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Abstract 
 

In this project, two disc flight simulations were created in Mathematica. The first 

predicted the flight trajectory of a disc in two dimensions based on angle of attack 

and initial velocity input parameters. The second simulation predicted flight more 

accurately in three dimensions, taking the torque into account and showing the roll 

at the end of long flights. Equations for the simulations came from the forces known 

to act on flying objects as well as coefficient functions for lift, drag, and torque roll 

moment. Fundamental aerodynamic properties and flight patterns of Discraft Ultra-

Star flying discs were measured with the use of video recording and an onboard 

flight data recorder for comparison with the results of each simulation.  
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  Introduction 

 
History:  

Flying discs, more commonly known as Frisbees, have fascinated people for 

millennia. The name “Frisbee” originally comes from Frisbie’s pie tins (Fig. 1a), first 

thrown by Connecticut schoolchildren and Yale students in the late 1800s. However, 

Frisbee-like objects have been used for much longer. For example, the Olympic 

discus (Fig. 1c) was introduced c. 700 BC, and ancient Indian cultures used a disk-

like spinning weapon called the chakram (Fig. 1b) c. 1500  (Scodary, 2007). Though 

the designs and shapes of a pie tin, discus, and chakram are quite different from 

today’s most popular sport disc, the motion is described by the same forces.  

Following the tossing of Frisbie’s pie tins, a demand grew for better flying 

discs. Walter Frederick Morrison (Fig. 1d) started the first injection mold 

production in the late 1940s, but his model was notorious for shattering on impact 

with any hard surface. Rich Knerr and A. K. Melin of Wham-O created an improved 

model (Fig. 1e) in 1957 based on Morrison’s design. (Potts & Crowther, 2002) The 

sport of ultimate was devised in 1969 and is now played competitively worldwide. 

Another disc sport, disc golf (Fig 1f), was devised in the early 1900s (Wikipedia, 

2015) and uses smaller, more dense versions of plastic discs, exploiting their high 

velocity, long flight characteristics.  
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(a) Frisbie’s Pie Tin  (b) Chakram    (c) Discus  
(Photobucket, 2015)   (Sikhnet, 2015)   (Viresethonestas) 

  

(d) Morrison’s Pluto Platter  (e) Wham-O Frisbee  (f) Disc Golf chains 
(Mother Nature Network, 2015)  (Boomer, 2015)   (Washington & Lee, 2015) 

Figure 1- Examples of the early thrown disc designs and applications. 

 

Past work:  

Previous studies of disc flight have been conducted using wind tunnels, video 

cameras, various disc shapes, computer simulations, and on-board data collectors. 

Several studies have used wind tunnels to collect data about the air flow around a 

disc, most notably Potts & Crowther (2000, 2001, 2002). In their 2002 experiment, a 

disc was held by a metal frame and connected to a motor for spin capability. The 

disc was outfitted with a pressure transducer connected to twenty pressure sensors 

on each side of the disc, allowing for measurements across the disc surface (fig. 2a 

and 2b).  
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 (a)Back view of rig configuration  (b) Side view   (c) Disc types 

Figure 2 – Potts & Crowther (2010) setup for measurements in a wind-tunnel. The L-shaped 

configuration supports a vertical disc at a specific angle of attack for measurement of pressure 

distribution. Figure 2c shows the shapes of the three types of discs tested. 

 

Conditions included constant wind velocities of 20 m/s while varying attack 

angles between -10 and 30 degrees; and a constant 5 degree angle of attack for wind 

speeds of 6, 10, 15 and 20 m/s. Three disc shapes were used: a flat plate, an 

intermediate shape and a normal disc (fig. 2c). It was determined that while flatter 

plates have less drag and more lift, the roll moment is also increased, giving a faster 

precession rate. 

In the same study, Potts & Crowther created plots of the varying lift and drag 

coefficients with varying attack angle (fig 3). They found that lift and drag are 

largely unaffected by spin. This data has high validity, having been performed in a 

wind tunnel with measurable parameters (wind speed, attack angle, spin rate, etc). 

