
College of Saint Benedict and Saint John's University College of Saint Benedict and Saint John's University 

DigitalCommons@CSB/SJU DigitalCommons@CSB/SJU 

Mathematics Student Work Mathematics 

2012 

Visualizing Chaos Visualizing Chaos 

Andrew Nicklawsky 

Follow this and additional works at: https://digitalcommons.csbsju.edu/math_students 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Nicklawsky, Andrew, "Visualizing Chaos" (2012). Mathematics Student Work. 1. 
https://digitalcommons.csbsju.edu/math_students/1 

This Thesis is brought to you for free and open access by DigitalCommons@CSB/SJU. It has been accepted for 
inclusion in Mathematics Student Work by an authorized administrator of DigitalCommons@CSB/SJU. For more 
information, please contact digitalcommons@csbsju.edu. 

https://digitalcommons.csbsju.edu/
https://digitalcommons.csbsju.edu/math_students
https://digitalcommons.csbsju.edu/math
https://digitalcommons.csbsju.edu/math_students?utm_source=digitalcommons.csbsju.edu%2Fmath_students%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.csbsju.edu%2Fmath_students%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.csbsju.edu/math_students/1?utm_source=digitalcommons.csbsju.edu%2Fmath_students%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@csbsju.edu


1 

 

 

 

Visualizing Chaos 

 

Andrew Nicklawsky 

Honors Thesis 

 

Department of Numerical Computation 

College of St. Benedict’s/St. John’s University 

 

 

Dr. Robert Hesse, Department of Mathematics 

Dr. Mike Heroux, Department of Computer Science 

Dr. Thomas Sibley, Department of Mathematics 

 

April 2012 



2 

 

 

Project Advisor 

 

Department Chair 

 

Department Reader 

 

Department Reader 

 

Director, Honors Thesis Program 

X
Dr. Robert Hesse

Associate Professor of Mathematics

X
Dr. Lynn Ziegler

Professor of Computer Science

X
Dr. Mike Heroux

Scientist in Residence

X
Dr. Thomas Sibley

Professor of Mathematics

X
Dr. Richard White

Professor of Chemistry



3 

 

Introduction 

 An important piece of information when dealing with a polynomial in the complex 

domain is its roots, the value or values of x for a given function f such that f(x) = 0. One uses 

iterative root finding methods, such as Newton’s method, to discover an approximate value when 

these values cannot be explicitly solved. This iterative process can be graphically represented for 

complex-valued functions and has been achieved with relative ease on a 2-dimensional plane. 

The resulting image shows basins of attraction and the fractals that result. A basin of attraction 

shows the collection of points that converge to a certain root. This picture is useful but limited by 

the constraints of the size of the plane. However, this process could also be embodied on a 

sphere through the method of stereographic projection. By projecting the entire complex plane 

onto a sphere, one can completely visualize the dynamics, discovering the extent and location of 

basins of attraction. Envisaging these basin maps is an important tool in understanding the 

subtleties of chaotic dynamical systems on the complex plane. Therefore, I set out to write one of 

the first programs that would stereographically project these images onto a sphere to fully 

visualize the images created on the complex plane.  

 To further investigate the images of these basin maps I coded several programs. In this 

research, I utilized Newton and Halley's iterative root-finding methods on the complex plane. 

Upon mapping out their iterations, I wrote a program to stereographically project the resulting 

images upon a sphere.  I also created a program for the general form as derived by Eldon Hansen 

and Merrell Patrick, which captures a family of iterative functions. Through my work I created a 

way to examine the entire picture and discover the influences of adjustment in parameters.     

 



 

Background 

 As stated before, an important

polynomials, where f(x) = 0. Often these polynomials can be exceedingly com

difficult to solve explicitly. This 

finding methods. These methods use an initial “guess” to predict what the root of a function is. 

Because the methods are iterative, the

many different methods that can be utilized

the most popular, Newton-Raphson, as well as

 The Newton-Raphson form is one of the most commonly taught fo

and precision. It is based upon the principle of successive linearization, the technique that takes 

non-linear equations and replaces them with successive linear problems whose solution is that of 

the non-linear ( Kopecky). First,
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This is sustained through the general form:
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Halley’s method provides more latitude to work with when dealing with polynomials because it 

is a second order equation, although it is constrained by the fact that one cannot have f’(c) = 0. 

These two basic methods, with Newton’s being a limiting case, can both be derived from the 

overall general Patrick-Hansen form of the Householder’s methods.  

 The general form derived by Patrick-Hansen is as follows:  

���� �  �� � 
�	 
 1�����

	����� � ��������� � �	 
 1�����������
 

It is based upon the parameter that can be adjusted to obtain the other methods. For instance, it 

can be shown that Newton’s method can be derived when  approaches infinity and Halley’s 

when  equals negative one. Halley’s is easier to see when rewriting the general form as: 

�� � � �
�	� �  ����� �  �	 
 1����

�
��

�	 � 1����� 
 ��
 

Which then can be seen to be Halley’s when  equals negative one:  

�� � � �  


� �  ��
2�

 

The Patrick-Hansen form allows for capturing both values of the square root by the use of the 

plus/minus in the denominator. This is a result of the derivation of the method since the result is 

computed from a quadratic method. Patrick-Hansen’s general form captures methods that do not 

involve derivatives higher than the second order, thus the highest rate of convergence that can be 

obtained is cubic. In addition, no value of can minimize the asymptotic error constant for the 

general method, so no singular form of it is asymptotically best for each function (Hansen 259). 

α

α

α

α

α
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This general form is useful when one wants to observe the discrepancies between models in how 

fast certain points converge, as well as show how they are all fundamentally related.   

 The basins of attraction are displayed on the complex plane through images that possess 

fractals. Fractals are defined as “a rough or fragmented geometric shape that can be split into 

parts, each of which is (at least approximately) a reduced-size copy of the whole” (Mandelbrot). 

The repetitive nature of a point’s convergence, in that multiple points share the same rate, leads 

to the display of iterative methods resulting in fractals. Because of the sensitive nature of the root 

finding functions, minor changes will result in drastic differences, thus classifying their resulting 

images as manifestations of Julia Sets. Julia Sets are the set of points on the boundary of Fatou 

Sets. Fatou Sets tend towards a finite value whereas Julia Sets, which are part of its complement, 

are either periodic or do not converge to anything, including the point at infinity (Devaney). 

These images provide a useful glimpse into the pattern of convergence, but are limited by the 

window size of the complex plane. Utilizing such a small frame of reference does not allow the 

viewer to grasp the full extent of the basins of attraction. This limited scope is problematic 

because it only presents a narrow view of a set of points. This setback can be ameliorated 

through the use of stereographic projection. 

 Stereographic projection is utilized to project interchangeably between a sphere and a 

plane. Every point can be projected, barring the actual projection point itself. Due to this factor, 

the north pole is often chosen as the projection point.  



 

A stereographic projection is bijective

points, and preserves all angles between points. Unfortunately, it does not reflect all of the area 

of a plane unless certain measures are taken, which will be described later.

plane is (X,Y, 0) meaning z = 0, and the codomain is 

transformations defining the projection of the XY

For Cartesian coordinates: 

 

 

8 

(Howison) 

A stereographic projection is bijective, meaning that there are exact pairings for the two sets of

all angles between points. Unfortunately, it does not reflect all of the area 

of a plane unless certain measures are taken, which will be described later. The domain for the 

plane is (X,Y, 0) meaning z = 0, and the codomain is 

transformations defining the projection of the XY-plane onto the sphere are as follows:

 

, meaning that there are exact pairings for the two sets of 

all angles between points. Unfortunately, it does not reflect all of the area 

The domain for the 

 The 

as follows: 

 



 

For polar (cylindrical): 

These two projections cause the origin, (0,0), to become the point on the south pole, (0,0, 

interior of the unit circle to map to the Southern Hemisphere, 

equator. The north pole, (0,0,1), is undefined but can 

as the points growing closer to it 

origin.  

Preliminary Work 

 The initial work for this project was 

built in commands to create fractals, I began to conceptualize what I believed to be a relatively 

straightforward model in Java. The creation of 2

 So, the first direction this project took was 

Coming from a Computer Science background, this appeared to be the ideal setup. Newton’s 

method could be easily executed through a 

to create an overall structure that would be very conducive t

considerable work had already been done with fractals on the complex plane

online for resources that would have code that 

code, such as the following: 

fdashxold = appro_derivative(xold, select_delta);

xnew = xold - (fxold/fdashxold);

absfxnew = func(xnew); 

9 

 

These two projections cause the origin, (0,0), to become the point on the south pole, (0,0, 

interior of the unit circle to map to the Southern Hemisphere, and the unit circle to fall upon the 

equator. The north pole, (0,0,1), is undefined but can be considered the manifestation of infinity 

as the points growing closer to it come from points in the plane increasingly distant from the 

The initial work for this project was done by exploration with Mathematica. Using the 

built in commands to create fractals, I began to conceptualize what I believed to be a relatively 

straightforward model in Java. The creation of 2-D pictures seemed attainable. 

he first direction this project took was to implement Newton’s method uti

Coming from a Computer Science background, this appeared to be the ideal setup. Newton’s 

method could be easily executed through a for loop and multiple classes could be implemented 

to create an overall structure that would be very conducive to generating fractals. Since 

considerable work had already been done with fractals on the complex plane, I began searching 

online for resources that would have code that I could use for a backbone. I experimented with 

= appro_derivative(xold, select_delta); 

(fxold/fdashxold); 

These two projections cause the origin, (0,0), to become the point on the south pole, (0,0, -1), the 

and the unit circle to fall upon the 

be considered the manifestation of infinity 

distant from the 

by exploration with Mathematica. Using the 

built in commands to create fractals, I began to conceptualize what I believed to be a relatively 

to implement Newton’s method utilizing Java. 

Coming from a Computer Science background, this appeared to be the ideal setup. Newton’s 

loop and multiple classes could be implemented 

o generating fractals. Since 

, I began searching 

I could use for a backbone. I experimented with 
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if(absfxnew < 0) 

{ 

absfxnew = -absfxnew; 

} 

xold = xnew; 

(http://www.java-forums.org/advanced-java/10989-solution-newton-raphson-method.html) 

This code was simple in that it executed the exact workings of Newton’s Method. Working with 

Java, I was able to create code that calculated the number of iterations it took for individual 

guesses to converge. I also discovered more complex code that visualized basins of attraction, 

but it was very difficult to read and had limited capability. Thus I decided to explore other 

options.  

 This preliminary experimentation taught me several lessons; most importantly, it was 

easy to keep track of how many iterations a single point would take to converge. However, this 

would prove to be exponentially more difficult to calculate and store for a larger data set. 

Another lesson I learned was how difficult it would be to distinguish the different roots when 

displaying them graphically. Because of the immense data sets, I explored several options such 

as parallel computing and restricting my data set. Due to its limitations, I ultimately decided Java 

was not the best option. Fortunately, in my online research, I found a Matlab code that I could 

utilize.  

 Matlab immediately became an attractive option for two reasons: The code I discovered 

created a Newtonian fractal image in the complex plane based upon the input parameters of 

different functions, and Matlab had built-in commands to realize my project in the third 

dimension.  
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 The first step was experimentation with the base code itself to explore the parameters. As 

it stood, the basic code would take a predefined function and map out its basins of attraction with 

confining parameters such as the maximum number of iterations and resolution as seen in Figure 

1. Each basin of attraction was assigned a different color, with different shades of it signifying 

the number of iterations a point took to reach a root. 

