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ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 44, Number 3, 2014

COMPUTING LOCAL CONSTANTS
FOR CM ELLIPTIC CURVES

SUNIL CHETTY AND LUNG LI

ABSTRACT. Let E/k be an elliptic curve with CM by
O. We determine a formula for (a generalization of) the
arithmetic local constant of [5] at almost all primes of good
reduction. We apply this formula to the CM curves defined
over Q and are able to describe extensions F/Q over which
the O-rank of E grows.

1. Introduction. Let p be an odd rational prime. Let k ⊂ K ⊂ L be
a tower of number fields, with K/k quadratic, L/K p-power cyclic and
L/k Galois with a dihedral Galois group, i.e., a lift of 1 �= c ∈ Gal (K/k)
acts by conjugation on g ∈ Gal (L/K) as cgc−1 = g−1. In [5] Mazur
and Rubin define arithmetic local constants δv, one for each prime v
of K, which describe the growth in Z-rank of E over the extension

L/K. Specifically (cf., [5, Theorem 6.4]), for χ : Gal (L/K) ↪→ Q
×

an
injective character and S a set of primes of K containing all primes
above p, all primes ramified in L/K and all primes where E has bad
reduction,

(1.1) rankZ[χ]E(L)
χ − rankZE(K) ≡

∑
v∈S

δv (mod 2).

To phrase their result this way, we must assume the Shafarevich-Tate
conjecture1, and we keep this assumption throughout.

In [1], the theory of arithmetic local constants is generalized to
address the O-rank of varieties with complex multiplication (CM) by
an order O, and we continue in that direction with specific attention
to the elliptic curve case. Following [1], we assume that O ⊂ EndK(E)
is the maximal order in a quadratic imaginary field K, p is unramified
in O, and Oc = O† = O where † indicates the action of the Rosati
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854 SUNIL CHETTY AND LUNG LI

involution (see [6, subsection I.14]). When K �⊂ k, these assumptions
imply K = kK.

Our present aim is to provide a simple formula for the local constants
δv (see Definition 2.2) for primes v � p of good reduction. We then will
use a result [1, Section 6] which generalizes (1.1), with Z replaced by
O, to determine conditions under which the O-rank of E grows. In
Section 3 we will describe, via class field theory, dihedral extensions
F/Q which satisfy those conditions, in order to give some concrete
setting to the results of Section 2.

2. Computing the local constant. Suppose p splits2 in O, i.e.,
pO = p1p2, with p1 �= p2. We denote R = O/pO and Ri = O/pi for
i = 1, 2, so that R ∼= R1 ⊕R2.

Definition 2.1. If M is an O-module of exponent p, define the
R-rank of M by

rankRM := (rankR1M ⊗R R1, rankR2M ⊗R R2).

The following definition is the same as in [1, 5]. Fix a prime v of K,
and let u and w be primes of k below v and of L above v, respectively.
Denote ku, Kv and Lw for the completions of k, K and L at u, v and
w, respectively. If Lw �= Kv, let L

′
w be the extension of Kv inside Lw

with [Lw : L′
w] = p, and otherwise let L′

w = Lw = Kv.

Definition 2.2. Define the arithmetic local constant δv := δ(v, E, L/
K) by

δv ≡ rankR
E(Kv)

E(Kv) ∩NLw/L′
w
E(Lw)

(mod 2).

Now, we will consider primes v of K such that E has good reduction
at v, v � p, vc = v and v ramifies in L/K (corresponding to [5, Lemma
6.6]). Under these conditions, [5, Theorem 5.6] shows that

(2.1) dimFp

E(Kv)

E(Kv) ∩NLw/L′
w
E(Lw)

≡ dimFpE(Kv)[p] (mod 2).
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Proposition 2.4 below shows that we are able to replace dimFp by rankR
in (2.1). We first need Lemma 2.3, which follows Lemmas 5.4 and 5.5
of [5], and our proof is meant only to address the change from dimFp

to rankR.

Let K and L be finite extensions of Q�, with � �= p, and suppose L/K
is a finite extension.