Hubbard & Hummel (2000) explored flight characteristics through tracking 

flights with high speed cameras and creating a flight simulation. In their analysis, 

they used the lift and drag coefficient curves from the Potts and Crowther study. The 

lift coefficient and roll moment equations were approximated with linear 
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dependence on attack angle; drag coefficient was approximated as a quadratic 

function of attack angle.  

 

Figure 3- Lift (a), drag (b), and pitch moment (c) coefficients from Potts & Crowther (2002). 
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Drag

 

Theory 
 

As mentioned in the Potts & Crowther study, lift and drag are unaffected by 

spin, so in the most basic sense, a disc is like an airplane. The relevant forces in this 

simplified, two dimensional case, which assumes that the ‘wing’ of the disc remains 

level, are drag, lift, and gravity.  

Gravity, 𝐹𝐺 = 𝑚 ∗ 𝑔 is an always-present force pulling the disc back to earth. 

In the previous equation, m is the disc mass and g represents the gravitational 

constant. The pressure difference between the top and bottom of the disc while it 

flies create the lift and drag forces, which take the form: 𝐹 =  
1

2
𝜌𝑣2𝐴𝐶(𝛼), where 𝜌 is 

the density of air, v is the velocity of the disc compared to the ground, and A is the 

planform area of the disc . C is a coefficient related to each force. The directions of 

these forces can be seen below (Fig. 4). Drag opposes velocity, and lift is 

perpendicular to both.  

Figure 4- Forces on the disc. 
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Angle of attack, 𝛼, is measured as the direction of the disc velocity relative to 

the disc plane. It is important to note that while the angle of the disc relative to the 

ground may stay roughly constant, the angle of attack changes. At the end of the 

flight as the disc drops, the attack angle becomes large and both lift and drag are 

increased. In this two-dimensional approximation, the only variables which govern 

flight path are initial velocity and initial angle of attack. 

Knowing the definition of angle of attack and that the drag force opposes 

velocity and lift is perpendicular, some vector manipulation gives the actual forces 

as:   

𝐹𝐿 =
1

2
𝜌𝐴𝐶𝐿(𝛼)

(𝑣 × 𝑛) × 𝑣

𝑐𝑜𝑠(𝛼)
 

𝐹𝐷 =
1

2
𝜌𝑣|𝑣|𝐴𝐶𝐷(𝛼) 

𝑠𝑖𝑛(𝛼) = (
−𝑣 ∙ 𝑛

|𝑣|
) 

These equations use velocity defined as that of the disc in the space frame 

and n as the normal vector, perpendicular to the disc axis, also in the space frame. 

The two-dimensional “airplane” approximation is not a poor one for short, 

straight flights, but in reality a third dimension is required. The 2D approximation 

assumes the orientation of the disc in space, corresponding to the �̂� vector, does not 

change in flight. However, if a disc is tossed with no spin, it wobbles, catches the air, 

and does not travel straight. This motion is caused by the torque of the wind as it 

hits the underside of the disc. The torque acts to change the angular momentum, a 

phenomenon known as precession. To describe precession, angular momentum and 

torque must first be defined. 
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Angular momentum, L, depends only on the moment of inertia of the disc and 

the spin rate, 𝜔𝑑. In the body fixed frame, this could be written as: 

 

𝐿 = [
𝐼1 0 0
0 𝐼2 0
0 0 𝐼3

] ∗ 𝜔𝑑 

with 𝐼1 =  𝐼2  =  
1

2
𝐼3 because the x and y axes of a round disc are symmetrical. 

Torque is defined as the time rate of change in angular momentum. 