 

Figure 1 

The following code demonstrates the initial Newton’s method. Note: polyval is a Matlab function 

that returns the first polynomial argument, c, evaluated at the following argument. 

z = polyval(c, xf); 

zp = polyval(c_der, xf); 

xs = xf - z/zp; 
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The calculations were broken up to expedite processing. A cap was placed upon the maximum 

number of iterations and resolution to make sure the program would not overwhelm a typical 

computer’s processor. Some initial values may result in infinite iterations, which would overload 

a computer’s memory. I began to manipulate the code to implement Halley’s Method, as well as 

make the code itself more intuitive. This involved the implementation of calculations for the 

second derivative as well as an expanded method within the primary for loop: 

z = polyval(c, xf); 

zp = polyval(c_der, xf); 

zpp = polyval(c_der2, xf); 

top = 2*conv(z,zp); 

bottom = 2*conv(zp,zp)-conv(z,zpp); 

if (bottom == 0) 

    xs = xf; 

else  

    xs = xf - deconv(top,bottom); 

end 

 

(conv is the Matlab command for polynomial multiplication) 

The basic structure of Newton’s method remained, but an if statement was created to catch the 

case where the calculation of the denominator of the equation resulted in zero. I also created 

shortcuts, in the form of additional input parameters, to allow the program to be executed from 

the command window with the previous choices.   

 Matlab once again proved invaluable as an ideal medium by providing commands that 

significantly reduced computation time. For instance, utilizing the polyval command created a 

shortcut in the evaluation of polynomials while deconv solved the division of the subsequent 

products. One of the first issues to arise was the matter of direction. Matlab was orienting the 

planar picture in the reverse direction. Scripting some code that transformed the matrix that 
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contained the individual color-coded points solved this problem. The following code shows this 

change in the matrix B, which held the data points for the final image, rotating each section 

ninety degrees. 

B(:,:,1)=rot90(B(:,:,1)); 

B(:,:,2)=rot90(B(:,:,2)); 

B(:,:,3)=rot90(B(:,:,3)); 

 

 I then coded Patrick-Hansen’s general form. This involved further modification of the 

interior methods to accommodate for differing parameters, the main one being , as well as 

whether to utilize a positive or negative root. 

z = polyval(c, xf); 

zp = polyval(c_der, xf); 

zpp = polyval(c_der2, xf); 

top = (a+1)*z; 

sq_root = sqrt(zp^2-top*zpp); 

bottom_dot = dot(zp,sq_root);  

bottom1 = a*z+sq_root; 

bottom2 = a*z-sq_root; 

if (bottom_dot == 0) 

    xs = xf; 

elseif real(dot(zp,bottom1))>0  

    xs = xf - deconv(top,bottom1); 

else  

    xs = xf - deconv(top,bottom2); 

 

I broke up all calculations to allow for faster processing, utilizing methods that Matlab already 

has coded. Using the modified code as a framework allowed me to focus on the 3-D 

representation of the results. 

 To achieve a 3-D representation of the results, I would make use of the matrix output of 

the current version code. The code created a matrix that stored the resulting data point’s color 

α
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based upon the number of iterations needed to reach a root. Thus, it appeared to be a simple 

matter of translating that matrix into 3-D coordinates. The surf command became the primary 

instrument through which this was realized where: “surf (X,Y,Z,C) creates a shaded surface, 

with color defined by {the matrix} C. MATLAB performs a linear transformation on this data to 

obtain colors from the current colormap” (Matlab). Some of the first issues I ran into were the 

use of the expressions within the commands themselves. It took several days to figure out what 

combinations of commands within surf would result in a clear picture. Many different coding 

options existed that would alter the viewing of the axis, the orientation of the sphere, and how 

the points were to be projected upon the sphere. Without the correct sequence, the subsequent 

image would become distorted into wave-like patterns and shapeless forms, or would not be 

displayed at all. With that figured out, the next step was to execute the stereographic 

transformation. 

 Stereographic projection involved coding several lines that took the values in my 

resultant matrix, which stored the colors, and transformed them into the correct 3-dimensional 

points. Initially, there was some confusion based on whether the program was consolidating the 

data points into vectors or matrices. This was an issue because the algebra involved needed the 

data to be strictly one or the other. Eventually I solved this issue when I deduced that matrices 

were being used. The next major issue was the question of how to create both hemispheres.  