Lemma 2.3. Suppose L/K is cyclic of degree p, E is defined over K
and has good reduction. Then:

(i) rankRE(K)/pE(K) = rankRE(K)[p].

(ii) If L/K is ramified, then E(K)/pE(K) = E(L)/pE(L) and

NL/KE(L) = pE(K).

(iii) If L/K is unramified, then NL/KE(L) = E(K).

Proof. When � �= p, we have E(K)/pE(K) = E(K)[p∞]/pE(K)[p∞].
Since E(K)[p∞] is finite, (i) follows from the exact sequence of O-
modules

0 −→ E(K)[p] −→ E(K)[p∞] −→ pE(K)[p∞] −→ 0.

The content of (ii) and (iii) is on the level of sets, so the proof is exactly
as in [5, Lemma 5.5].

We return to the notation of Definition 2.2.

Proposition 2.4. If v � p and Lw/Kv is nontrivial and totally
ramified, then

δv ≡ rankRE(Kv)[p] (mod 2).

Proof. As in [5, Proof of Theorem 5.6], Lemma 2.3 (ii) yields
NLw/L′

w
E(Lw) = pE(L′

w), and hence E(Kv) ∩ pE(L′
w) = pE(Kv). So

by Definition 2.2 and Lemma 2.3 (i),

δv ≡ rankR
E(Kv)

pE(Kv)
≡ rankRE(Kv)[p] (mod 2).
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Now, fix a prime v of K. We denote κu for the residue field of ku,
q = #κu for the size of finite field κu and Ẽ for the reduction of E to
κu.

Proposition 2.5. Suppose v � p, v is ramified in L/K and vc = v.

If E has good reduction at v, then δv ≡ (1, 1) if and only if p | #Ẽ(κu).

Proof. We follow the notation of [5, Lemma 6.6]. Since vc = v,
we know that Kv/ku is quadratic, and it is unramified by [5, Lemma
6.5 (ii)]. Let Φ be the Frobenius generator of Gal (Kur

v /ku), so Φ2 is
the Frobenius of Gal (Kur

v /Kv).

The proof of Lemma 6.6 [5] shows that the product of the eigenvalues

α, β of Φ on E[p] is −1. Also, E(Kv)[p] = E[p]Φ
2=1 is equal (as a set)

to E[p] or is trivial depending on whether or not {α, β} = {1,−1},
respectively. Since E has CM by O, E[p] is a rank 1 R-module (see,
e.g., [10, Section II.1]), so the former case yields

δv ≡ rankRE(Kv)[p] = (1, 1) (mod 2).

By assumption, v � p, so p is prime to the characteristic of κu, and
therefore the reduction map restricted to p-torsion is injective [9,
subsection VII.3]. We also know E[p] is unramified [9, subsection
VII.4], and so the eigenvalues of Φ acting on E[p] coincide (mod p)

with the eigenvalues of the q-power Frobenius map φq on Ẽ[p]. We know
[9, Section V] that the characteristic polynomial of φq is T 2 − aT + q,

where a = q + 1 − #Ẽ(κu), and from the above comments q ≡ −1
(mod p). Therefore, Φ having eigenvalues ±1 is equivalent to a ≡ 0

(mod p) and in turn equivalent to #Ẽ(κu) ≡ 0 (mod p).

Corollary 2.6. If K �⊂ k, then δv ≡ (1, 1).

Proof. To see that p | #Ẽ(κu), we show that a = 0 under our

assumptions on v, where a = q + 1 −#Ẽ(κu) as above3. The theory
of complex multiplication gives a = πu + πu for some πu ∈ O such
that πuπu = q (see, e.g., [3, Theorem 14.16], [10, subsection II.10] or
[8] for a thorough discussion). As K �⊂ k, we have K = kK, and we
let ψ = ψE/K be the Grössencharacter associated to E and K (see
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[10, subsection II.9] or [4]). By comparing their effect on K(E[�]),
where � is prime to v, we see that ψ(v)c = ψ(vc), and since v = vc,
we have that ψ(v) is fixed by c. It follows that ψ(v) is rational, the
corresponding πv ∈ O ⊂ EndK(E) is integral, and in fact, πv = ±q
by degree arguments. In addition, π2

u = πv, and we will see that
πu =

√−q is purely imaginary. Indeed, πu having no real part implies
a = πu + πu = 0; hence,

#Ẽ(κu) ≡ q + 1 ≡ 0 (mod p)

and δv ≡ (1, 1) by Proposition 2.5.