𝜏 =
𝑑𝐿

𝑑𝑡
 

Because there is a component of angular momentum which is constant in the 

disc frame, changes in angular momentum affect the actual orientation of the disc in 

space. This change in orientation is exemplified as a roll motion, known as 

precession. A simplified approximation of the rate of this precession for a fast-

spinning gyroscope is:  

𝑃𝑟𝑒𝑐𝑒𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒:    𝜔𝑝 =
𝜏

𝐿
 

 
This suggests that discs thrown with more spin will have less precession, but 

all discs will precess. It also follows that a disc will continue to precess forever, 

completing whole circles in the roll direction, though this is not typically observed; 

thrown discs typically fall to Earth before completing a full roll rotation.  

The orientation of a precessing gyroscope in space is best described with 

Euler angles (fig 5). They are used to describe a frame of reference, and in this case, 

they relate the space frame (of Earth) to the computational frame used in the 

simulations.  
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Figure 5- Euler angles. Note that in this diagram, the second rotation is around the x axis 
(Wolfram, 2015). 

 

Only the first two rotations of Euler’s construction define the computational frame. 

This frame moves with the disc through space, but the disc spins within the frame. 

Because the disc is rotationally symmetric, the x’ y’ and z’ axes of this frame are still 

the principal axes. The first rotation is around the space z-axis by angle phi. The 

second rotation is around the new y-axis by angle theta: 

𝑝ℎ𝑖 𝑚𝑎𝑡𝑟𝑖𝑥 (𝑓𝑖𝑟𝑠𝑡 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛):               [𝜑] = [
cos (𝜑(𝑡)) −sin (𝜑(𝑡)) 0

sin (𝜑(𝑡)) cos (𝜑(𝑡)) 0
0 0 1

] 

𝑡ℎ𝑒𝑡𝑎 𝑚𝑎𝑡𝑟𝑖𝑥 (𝑠𝑒𝑐𝑜𝑛𝑑 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛):      [𝜃] = [
cos (𝜃(𝑡)) 0 sin (𝜃(𝑡))

0 1 0
−sin (𝜃(𝑡)) 0 cos (𝜃(𝑡))

] 

Multiplying these together can transform a vector in the space frame to the 

computational frame.  

Because the computational frame that we are using is itself precessing, the 

torque has an extra correction term (Taylor, 2005): 

𝜏 =
𝑑𝐿

𝑑𝑡
+ (𝜔𝑓  ×  𝐿) 

This equation is fully general for calculating torque in a rotating frame. 𝜔𝑓 is the 

frame rotation rate, which in this case corresponds to precession rate of the disc.   



11 
 

 The torque moment equation, which is based on a similar form to the drag 

and lift forces calculated earlier, is: 

𝜏 =
1

2
𝐴𝜌|𝑣|2𝑟

𝑣 × 𝑛

𝑐𝑜𝑠(𝛼)
𝐶𝑃(𝛼) 

 
Inverse rotation matrices are used to transform the velocity vector to the 

computational frame which is then crossed into the normal vector, which is just     

(0, 0, 1) in the computational frame. 
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Procedure 
 
The goal of this project was to model the flight of a Discraft Ultra-Star Sportdisc (fig. 

6). These discs are said to weigh 175 grams and have a diameter of 10.75 inches 

(Discraft, 2015). My measurements of 6 multi-colored Ultra-Star discs gave an 

average weight of 174 ± 3 grams and diameter of 10.8 ± 0.3 inches. Other 

characteristics of these discs were measured through both video and onboard Flight 

Data Recorder analysis and used to create a simulation that estimates flight path.  

Figure 6– Discraft Ultra-Star disc (Discraft, 2015). 

 
Part 1: Video Recording and Analysis 

For many elements of this project, data was collected and stored as video. 

These data were captured with a Canon VIXIA HF-M Series hand-held camcorder 

provided by the Saint John’s University library. Individual clips were analyzed with 

the Tracker application program (Brown, 2015), which has the capability of storing 

data such as horizontal and vertical positions for each frame of the video. The 
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camera captured frames every 33 milliseconds, or about 30 frames per second. 

Time-dependent positions were used to find both velocity and acceleration values.  

 One of the first tasks was to measure an Ultra-Star disc’s moment of inertia, 

which was completed through comparison with objects of known inertial moments. 

Because a single disc does not roll straight, moment of inertia of a sport disc was 

found by placing two together and rolled down a ramp. Objects of known moments 

of inertia were rolled down the same ramp for comparison. The rolling was caught 

on camera and physical positions were analyzed in Tracker and fit with the Web-

based Analysis Program for Physics (WAPP+) to find acceleration values for each 

object. The moment of inertia was determined by ratio of accelerations. As expected, 

the experimental inertial moment matched that of a uniform disk within error.  

 Videos were also taken of discs in flight. They were recorded in various 

locations (eg. behind St. Patrick hall, outside of the Peter Engel Science Center, and 

in the Bethel College and Clemens Field Houses) and again analyzed with Tracker 

(fig. 7). Tracker data was recorded for sixteen throws.  

The two-dimensional dynamic position data from these videos was used to 

calculate drag and lift coefficients for the specific angles of attack captured. The 

attack angle range was small in our data, but the number of trials gave an estimate 

of the lift and drag coefficients for comparison with Potts & Crowther wind-tunnel 

data. 



14 
 

 

Figure 7- An example of a backhand throw tracked frame by frame on Tracker 

  

 

Part 2: Flight Data Recorder 

 Further data was collected with an on-board flight data recorder (FDR). Dr. 

Thomas Kirkman put together the physical recording system and it was attached 

directly to the bottom of an Ultra-Star disc. The FDR is made of several components, 

including: a Teensy 3.1 Microcontroller, Adafruit 9-DOF IMU Breakout, a Lithium Ion 

Polymer Battery (3.7 V, 150 mA), and a MicroSD card breakout board.  
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(a) The Flight Data Recorder and battery  (b) A close-up of the FDR 

Figure 8- The Flight Data Recorder, attached to the underside of an Ultra-Star, centered for mass 

distribution. Components included  a Teensy 3.1 Microcontroller, Adafruit 9-DOF IMU Breakout, a 

Lithium Ion Polymer Battery, and a MicroSD card breakout board. 

 

The FDR and battery were mounted the disc with 3D printed plastic boxes. 

Pieces were shaped and created with a 3D printer after being modeled with 

Computer-aided Design (CAD) (de Vries, 2013). The proportions necessary for the 

box were measured, then a prototype was drawn on paper before being converted 

to a 3D render and printed. The addition of this hardware to the Frisbee increased 

the mass by more than a third, with a final mass of 245.4 ± 0.1 grams. The FDR was 

centered well, allowing for level flight. 

 With the FDR was attached, data was collected while tossing the disc. The 

FDR functioned as a gyroscope, magnetometer, and accelerometer, and each of these 

parameters was measured in three dimensions, giving a total of nine degrees of 

freedom measured for each flight.  

This data was collected every 23-24 milliseconds, so about 40 data points per 

second, for about 12.3 seconds for each trial and stored as text files on a Kingston SD 

chip. Trials were completed for a variety of throws, including backhand, forehand, 
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push-pass, and hammer. For several trials, both video and FDR data were recorded. 

Comparing the FDR data to a visual record of the throw was helpful in comparing 

throws of multiple types. The two most common throws are shown here (fig. 9). 

  

   (a) Backhand    (c) Forehand 

Figure 9- A couple examples of how discs were thrown (Aerobie, 2015). 

Part 3: Computer Simulation  

 Two simulations of disc flight were created in Mathematica; the first 

simulated flight in two-dimensions and the second included a third dimension. In 

the two-dimensional model, the equations of motion corresponding with lift and 

drag were taken from Potts and Crowther’s wind tunnel data (after comparison with 

my data). The three-dimensional model also took the disc spin rate and torque pitch 

moments into account, producing results that include the noticeable roll observed in 

disc flight.  While similar to Hummel’s procedure (1997) for computationally 

simulating disc flight, the drag and lift coefficient graphs were fit to polynomials of 

the fourth degree instead of the second for greater accuracy in these simulations. 
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Data Analysis 

Part 1: Video Recording and Analysis 

 Video data for sixteen flights was analyzed with Tracker and interaction of 

the velocities and accelerations in various directions led to estimates of the drag and 

lift coefficients. The flights in our data had a small range of attack angles; the 

calculated lift and drag coefficients at that angle were compared with past data 

(table 1, fig. 9).  

Table 1- Comparison of drag and lift coefficients at 11 degree angle of attack 

 Potts and Crowther My data 
Drag Coefficient,  

𝛼 = 17° 
0.45 ± 0.02 0.3 ± 0.3 

Lift Coefficient,  
𝛼 = 17° 

1.12  ± 0.05 1 ± 0.4 

  (a) Comparison of drag coefficient  (b) Comparison of lift coefficient 

Figure 9- Comparison of video data with Potts & Crowther (2010) lift and drag coefficient graphs 

Part 2: Calculating Lift and Drag Force Coefficients  

Because the video data taken in this study matched the Potts and Crowther curves at 

that attack angle within reasonable error estimates, their data curves were used in 

calculating the lift and drag coefficients at all angles, and thus their correspondent 

forces. 
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The following equations represent the fourth-order drag and lift coefficient 

polynomials. They were obtained by using a CalComp2500 Digitizer on the lift and 

drag coefficient graphs, then plotting and fitting the function to a curve. It was more 

convenient for later calculations to keep the equations in terms of the sine of the 

attack angle. Here are the coefficient equations found from the digitized data: 

Drag Coefficient Equation  

𝐶𝐷(sin 𝜃) =  .098577 + 0.32721𝑠𝑖𝑛𝜃 +  3.5455(𝑠𝑖𝑛𝜃)2 − 0.99958(𝑠𝑖𝑛𝜃)3 − 1.6474(𝑠𝑖𝑛𝜃)4 

Lift Coefficient Equation  

 
𝐶𝐿(sin 𝜃)

cos 𝜃
=  0.13891 + 2.9945 sin 𝜃 + 4.5443(sin 𝜃)2 − 16.267(sin 𝜃)3 + 19.905(sin 𝜃)4 

Part 3: Flight Data Recorder 

 The data from more than twenty flights with the Flight Data Recorder were 

plotted and analyzed both visually and computationally. The nine-degrees of 

freedom FDR data was recovered for two dimensions (the symmetric x and y) of 

gyroscope and acceleration data, but the magnetometer data was not useful; the 

response rate was apparently not fast enough to keep up with the spin.  z 

components of gyroscope and acceleration also did not give good data, as they 

tended to saturate during a throw. 

 Typically each FDR data file contained multiple flights in catch-throw-hold 

sequences in a continuous stream of data. The gyroscope z-component, which 

typically saturated during a flight, made it easy to separate the flight data from the 

non-flight data. Each flight segment was put into its own file and was then analyzed 

visually and computationally. Graphs were printed showing all nine degrees of 

freedom varying over time for each throw.  
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 According to Kirkman (2014), a free body moves with: 

𝜓 = −
𝐼3 − 𝐼1

𝐼1
𝜔3𝑡 

For a disc, with I3 = 2* I1, the x- and y- components of the gyroscope-measured 

omega vector rotate at a frequency of 𝜔𝑧. The phase of the x and y gyroscope data 

was found using the following: 

𝑝ℎ𝑎𝑠𝑒 = 𝑎𝑟𝑐𝑡𝑎𝑛(𝜔𝑦 𝜔𝑥⁄ ) 

 Discontinuities in phase, when a phase of -180 degrees was followed by a +180 

degrees, were healed to make a continuous, linear phase and the slope was 

calculated using WAPP+. Determination of phase did not work when the x and y 

components were small, so this procedure was only possible for the longer throw 

data.  

 The acceleration data was also analyzed by setting x- or y- component of 

acceleration data from each throw against a sinusoidal function:  

f(t)= k1*sin(k2*(t-a) + k3) + k4 + k5(t-a) 

where t is time and a is the initial time of each throw, with parameters k1-k5 varied 

until the function matched the data adequately. The frequencies (values of k2) of 

each sinusoidal data set were used to determine the angular velocity, or spin rate, of 

the disc (table 2). The slight differences in frequencies from acceleration and 

gyroscope data may be indicators of disc wobble motion, but this was not explored 

thoroughly.    Table 2- Typical spin rates 

Throw Short Backhand Short Hammer Long Backhand Long Forehand 

Spin Rate 

(rad/s) 

31.3 ± .2 -34 ± 2 52 ± 5 -48 ± 2 
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There also seemed to be an evident damping of 𝜔𝑥𝑦for throws of longer 

duration (see fig 10 & 11). In the shorter flights, this phenomenon was not evident. 

This information is consistent with the fact that discs are spin-stabilized; higher spin 

rates damp the wobble faster.  

 
(a) Short throw FDR acceleration data 

 
(b) Short throw FDR magnetic data 

 
(c) Short throw FDR gyroscope data 

 
Figure 10- Graphs of FDR Data. of a short throw (~15 yards) 
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(a) Long throw FDR acceleration data 

 
(b) Long throw FDR magnetic data 

 
(c) Long throw FDR gyroscope data 

 
Figure 11- Graphs of FDR Data. of a long throw (~30 yards) 
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Results and Discussion 
 

Two computer simulations were written in Mathematica. The first combined 

the varying lift and drag forces to output information about a given flight in two 

dimensions. The flight patterns, in the simulation as in reality, depended on disc 

release angle and initial velocity. The second also included a third dimension due to 

the torque of wind hitting the underside of the disc. A more detailed description of 

the simulation setup is included in the Appendix section. 

The simulations were used for specific angles of attack and initial velocities 

found with video and final position was compared. Graphs of position and velocity 

over time as well as attack angle and disc orientation give insight into the disc flight 

pattern. For the following (table 3, fig 12), inputs were taken from tracker results 

for a “far backhand throw” with initial velocity at 22 m/s at 2 degrees above 

horizontal and disc inclination angle of 11 degrees above horizontal.  

Table 3- Large uncertainties in these values come from the uncertainty in tracker – the disc 
became blurry at high speeds. 

 

Observed Distance 2D Simulation 3D Simulation 

50 ± 3 m 45 ± 10 m 36 ± 15 m 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12- Simulation results of x vs z position during a flight (2D on top, 3D on bottom).  
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Simulations were also run for a throw of opposite spin and for a throw with a 

very high release angle. Throws with opposite spin followed the same flight pattern, 

but with the roll occurring in the opposite direction, as expected. This means that a 

throw released as a forehand with the same conditions (velocity, angles, absolute 

value of spin rate) as a backhand follows a symmetric flight pattern to that of the 

backhand. A high release angle (disc angle 35 degrees, release velocity angle 9 

degrees) for a throw at 22 m/s was tested in each simulation. Both show a peak 

height of 10 m, but after the peak, the disc continues in the positive x direction in the 

2D case (fig 13a) while turning back toward the thrower in the 3D approximation. 

The second case is, as expected, closer to what happens in reality (fig. 13b).  

 

 

 

 

(a) 2d simulation results    (b) 3d simulation results 

Figure 13- Results for a disc thrown with a very high release angle and initial velocity direction. 

Applications of this model include optimizing angles in windy throwing 

situations, giving expected results for certain throws, and insight into the S-curve 

observed in certain throws. By inputting initial velocities, angle of attack and throw 

velocity, results change as expected. While observed throws do not match 

simulations perfectly, errors are present in observed velocity and angle 

measurements as well as measured distance. While the simulation aims to cover all 

aspects of forces, the drag and lift coefficients are still not fully understood and 

perfect conditions are not easily obtainable. 
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Other picture websites: 

• http://aerobie.narod.ru/images/diag-forehand-throw.gif 
• http://aerobie.narod.ru/images/diag-backhand-throw.gif 
• http://i228.photobucket.com/albums/ee63/Spideristic/Profiles%20in%20

History%20-%20Auction%2042/Lot63_bttf3_frisbes_pies_plate.jpg 
• https://i0.wp.com/www.sikhnet.com/files/news/2008/September/pic-

3.jpg 
• http://viresethonestas.com/wp-

content/uploads/2014/12/Olympics_discus.jpg 
• http://www.mnn.com/sites/default/files/styles/featured_blog/public/wfm-

feat.jpg 
• http://www.boomerbookofchristmas.com/wham-o-an-early-

history/lens4410782_1241705439wham-o_frisbee/ 
• https://wlurecreation.wordpress.com/2011/05/18/disc-golf-tournament-

on-friday-come-on-take-break-from-studying/ 
• http://mathworld.wolfram.com/EulerAngles.html 
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Appendix:  
Mathematica Code and Explanations 

 
 
2 d (1 st approx) 
 
m = .175; 
g = 9.8; 
r = .27305/2; 
A = Pi r^2; 
rho = 1.2041; 
 Defining constants 
 
K1 = .09857432; K2 = .3272530; K3 = 3.545699; K4 = -1.001032; K5 = -1.645254; 
CD[x_] = K1 + K2*x + K3*x^2 + K4*x^3 + K5*x^4; 
L1 = .1389740; L2 = 2.991266; L3 = 4.443459; L4 = -17.41488; L5 = 18.42772; 
CL[x_] = L1 + L2*x + L3*x^2 + L4*x^3 + L5*x^4; 
 Defining lift and drag coefficient equations 
 
v = {x'[t], 0, z'[t]}; 
nv = Sqrt[x'[t]^2 + z'[t]^2]; 
phi = Pi; 
 Defining velocity (2d), speed (length of velocity vector) and phi angle 
 
n = {Sin[theta] Cos[phi], Sin[theta] Sin[phi], Cos[theta]}; 
 Defining the disc normal vector 
 
Lift = Simplify[.5 A rho CL[-Dot[v, n]/nv] Cross[Cross[v, n], v]]; 
Drag = -.5 A rho v nv CD[-Dot[v, n]/nv]; 
rhs = Lift + Drag + {0, 0, -m g}; 
 Defining force equations 
 
theta = Pi/180 * 35; 
theta0 = Pi/180.*9; 
v0 = 22; 
Input variables theta0 here is velocity angle, theta is disc angle 
 
solution =  
  NDSolve[{x''[t] == rhs[[1]]/m, z''[t] == rhs[[3]]/m, x[0] == 0, z[0] == 0,  
    z'[0] == v0 Sin[theta0], x'[0] == v0 Cos[theta0]}, {x, z}, {t, 0, 10}]; 
 Solving the differential equations for accelerations/forces 
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List of possible plots: 
ParametricPlot[Evaluate[{x[t], z[t]} /. First[solution]], {t, 0, 5.5},  
 PlotRange -> All] 
 Plot of x vs z distance (side-view) 
Plot[Evaluate[{ArcSin[-Dot[v.n]/nv]*180/Pi} /. First[solution]], {t, 0, 5},  
 PlotRange -> All] 
 Plot of angle of attack vs time 
Plot[Evaluate[z[t] /. First[solution]], {t, 0, 5.5}, PlotRange -> All,  
 AspectRatio -> .2] 
ParametricPlot[Evaluate[{x'[t], z'[t]} /. First[solution]], {t, 0, 5},  
 PlotRange -> All, AspectRatio -> Automatic] 
 Plot of x vs z velocities 
 