 Adjusting the positive or negative orientation of the Z coordinates individually could 

create each hemisphere. When placing these two hemispheres together, though, large gaps 

appeared on the equator because of the nature of stereographic projection.  
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Figure 2 

The complex images I was attempting to project were square areas. Translating them onto a 

sphere mapped them correctly, but neither hemisphere captured the appropriate points along the 

equator. The corners of the squares met, but their sides were curved, creating the open spaces 

(see Figure 2). It was immediately apparent that this would have to be done through the use of 

polar coordinates. It became difficult to determine just exactly where the conversion from 

Cartesian to polar should occur, and which state the points should be in upon mapping.  

 The main issue was that the base code worked beautifully within its Cartesian premises 

and to change that would result in a massive process. Based on the way calculations were already 

executed, changing the code to completely polar would cause more problems than it solved. 

Modifying the resultant matrix at the end would do nothing since it would contain the same 
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problematic coordinates. It was decided that the best route would be to begin with a polar circle 

and translate that into Cartesian coordinates.  

 This solution worked perfectly, creating a continuous sphere that graphically represented 

all points (see Figure 3). 

 

(Figure 3. Execution of Newton’s Method Program on the equation z
3
-1 with resolution at 200) 

The Result  

 My final code, as seen starting on page 34, is a combination of the program created by 

Cahit Güngör, a graduate student, with my methods sutured in.   

 The first line of the code is intuitive. It allows a user to call the program within Matlab 

given the parameters of an a (alpha), the dim (resolution), and c (the function). The alpha 

determines which form of the Householder methods will result, thus c needs to be a one variable 

equation due to the nature of Householder methods. Line 3 establishes a matrix, colorArr, which 

will be used to define the different colors. It is a six by three matrix, allowing for seven different 
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colors as determined by values of one’s and zero’s in the three columns. As it stands, a function 

can only have seven basins of attraction, as there are only seven colors. More can be added, 

though, by creating a bigger colorArr matrix. The following lines up until 17 define each 

individual color. The command roots, in line 21, returns a vector of all the roots for the given 

function c, stored as rootArr. The next lines of code, 24-38, are utilized to calculate the first two 

derivatives of the given function. First a variable is established that will hold the vector for the 

derivative. A for loop is then utilized to establish the size of the vector of the resulting derivative 

in both cases. After exiting that loop the actual derivative is computed. The use of the deconv 

function speeds up the process of calculating the derivative by deconvolving the first parameter 

from the second through long division. The command in line 39 ensures that the given 

dimensions are integers. Lines 42-46 establish the range of data points. This is where I restricted 

the planar image to that of a circle, through the use of polar coordinates, in order to avoid 

creating gaps in the stereographic projection. This is accomplished by creating a rho that tracks 

through the points 0 to 1 by step size of the inverse of the dimension and a theta that does the 

same over 360 degrees. Rho is first established and squared to increase the increments in step 

size between 0 and 1. Theta is transformed into radians as well during the parameter’s creation. 

The command meshgrid transforms these vectors into arrays, which make them compatible with 

the execution of the rest of the program. A warning is also established to tell Matlab to ignore if 

division by zero occurs. Line 49 contains the set value for the maximum number of iterations the 

program allows for before “painting” that value black. This constraint, although allowing the 

results of some data points to be missed, keeps this program from crashing through too many 

calculations. The matrix A, created in line 51, is utilized later in line 53 to generate what will be 

the final array of data points. A is necessary because it sets the size through the resolution, as 
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desired by the user with dim. It is first established as being all zeros, as data will be transferred to 

it later. The command uint8 creates an array composed of 8 bit integers, which will be utilized 

for graphics. The for loop on line 54 is what creates the final sphere. The two halves are created 

separately, thus the for loop acts as a placeholder to unite them. The following two for loops 

contain the main inner workings of the program. For the size of dim, which is the size of the 

array B, each data point will be executed. Line 58 forms a variable, xf, that is a complex number, 

as constructed from values obtained from the arrays X and Y, as determined by the for loops. 

