Development of a system for analysis of muscle contraction pattern during Drosophila melanogaster crawling behavior

Mary Catherine Decker
College of Saint Benedict/Saint John's University

Follow this and additional works at: http://digitalcommons.csbsju.edu/elce_cscday

Part of the Biology Commons, Motor Control Commons, and the Neuroscience and Neurobiology Commons

Recommended Citation
http://digitalcommons.csbsju.edu/elce_cscday/2

This Poster is brought to you for free and open access by DigitalCommons@CSB/SJU. It has been accepted for inclusion in Celebrating Scholarship & Creativity Day by an authorized administrator of DigitalCommons@CSB/SJU. For more information, please contact digitalcommons@csbsju.edu.
The Idea:

The aim of this study was to attain footage of the crawling Drosophila larva from 360° angles in order to visualize the pattern of individual muscle contractions. A GAL4-UAS system was used to drive homozygous GCAMP expression, causing the muscles of the Drosophila larva to fluoresece when contracting. A stand was designed in order to place a live, crawling larva in a glass capillary tube under a fluorescent microscope and then rotate the tube completely for 360° video footage. Through the combination of the GCAMP expression and the rotatable stand, video of the individual muscle contraction pattern of a crawling Drosophila larva can be successfully attained and analyzed from all angles. Future research will identify the roles of specific interneuron populations in crawling through visualization of changes in the pattern of muscle contractions during crawling following interneuron knockout.

The Mechanics:

Animal Insertion:

Stage Set Up:

- Soldering Wire
- Foam Block
- Scope Light
- Larva
- Glass Capillary Tube
- 3M Sticky Tack

Figure 3: Florescent Microscope 360 Degree Footage System

The Outcome:

To Come:

- EKO GAL4-UAS lines for cholinergic, dopaminergic, serotonergic, glutamatergic, and tyraminergic interneuron populations will be crossed with the GCAMP line.
- Record larvae in 360 degree footage to analyze change in muscle contraction patterns
- Physical manifestation of interneuron populations specific behavioral role visualized
- Dissect larvae for brain/ganglia isolation and stain for GFP
- Location of knocked out interneuron populations visualized

Acknowledgements:

This research was made possible by a Rooney Summer Research Grant. Funding for this grant was given to St. John’s by the late Mrs. Florence Rooney. The travel and publishing expenses for this project were funded by the College of Saint Benedict Undergraduate Research Travel Grant. Future research for this project has been generously funded by the CSB|SJU Summer Undergraduate Research Fellowship Program and will take place in the summer of 2014.

References: