be made as is the above case. If j = 3 ,
consider (5,1) which can only be dominated by (7,2). If (7,2) is not an element of S ,
N1 can be associated with (5,1). Otherwise, (6,2) cannot be dominated and N1 can be
associated with (6,2). From Theorem 2.2, (6,2) could possibly have been associated with
(7,3). However, (7,3) and (2,1) have a common neighbor. Furthermore, the association of
N1 with (5,1) is also unique since all other possible associations from Theorem 2.2 with
(5,1) share a common neighbor with (2,1).

Now suppose that (2,2) is not an element of S . Note that (3,1) can only be dominated if
(4, 3) is in S . Otherwise, N2 can be associated with (3,1) and N1 can be associated with
(1, 2) . So, assume (4, 3) is an element of S and call this vertex N3 . Clearly, (1,2) and
(4,1) cannot be dominated. N1 can be associated with (1,2) and N2 can be associated
with (4,1). Notice that the only other knight location that could possibly be associated
with (4,1) would be a knight located at (6,1). However, (6,1) has the common neighbor
(4,2) with N2 . So the association is unique. This scenario is depicted in Figure 7.
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N1N2

N3

Figure 7: Case where (1, 2) ∈ S

Second, assume that (2,1) is not an element of S and is dominated. Then, (3,3) is an
element of S . Call this vertex N2 as in Figure 8. Either (3,4) is in S or else N1 can
be associated with (1,3) and N2 was previously associated by Theorem 2.2 with (3,4) or
(3,1) depending on whether (4,3) is an element of S or not, respectively. Notice that (1,5)
has a common neighbor with N1 and thus cannot be an element of S . This guarantees
that the association of N with (1,3) is unique. Now assume that (3, 4) is an element
of S . Call it N3 . Then, N1 can be associated with (3,1). N2 and N3 have unique
associations by Theorem 2.2. Also by Theorem 2.2, if (5, 1) is an element of S , it could
also be associated with (3,1). However, (5,1) and N1 share (3,2) as a common neighbor,
thus the association of N1 with (3,1) is unique.

N1

N2

N3

Figure 8: Case where (3, 3) ∈ S

As before, the unique association of every element of S with an undominated vertex
guarantees that F%(KNN,j) ≤ 9

10 .

Clearly, this result can be extended to include half planes and quarter planes as well.

Corollary 2.4. F%(KNN,N) ≤ 9
10) .

Corollary 2.5. F%(KNZ,N) ≤ 9
10 .

3. Finite Knights Graphs

As mentioned in the introduction, KN1,k and KN2,k are efficiently dominatable. Very
little is known about KN3,k . However, if k = 8t , then F (KN3,8t) = 20t . This value
is achieved by relying on the patterns that are used for the two-way infinite strip when
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KNj,k KNk,1 KNk,2 KN8t,3 KN3,3 KN3,4 KN4,4 KN5,5

F (KNj,k) k 2k 20t 7 12 12 19

Table 1: Known values of finite knights graphs.

j = 3 . Otherwise, there are few known values of F for finite knights graphs. Table 1
summarizes these.

Beyond this, only general upper and lower bounds are currently established. Drawing
upon the bound for infinite graphs, it is shown in the following theorem that the same 9

10
arises in finite cases. In fact, F (KNj,k) ≤ 9

10jk , provided the graph is sufficiently large.

Theorem 3.1. For 4 ≤ j ≤ k , F (KNj,k) ≤ 9
10jk

Proof. Assume there exist j and k such that F (KNj,k) > 9
10jk . That is, there are

more than 1
10jk knights in the F-set and there are less than 1

10jk undominated vertices in
the graph. So there is at least one element of the F-set such that there is no undominated
vertex with which it can be associated. Call this element of the F-set N. If N is in a
row or column within distance three of an edge, it can be uniquely associated with an
undominated vertex as shown in the proofs of Theorem 2.2 and Corollary 5. So N must be
in the interior portion of the graph. However, any such interior knight N can be associated
with an undominated vertex as illustrated in the proof of Theorem 2.1. Thus, no such j
and k exist and F (KNj,k) ≤ 9

10jk .

In large knights graphs, the interior will achieve the 90% shown in Theorem 2.1. To
construct a lower bound, we subtract the three rows and columns closest to the border
and consider only the interior. This is stated in the following theorem without proof.

Theorem 3.2. F (KNj,k) ≥ 9
10(jk − (6j + 6k − 36))
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