Lines 60-65 allow the calculation of the second half of the sphere. The if statement determines 

that the second hemisphere is being constructed and then xf becomes the complex conjugate. The 

check for the case of xf being 0 is also included. Patrick-Hansen’s general loop is executed in 

lines 69-84. Using placeholders, the individual calculations are broken down so as to speed up 

the processing of the entire function. After the completion of the loop, the variable tmp is 

created. This variable helps to determine which root the point will tend towards. The variable 

tmp is the absolute value of a tiled array the size of the number of allotted roots for the function. 

In line 87 rootIndex is set as all the values in tmp that are less than the minimum difference, as 

established by the find command, which locates all values in the array that satisfy a condition. 

The color for the point is set accordingly, with the value of the rootIndex determining the color, 

which is saved to the matrix B. After all points have been calculated, an array is created for “z” 

values, while lines 103-5 perform the stereographic projection on the Cartesian coordinates 

saved in the arrays. The command surf, which creates a shaded surface as determined by the 

matrix B, is then used to create the sphere. The for loop determining the hemispheres is utilized 

for the two surf commands, one of them containing inverted z values.  And thus melding the two 

halves of the sphere creates the sphere.  
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Exploration 

 With an executable program, the next step was to explore the different effects made by 

adjusting parameters. Although my program had three input parameters to adjust, the primary 

focus was the influence of differing values of alpha on set exponential equations. I was 

interested in how a slight change in this parameter altered the stereographic images of a selected 

equation. The results of this investigation would show the differences within the Patrick-

Hansen’s family of functions in the rate in which they calculated roots, as well as if points would 

still tend towards the same basin. As noted in A Family of Root Finding Methods, certain values 

of alpha work better with different polynomials and values of z. Thus, I produced some images 

to verify these results. The outcomes of some of this exploration are as follows: 

 The following figures use values of alpha starting at -1 (Halley’s Method- Figure 4) and 

ending at 1 by increments of 0.2 on the equation z^3-1 with resolution set at 200. Two well-

known special cases, Laguerre’s (Figure 15) and Newton’s (Figure 16) method are also included. 

Laguerre’s method is derived from alpha equaling the inverse of the degree of the polynomial 

minus 1. So in this case, since I used a 3
rd

 degree equation, 	 � �
���

� �
�
 . Newton’s method is 

alpha equaling infinity. Through this sequence one can examine the effect different values of 

alpha have on rates of convergence. The first noticeable difference is the step between Halley’s 

method and -0.8 (Figure 5). The brightness in color, especially around the roots, indicates that 

Halley’s is superior in calculating a point’s convergence. The sizes of the basins of attraction are 

also changed between the two. In Halley’s they are all approximately equal whereas when alpha 

equals -0.8, one grows very large, engulfing the other two. The size of the basins becomes more 

equalized and the brightness increases as alpha approaches 0 (Figure 9), which is another 
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Householder method known as Ostrowski’s Square Root Iteration. By 0, the rates of 

convergence appear roughly equivalent to those seen in Halley’s, although there are fewer 

fractals along the borders of the basins. As alpha continues to increase, more fractals appear and 

the colors dim. This is indicative that once again rates of convergence are severely slowing. This 

is quite evident when by 0.8 (Figure 13) large masses of black have appeared, indicating that 

these points have not even converged within the limit of 60 iterations exercised in the program. 

With the next step, alpha equaling 1 (Figure 14), which is Euler’s Method, the entire sphere 

basically becomes black. At this point, subsequent increases in alpha fail to cause points to 

converge within 60 iterations. However, taking the special case of Newton’s method, one can see 

that acceptable rates of convergence occur and at almost as fast of rate as Halley’s. This would 

appear to run contrary to pattern, as increased values of alpha seemed to result in worse rates of 

convergence and Newton’s method is the limit method as alpha goes to infinity. This reversal 

could be due to the simplification of the actual equation itself manifested in Newton’s method. 

Laguerre’s Method appears similar to 0.4 and 0.6, as expected.  
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Halley’s Method – Figure 4  
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-0.8 – Figure 5 
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-0.6 – Figure 6 
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-0.4 – Figure 7 
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-0.2 – Figure 8 
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Ostrowski’s Square Root Iteration (0.0) – Figure 9 
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0.2 – Figure 10 
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0.4 – Figure 11 
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0.6 – Figure 12 
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0.8 – Figure 13 
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Euler’s Method – Figure 14 
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Laguerre’s Method – Figure 15 
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Newton’s Method – Figure 16 
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Conclusion 

 It is not often in math that we get to visualize the entire picture of a problem. The ability 

to represent these iterative methods in the third dimension is a very powerful tool. I did not know 

if implementing stereographic projection would give a good overall picture or if I would be able 

to get enough points with large enough |z| so that there would not be a gap at infinity. However, 

with these spherical representations I have been able to graphically show what occurs at all 

points on the complex plane. This information is quite valuable as it allows for a visualization of 

which method is best for certain equations. 

 These images can be used to help determine which method is best utilized for differing 

values of z, as well as complete pictures of the basins of attraction dependent on method. One 

can visualize Patrick-Hansen’s theory that Laguerre’s method is the best for large values of both 

positive and negative z. Further investigation can be applied to the series of fractals created by 

different values of alpha and the effect they have on the size of the basins of attraction. 

 Although the pictures themselves are limited by processing power and specific data from 

each point, I believe this could be obtained in a reduced nature with more formidable computers. 

With greater processing power, further exploration of these fascinating images is possible. 
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function tp2(a,dim,c) 1 

