Roles of Monomer Binding and Alkoxide Nucleophilicity in Aluminum-Catalyzed Polymerization of ε-Caprolactone
Document Type
Article
Publication Date
2012
Disciplines
Chemistry | Physical Sciences and Mathematics
Abstract
The kinetics of polymerization of ε-caprolactone (CL) initiated by aluminum-alkoxide complexes supported by the dianionic forms of N,N-bis[methyl-(2-hydroxy-3-tert-butyl-5-R-phenyl)]-N,N-dimethylethylenediamines, (LR)Al(Oi-Pr) (R = OMe, Br, NO2) were studied. The ligands are sterically similar but have variable electron donating characteristics due to the differing remote (para) ligand substituents R. Saturation kinetics were observed using [CL]0 = 2–2.6 M and [complex]0 = 7 mM, enabling independent determination of the substrate coordination (Keq) and insertion (k2) events in the ring-opening polymerization process. Analysis of the effects of the substituent R as a function of temperature on both Keq and k2 yielded thermodynamic parameters for these steps. The rate constant k2, related to alkoxide nucleophilicity, was strongly enhanced by electron-donating R substituents, but the binding parameter Keq is invariant as a function of ligand electronic properties. Density functional calculations provide atomic-level detail for the structures of key reaction intermediates and their associated thermochemistries.
Recommended Citation
Ding, K.; Miranda, M. O.; Moscato-Goodpaster, B.; Ajellal, N.; Breyfogle, L. E.; Hermes, E. D.; Schaller, C. P.; Roe, S. E.; Cramer, C. J.; Hillmyer, M. A.; Tolman, W. B. Roles of Monomer Binding and Alkoxide Nucleophilicity in Aluminum-Catalyzed Polymerization of ε-Caprolactone. Macromolecules, 2012, 45(13), 5387–5396.
Comments
DOI: 10.1021/ma301130b