Suppose instead that πu =
√
q is real4. If, in addition, we suppose πu

is integral then the reduction φq ∈ End (Ẽ) of πu would commute with

all endomorphisms of Ẽ. As K �⊂ k, there is some ρ ∈ EndK(E) such

that ρ �= ρc, and hence, ρ̃ �= ρ̃c. Thus, for some P ∈ Ẽ(κu), P
c = P

and ρ̃(P c) �= ρ̃c(P ). As the action of c on κu coincides with that of

Frobenius Φ̃, it follows that ρ̃ does not commute with Φ̃, and in turn
ρ̃ does not commute with the Frobenius endomorphism φq ∈ End (Ẽ)

induced by Φ̃.

If πu =
√
q is real and irrational, then k � Q(πu)k ⊂ K and so

c ∈ Gal (K/k) acts non-trivially on πu, i.e., π
c
u = −√

q. It follows that

q = NK/Q(πu) = πuπ
c
u = −q,

which is a contradiction, and we conclude πu is purely imaginary as
desired.

Define a set SL of primes v of K by

SL := {v | p, or v ramifies in L/K, or where E has bad reduction}.

Theorem 2.7 [1, Theorem 6.1]. Let χ : Gal (L/K) ↪→ Q
×

be an
injective character and O[χ] the extension of O by the values of χ.
Assuming the Shafarevich-Tate conjecture,

rankO[χ]E(L)
χ − rankOE(K) ≡

∑
v∈SL

δv (mod 2).
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We now consider a dihedral tower k ⊂ K ⊂ F where F/K is
p-power abelian. Following [5, Section 3], we note that there is a
bijection between cyclic extensions L/K in F and irreducible rational
representations ρL of G = Gal (F/K). The semi-simple group ring
K[G] decomposes as

K[G] ∼= ⊕LK[G]L,

where K[G]L is the ρL-isotypic component of K[G]. For each L, it suf-

fices to deal with an injective character χ : Gal (L/K) ↪→ Q
×

appear-

ing in the direct-sum decomposition of ρL ⊗ Q
×
, and rankO[χ]E(F )χ

is independent5 of the choice of χ.

Theorem 2.8. Assume K �⊂ k.6 Suppose that, for every prime
v satisfying vc = v and which ramifies in F/K, we have v � p and
E has good reduction at v. For m equal to the number of such v, if
rankOE(K) +m is odd, then

rankOE(F ) ≥ [F : K].

Proof. Fix a cyclic extension L/K inside F . If v is a prime of K
and vc �= v, then δv ≡ δvc and hence δv + δvc ≡ (0, 0) (mod 2) by
[5, Lemma 5.1]. If vc = v and v is unramified in L/K, then v splits
completely in L/K by [5, Lemma 6.5 (i)]. It follows that NLw/L′

w
is

surjective, and so δv ≡ (0, 0) by Definition 2.2. The remaining primes
v are precisely those named in the assumption, so Proposition 2.6 gives∑

v δv ≡ (m,m) (mod 2). Thus,

rankO[χ]E(L)χ ≡ rankOE(K) +m (mod 2),

and we have assumed that the right-hand side is odd.

From [5, Corollary 3.7], it follows that

rankOE(F ) =
∑
L

(dimQρL) · (rankO[χ]E(L)
χ
).

As the previous paragraph applies for every cyclic L/K in F we see
from the decomposition of K[G] that E(F )⊗Q contains a submodule
isomorphic to K[G], and the claim follows.
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3. CM elliptic curves defined over Q. Here, we will consider
the CM elliptic curves E defined over Q (as in [10, A.3]). For each E,
our aim is to determine7 examples of dihedral towers Q ⊂ K ⊂ F over
which, according to Theorem 2.8, the O-rank of E grows. As we have
assumed O ⊂ EndK(E), we will consider towers in which K = K (see
Section 1). All of our calculations will be done using Sage [11].