%clear all; 2 

colorArr = [6,3]; 3 

%RED 4 

colorArr(1,1) = 1;colorArr(1,2) = 0;colorArr(1,3) = 0; 5 

%GREEN 6 

colorArr(2,1) = 0;colorArr(2,2) = 1;colorArr(2,3) = 0; 7 

%BLUE 8 

colorArr(3,1) = 0;colorArr(3,2) = 0;colorArr(3,3) = 1; 9 

%YELLOW 10 

colorArr(4,1) = 1;colorArr(4,2) = 1;colorArr(4,3) = 0; 11 

%MAGENTA 12 

colorArr(5,1) = 0;colorArr(5,2) = 1;colorArr(5,3) = 1; 13 

%PURPLE 14 

colorArr(5,1) = 1;colorArr(5,2) = 0;colorArr(5,3) = 1; 15 

%GRAY 16 

colorArr(6,1) = 1;colorArr(6,2) = 1;colorArr(6,3) = 1; 17 

 18 

% matrix representation of this function 19 

% c = [1 0 0 -1]; 20 

rootArr = roots(c); 21 

 22 

%derivative of the function 23 

c_der = []; 24 

for i = 1:length(c)-1 25 

c_der(i)=(length(c)-i)*c(i); 26 

end 27 

[fdivfp, rem] = deconv(c, c_der); 28 

while rem(1) == 0 29 

rem = rem(2:end); 30 

end 31 

 32 

%second derivative of the function 33 

c_der2 = []; 34 

for i = 1:length(c_der)-1 35 

c_der2(i)=(length(c_der)-i)*c_der(i); 36 

end 37 

[fdivfp, rem] = deconv(c_der, c_der2); 38 

 dim = round(dim); 39 

  40 

%variable settings for the complex guesses 41 

rt=(0:1/dim:1).^2; 42 

[th,r] = meshgrid((0:360/dim:360)*pi/180,rt); 43 

[X,Y]=pol2cart(th,r); 44 

warning off MATLAB:divideByZero 45 

min_differ = 0.01; 46 

  47 
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%maximum iteration 48 

iter = 60; 49 

  50 

A = zeros(dim+1, dim+1); 51 

%RGB representation 52 

B = uint8(round(A * 255)); 53 

for o=1:2 54 

for v=1:dim+1 55 

for w = 1:dim+1 56 

  57 

xf = complex(X(v,w),Y(v,w)); 58 

  59 

if (o == 2) 60 

    if (xf == 0) 61 

    break; 62 

    end 63 

 xf =conj(1/xf); 64 

end 65 

  66 

xs = xf + eps + 1; 67 

% General loop 68 

for k=1:iter 69 

z = polyval(c, xf); 70 

zp = polyval(c_der, xf); 71 

zpp = polyval(c_der2, xf); 72 

top = (a+1)*z; 73 

sq_root = sqrt(zp^2-top*zpp); 74 

bottom_dot = dot(zp,sq_root);  75 

bottom1 = a*z+sq_root; 76 

bottom2 = a*z-sq_root; 77 

if (bottom_dot == 0) 78 

    xs = xf; 79 

elseif real(dot(zp,bottom1))>0  80 

    xs = xf - deconv(top,bottom1); 81 

else  82 

    xs = xf - deconv(top,bottom2); 83 

end 84 

tmp = abs(repmat(xf, size(rootArr))-rootArr); 85 

%find the root associated with the one found in Newton Raphson 86 

rootIndex = find(tmp<min_differ); 87 

if ~isempty(rootIndex) 88 

%color associated with roots and rate of convergence 89 

B(v,w,1)=colorArr(rootIndex,1) * (1-(k/iter)) * 255; 90 

B(v,w,2)=colorArr(rootIndex,2) * (1-(k/iter)) * 255; 91 

B(v,w,3)=colorArr(rootIndex,3) * (1-(k/iter)) * 255; 92 

break; 93 

end 94 
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xf = xs; 95 

end 96 

end 97 

end 98 

  99 

Z=zeros(size(X)); 100 

  101 

     102 

x=(2*X)./(1+X.^2+Y.^2); 103 

y=(2*Y)./(1+X.^2+Y.^2); 104 

z=(-1+X.^2+Y.^2)./(1+X.^2+Y.^2); 105 

 106 

if (o == 1) 107 

 surf(x,y,z,B,'FaceColor','texturemap'), shading flat, hold on 108 

else 109 

 surf(x,y,-z,B,'FaceColor','texturemap'), shading flat, hold off 110 

end 111 

end112 



38 

 

Bibliography 

Devaney, Robert L., and Bodil Branner. Complex Dynamical Systems: The Mathematics behind 

 the Mandelbrot and Julia Sets. Providence, RI: American Mathematical Society, 1994. 

 Print. 

Gaston, Julia. "Mémoire sur l'iteration des fonctions rationnelles," Journal de Mathématiques 

 Pures et Appliquées vol. 8. (1918): 47–245. 

Gleick, James. Chaos: Making a New Science. 1. New York, NY:Penguin Books. 1987. Print. 

Güngör, Cahit. Fractals with Newton Raphson Method. Thesis. Middle East Technical 

 University, 2009. Print. 

Hansen, Patrick and Eldon, Merrell. "A Family of Root Finding Methods." Numerische 

 Mathematik 27. (1977): 257-269. Print. 

Hurley, James. Multivariable Calculus. 1. Philadelphia, PA:Saunders College Publishing. 1981. 

 Print. 

Howison, Mark. This image illustrates in 3D a stereographic projection from the north pole onto 

 a plane below the sphere. Digital image. Wikipedia. 13 Jan. 2008. Web. 27 Dec. 2011. 

Kopecky, Karen. "Root Finding Methods." . N.p., 2007. Web. 27 Dec 2011. 

 <http://www.karenkopecky.net/Teaching/eco613614/Notes_RootFindingMethods.pdf>. 

Mandelbrot, Beloit B. The Fractal Geometry Of Nature. W. H. Freeman, 1983. 



39 

 

McGoodwin, Michael. "Julia Jewels: An Exploration of Julia Sets." McGoodwin Family Website 

 Home Page. Mar. 2000. Web. 01 Jan. 2012. 

 <http://www.mcgoodwin.net/julia/juliajewels.html>. 

Van Loan, Charles. Introduction to Scientific Computing. 1. Upper Saddle River, NJ:Prentice-

 Hall, Inc. 1997. Print. 


	Visualizing Chaos
	Recommended Citation

	Microsoft Word - 306907-text.native.1344262954.docx

