Validity and reliability of the pro-agility test for assessing ACL injury risk

Samantha Imholte
College of Saint Benedict/Saint John's University

Follow this and additional works at: https://digitalcommons.csbsju.edu/elce_cscday

Part of the Sports Sciences Commons

Recommended Citation
https://digitalcommons.csbsju.edu/elce_cscday/4

This Poster is brought to you for free and open access by DigitalCommons@CSB/SJU. It has been accepted for inclusion in Celebrating Scholarship & Creativity Day by an authorized administrator of DigitalCommons@CSB/SJU. For more information, please contact digitalcommons@csbsju.edu.
Validity and reliability of the pro-agility test for assessing ACL injury risk

Samantha Imholte & Dr. Mary Stenson
College of Saint Benedict/Saint John’s University Department of Exercise Science and Sport Studies

Introduction
- Landing Error Scoring System (LESS) assesses athletes’ neuromuscular control and injury risk.1
- Instances of the common behaviors of an anterior cruciate ligament (ACL) injury are prevalent in agility sports during cutting maneuvers and sidestepping.2
- The validity and reliability of an agility assessment that incorporates a cutting movement to predict ACL injury risk is unknown.
- If neuromuscular control and biomechanics of the pro-agility test are consistent and similar to the LESS, the averaged risk classifications of the pro-agility test should be highly correlated with the LESS.

Purpose
- To test the reliability and validity of the pro-agility test in assessing compensatory movement patterns associated with risk of knee injury.

Methods
- Thirty Division III female agility athletes (volleyball n = 7, basketball n = 9, soccer n = 14) performed three box drop vertical jump test trials (BDVJ) from a 30cm box and two trials of the pro-agility test.
- All BDVJ and pro-agility trials were videotaped. The BDVJ trial with the greatest vertical displacement was analyzed.
- LESS scores were calculated for the right leg and the LESS injury risk classifications were determined (0 = excellent, LESS ≤ 4), 1 = good (4 < LESS ≤ 5), 2 = moderate (5 < LESS ≤ 6), or 3 = poor (LESS > 6).2
- The pro-agility test consisted of nine scored kinematic assessments on knee flexion, knee valgus, tibia rotation, hip flexion, ground contact, center of gravity, inclination of the leg, and lateral trunk flexion. Error conditions were scored with a point and raised the athlete’s injury classification.
- Pro-agility scores were calculated for the right leg and injury risk classifications were determined [0 = excellent, 1 = good, 2 = moderate, or 3 = poor (≥ 3)].
- Participants completed a health history survey regarding serious musculoskeletal injuries occurring in the past four years.

Results
Comparison of Pro-Agility Risk Classifications

Table 1. Correlation between LESS and mean pro-agility risk classifications. Mean risk classifications for the pro-agility test were used in the Pearson Correlation analysis due to no differences between trials.

<table>
<thead>
<tr>
<th></th>
<th>LESS</th>
<th>PRO-AGILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Correlation (2-tailed)</td>
<td>1.189</td>
<td>.318</td>
</tr>
<tr>
<td>Sig.</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

Discussion
- The pro-agility test for poor biomechanics and risk classifications were determined by the researcher. Criteria was based on research related to poor movement patterns that increased risk of injury and interpreted by the researcher.
- Scales and criteria may not have incorporated enough measures relevant to poor neuromuscular control.
- Most injuries occur during single-legged tasks.4 Cutting movements involve high speeds that require large forces to decelerate and change directions generally on a single leg compared to the control of both legs to generate and absorb force in vertical jumps.5 Lack of correlation between the pro-agility and LESS could be due to different movement patterns associated with differences between cutting and jumping tasks.
- Future research could compare biomechanics of agility tests to other predictors of ACL injury, such as ground reaction forces.
- Limitations of this study could have been the surface of the floor, type of shoe, camera quality and cutting techniques.

Conclusion
- The pro-agility test has high test-retest reliability in assessing compensatory movements. Compared to the LESS assessment, the pro-agility scoring criterion used in the current study is not a valid test of knee injury risk assessment.

References

Acknowledgments
- I would like to thank the soccer, volleyball, and basketball players and coaches from the College of Saint Benedict for participating in our study. I would also like to thank Don Fischer for his guidance.

Figure 1: Comparison of the mean and standard deviation of pro-agility risk classification scores. No significant difference was found between the two pro-agility trials (p = .645).

Figure 2: Layout for the pro-agility test.

Figure 3: Incorrect pro-agility knee alignment

Figure 4: Correct pro-agility knee alignment

Figure 5: Incorrect LESS knee alignment

Figure 6: Correct LESS knee alignment

Table 1: Correlation between LESS and mean pro-agility risk classifications. Mean risk classifications for the pro-agility test were used in the Pearson Correlation analysis due to no differences between trials.