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PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIEIY 
Volume 84, Number 4, April 1982 

ULTRAFILTER LIMITS AND FINITELY ADDITIVE PROBABILITY 1 

THOMAS Q. SmLEY 

ABSTRACT. Ultrafilter limits provide the natural convergence notion for finitely 
additive probability. The finitely additive infinitely divisible laws are closed under 
ultrafilter limits. The characteristic function of any convolution of finitely additive 
probability measures is the product of their characteristic functions. 

Limits are generally sharp enough to provide results in countably additive 
probability. The weaker axiom of finite additivity needs the correspondingly stronger 
convergence of ultrafilter limits. See Bell and Slomson [2] for a readable introduction 
to model theory and ultrafilters. I am deeply appreciative for the many helpful 
comments of the referee and of my advisor, Professor Rohit Parikh. 

m is a finitely additive probability measure (abbreviated f.a.p.m.) iff (i) there is a 
Boolean subalgebra cffi of ~(R) so that m: cffi ~ [0, 1], (ii) R E cffi and m(R) = 1, and 
(iii) \fA, C E ~ if An C = 0, then m(A U C)= m(A) + m(C). 

Given a family { /;: i E I}, I =F 0, of functions from a set E into a compact 
Hausdorff space T and an ultrafilter U on I , the ultrafilter limit U-lim(/;: i E I) is 
the function f from E into T so that f( e) = t iff for all open neighborhoods H of t in 
T, {i E I: /;(e) E H} E U. It is well known (as in [3]) that the properties of 
compactness and Hausdorff are necessary and sufficient for ultrafilter limits. Since 
[0, 1] is a compact Hausdorff space, the ultrafilter limit of a f.a.p.m. is easily seen to 
be a f.a.p.m. 

Given a f.a.p .m. m, the characteristic function or Fourier Stieltjes transform 
(abbreviated ch.f.) of m is the function f from R into the closed unit disk of the 
complexes so that \ft E R, f(t) = fR e 11x dm(x). The following lemma shows that 
ultrafilter limits fit naturally with characteristic functions. 

LEMMA. Let {m1: i E I} be any nonempty set of f.a.p.m., {/;: i E I} be their 
corresponding ch.f., and U an ultrafilter on I. Then the ch.f. of U-1im(m 1: i E J) is 
U-lim(/;: i E /). 

PRooF. The integral of any bounded function like e11x is readily determined by 
approximations with simple functions. See Shorb [5]. Given J finite and m = U

lim(m1: i E 1), by finite additivity, (2. ~m(A): j E J) = U-lim(2. bjm1(Ai): j E J). 
It readily follows that U-lim(/;: i E J) must be the ch.f. of m. • 
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Much of the usefulness of ch.f. stems from Theorem 1 on convolutions, which 
correspond to the sums of independent random variables. Product measures, and so 
convolutions, are uniquely defined in countably additive probability. However, with 
finite additivity, convolutions are no longer unique. See Appling [1] for the defini
tion of product measures for f.a.p.m. A f.a.p.m. r is a convolution of the f.a.p.m. m 

and p iff there is an extension s of the product measure m X p to all subsets of 
R X R so that 'VA E Cfk) , r(A) = s{(x, y): x + y E A}. We will write r = m * p. 
Similarly, a k-fold convolution of m , r = m*k, is obtained from the extension of the 
product measure m X··· Xm. 

THEOREM 1. The ch.f. of any convolution of f. a. p.m. is the product of their ch.f. 

PROOF. Fubini's Theorem as extended by Appling [I] provides the key to this 
proof. Let f , g, and h be the ch.f. of m, p , and m * p, respectively, where m * p is 
any convolution of m and p. Then 

h(t) = J eirz dm * p(z) 
R 

= J eir(x+y) dm * p(x + y) = J ell<x+y) ds(x , y) 
R R X R 

=j eirxeiry dmXp(x,y)= J(Jeirx dm(x))eiry dp(y) 
R X R R R 

= jeilxdm(x) · J ei1Ydp(y) = f(t) · g(t). 
R R 

The fifth equality uses Appling's form of Fubini's Theorem. The fourth equality 
depends on the fact that eu<x+y) is the product of independent bounded functions 
eilx and eiry. • 

Because of the nonuniqueness of convolutions, it helps to strengthen the require
ments for infinitely divisible laws by using ultrafilter limits. So that the usual laws 
still qualify as infinitely divisible, the Boolean algebra Cf1) will henceforth be the Borel 
sets. The usual definition, as in Chung [4, Chapter 7], simply requires, 'Vn EN, a 
countably additive infinitely divisible law to be an n-fold convolution of countably 
additive probability measures. A f.a.p.m. m is infinitely divisible iff there are U, an 
ultrafilter on I ¥= 0, and countably additive probability measures m ,,; so that 
m, = U-lim(m,,;: i E I) and m = U-lim(m!~;: i E I) for each n EN. A ch.f. is 
infinitely divisible iff it is the ch.f. of an infinitely divisible law. All the usual 
countably additive laws are still infinitely divisible. Simply let I= {0} and m,,0 = 
m,, where m:" = min the usual definition. 

THEOREM 2. The infinitely divisible laws and their ch.f. are closed under ultrafilter 
limits. 

PROOF. Suppose for n E N, i E I and j E J that m j ,i,n are countably additive 
probabilities and ~ is an ultrafilter on I. Let mj be infinitely divisible with 
m j,n = £1-lim(mj.i,n: i E /)and mj = £1-lim(mj~i7n: i E /). Let !j be the ch.f. of mj 
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and Vbe an ultrafilter on J. The f.a.p.m. 

p = V-1im(m1:) E J) = V-tim(~-lim(m/t,: i E I):J E J) 

has the ch.f. V-lim( £: j E J) by the lemma. To show that p is infinitely divisible, it 
seems natural to use p, = V-I.im(~-lim(m1,;,,: i E /): j E J). However, the defini
tion of an infinitely divisible law only allows the use of one ultrafilter. For 
A C J X I , define A E W iff{): A1 E ~} E V, where A1 = {i E I: (j, i) E A}. W 
is then an ultrafilter on J X I, 

p = W-I.im(m/f:,: (J, i) E J X I) 
and 

p, = W-I.im(m1,1,,: (J, i) E J X I). 
Thus pis infinitely divisible. • 

It is an open question whether the countably additive infinitely divisible laws are 
dense among all infinitely divisible laws under ultrafilter limits. 
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