Let ED/Q be the elliptic curve of minimal conductor8 defined over
Q with CM by KD = Q(

√−D). We determine computationally9

rankZED(KD), and for D = 3, we see that this group is finite. For
D = 4, 7, the situation is less certain, as Sage only tells us that ED(Q) is
finite and rankZED(KD) ≤ 2. For each of the remaining CM curves ED

defined overQ, one can (provably) calculate that rankZED(Q) = 1. We
also have that rankZED(KD) ≥ rankZED(Q) = 1 and rankZED(KD)
cannot be even, so rankOED(KD) ≥ 1. For D = 8, 11, 19, 43, 67 and
163, Sage gives an upper bound7 of 3 for rankZED(KD) and so, for
these D, we can conclude that in fact rankOED(KD) = 1.

3.1. Dihedral extensions of Q. Recall that p is a fixed odd
rational prime. Presently, we also fix D ∈ {3, 4, 7, . . . , 163}, and let
E = ED, K = KD. We are interested in abelian extensions F/K which
are dihedral over Q, and these are exactly the extensions contained in
the ring class fields of K (see [3, Theorem 9.18]).

Let Of be an order in OK of conductor f . We have a simple formula
for the class number h(Of ) of Of using, for example, [3, Theorem 7.24],
and noting that, we have h(OK) = 1,

h(Of ) =
f

[O×
K : O×

f ]
·

∏
primes �|f

(
1−

(−D
�

)
1

�

)
.

For D �= 3, 4, we have O×
K = {±1} and, for D = 4, we have #O×

K = 4,
so in both of these cases [O×

K : O×
f ] is prime to p. For D = 3, one

can show that [O×
K : O×

f ] = 3 when f > 1. The following paragraphs
require only minor adjustments for the case p = D = 3.

Taking f to be an odd rational prime such that (−D/f) = ±1, the
class number becomes h(Of ) = f ∓ 1, and so the ring class field HOf

associated to Of is an abelian extension of K of degree f∓1. Thus, for
f ≡ ±1 (mod p), we have a (non-trivial) p-power subextension F/K
which is dihedral over Q.
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Next, we need to understand the ramification in F/K. As K has class
number 1, we know there are no unramified extensions of K, and so we
must ensure that F satisfies the hypotheses of Theorem 2.8. A prime
v of K ramifies in HOf

/K if and only if v | fOK (see, for example,
[3, Exercise 9.20] and recall f is odd). If we choose f so that −D is
not a square (mod f), f is inert in K/Q, and so fOK is prime and,
moreover, the only prime that ramifies in HOf

/K. If fOK does not
ramify in F/K, then the p-extension F/K is contained in the Hilbert
class field HK of K. As HK = K, this is impossible, so fOK ramifies
in F/K and no other primes ramify in F/K. Taking f such that f � D
and −D is a square (mod f), we have that f is not inert and does not
ramify in K/Q. As in the previous case, the primes of K above f both
ramify in the p-extension F/K contained in HOf

.

Now, suppose rankOE(K) is odd10. To apply Theorem 2.8, we must
have an even number m of primes v such that vc = v, v ramifies in
F/K, E has good reduction at v and for which p | #Ẽ(Z/fZ). First,
we can guarantee m = 0 if the only primes v which ramify in F/K
do not satisfy vc = v, e.g., taking f � D with (−D/f) = 1. Table 3.1
gives, for each D and for p = 3, 5, 7, the smallest prime f which gives
an extension of degree p following this recipe. We note that we do not
need Proposition 2.5 for this case.

If we wish to allow for primes v satisfying vc = v, we choose two p-
extensions F1 and F2 from two distinct rational primes fi as above with
fi ≡ −1 (mod p) and (−D/fi) = −1, for i = 1, 2. The compositum
F = F1F2 will satisfy our requirements. Indeed, firstly F is an
abelian p-extension of K and is contained in the ring class field HOf1f2

,
hence dihedral over Q with only f1OK and f2OK ramifying in F/K.
Secondly, as each fi is inert in K/Q, each is a supersingular prime
for E (this follows from the arguments in Corollary 2.6) and hence p

divides #Ẽ(Z/fiZ) = fi+1. Thus, E and the p-extension F/K satisfy
the hypotheses of Theorem 2.8. Table 3.2 below gives, for each D and
for p = 3, 5, 7, the smallest pair of distinct primes f1, f2 which give
extensions of degree p2 following this recipe.

Next, suppose rankOE(K) is even.11 In this case, we need m to be
odd in order to apply Theorem 2.8. The same ideas as above still work,
and in Table 3.3 we list, for each D and for p = 3, 5, 7, the smallest
prime f for which Theorem 2.8 guarantees rank ≥ p.
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Remark 3.1. Though there are algorithms in the literature to com-
pute the defining polynomial of a class field (e.g., [2, Section 6], [3,
subsection 11-3]) and such computational problems are of interest in-
dependently, we make no attempt here to explicitly determine the ring
class fields HOf

. As is apparent from Table 3.2, our method of deter-
mining a field to which Theorem 2.8 applies involves ring class fields of
large degree in a computationally inefficient way.

TABLE 3.1. Case m = 0.

p = 3 p = 5 p = 7

D f [F : K] f [F : K] f [F : K]

4 13 3 41 5 29 7

7 43 3 11 5 29 7

8 43 3 11 5 43 7

11 31 3 31 5 71 7

19 7 3 11 5 43 7

43 13 3 11 5 127 7

67 103 3 71 5 29 7

163 43 3 41 5 43 7

TABLE 3.2. Case m = 2.

p = 3 p = 5 p = 7

D f1 f2 [F : K] f1 f2 [F : K] f1 f2 [F : K]

4 11 23 9 19 59 25 83 139 49

7 5 41 9 19 59 25 13 41 49

8 5 23 9 29 79 25 13 167 49

11 2 29 9 29 79 25 13 41 49

19 2 29 9 29 59 25 13 41 49

43 2 5 9 19 29 25 223 349 49

67 2 5 9 79 109 25 13 41 49

163 2 5 9 19 29 25 13 139 49
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TABLE 3.3. Case m = 1.

p = 3 p = 5 p = 7

D f [F : K] f [F : K] f [F : K]

3 17 3 29 5 41 7

4 11 3 19 5 83 7

7 5 3 19 5 13 7

Acknowledgments. The first author would like to thank Colorado
College for support during his Riley-scholar post-doctoral fellowship.
We would also like to thank the referee for the comments and sugges-
tions, particularly regarding Proposition 2.5 and Corollary 2.6.

ENDNOTES

1. Without this assumption, all statements regarding O-rank of E
would be replaced by analogous statements regarding O ⊗ Zp-corank
of the p∞-Selmer group Selp∞(E/K) of E.

2. The simpler case of p being inert in O, i.e., O/pO is a field, is
treated similarly.

3. That a = 0 in this case is known (see [10, Exercise 2.30],
[4, Section 4, Theorem 10] or [7, Theorem 7.46] for generalization
to higher dimensional abelian varieties); we include an argument for
completeness.

4. The case πu = −√
q follows the same argument.

5. We could instead write that dimQ(E(F ) ⊗Q)χ is independent of
the choice of χ.

6. The case K ⊂ k is similar, with m equal to the number of v such
that p | #Ẽ(κu).

7. Determined up to the correspondence of class field theory.

8. See [10, page 483], with f = 1 (in Silverman’s notation), for a
Weierstrauss equation.

9. Specifically with Sage’s interface to John Cremona’s ‘mwrank’ and
Denis Simon’s ‘simon two descent.’
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10. The cases D = 8, 11, . . . , 163, and possibly D = 4, 7.

11. The case D = 3, and possibly D = 4, 7.
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