t0 = 7.0; 
Evaluate[{x'[t0], z'[t0]} /. First[solution]] 
Evaluate[{x[t0], z[t0]} /. First[solution]] 
 Gives the x and y velocity and position for a given input time 
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3 d (2 nd approx) 
 
m = .175; 
g = 9.8; 
r = .27305/2; 
A = Pi r^2; 
rho = 1.2041; 
I3 = .5 m r^2; 
I1 = I3/2; 
 Inputting constants 
 
v0 = 22; 
theta0 = 9*Pi/180; 
spin = 50; 
thetad = 35*Pi/180; 
Input variables: velocity and angle of velocity(radians) at t0, spin rate (rad/s) and 
release angle at t0 
 
v = {x'[t], y'[t], z'[t]}; 
nv = Sqrt[x'[t]^2 + y'[t]^2 + z'[t]^2]; 
n = {Sin[theta[t]] Cos[phi[t]], Sin[theta[t]] Sin[phi[t]], Cos[theta[t]]}; 
 Defining velocity, the scalar speed, and the disc normal vector) 
 
K1 = .09857432; K2 = .3272530; K3 = 3.545699; K4 = -1.001032; K5 = -1.645254; 
CD[x_] = K1 + K2*x + K3*x^2 + K4*x^3 + K5*x^4; 
L1 = .1389740; L2 = 2.991266; L3 = 4.443459; L4 = -17.41488; L5 = 18.42772; 
CL[x_] = L1 + L2*x + L3*x^2 + L4*x^3 + L5*x^4; 
Defining lift and drag coefficient equations 
 
Lift = Simplify[.5 A rho CL[-Dot[v, n]/nv] Cross[Cross[v, n], v]]; 
Drag = -.5 A rho v nv CD[-Dot[v, n]/nv]; 
rhs = Lift + Drag + {0, 0, -m g}; 
 Defining force equations) 
 
mphi = {{Cos[phi[t]], -Sin[phi[t]], 0}, {Sin[phi[t]], Cos[phi[t]], 0}, {0, 0,  
    1}}; 
mtheta = {{Cos[theta[t]], 0, Sin[theta[t]]}, {0, 1, 0}, {-Sin[theta[t]], 0,  
    Cos[theta[t]]}}; 
 Defining transformation matrices. The working frame requires only two 
transformations (no psi matrix) and is in the disc plane but does not spin with the 
disc. 
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{0, theta'[t], 0} + Inverse[mtheta].{0, 0, phi'[t]}; 
Simplify[%]; 
wb = %; 
{0, 0, dpsi[t]} + {0, theta'[t], 0} + Inverse[mtheta].{0, 0, phi'[t]}; 
Simplify[%]; 
wpb = %; 
Lpb = {{I1, 0, 0}, {0, I1, 0}, {0, 0, I3}}.wpb; 
 Defining frames. wb is omega of our frame (disc wobble), wpb is the omega of the 
disc in the frame (disc spin rate) and Lpb is the angular momentum of the disc in the 
frame we are using) 
 
Trhs = Simplify[D[Lpb, t] + Cross[wb, Lpb]]; 
torque = Simplify[.5 A rho nv 2 r* 
    Cross[Inverse[mtheta].Inverse[mphi].v, {0, 0, 1}]*pm[-Dot[v, n]/nv]]; 
k1 = -.009204492; k2 = .07469542; k3 = -.2275474; k4 = 1.853262; k5 = -1.191175; 
pm[x_] = k1 + k2*x + k3*x^2 + k4*x^3 + k5*x^4; 
 These are the torque equations. They involve the pitch moment coefficient. 
 
solution =  
  NDSolve[{torque[[1]] == Trhs[[1]], torque[[2]] == Trhs[[2]],  
    torque[[3]] == Trhs[[3]], phi[0] == Pi, theta[0] == thetad,  
    dpsi[0] == spin, phi'[0] == 0, theta'[0] == 0, x''[t] == rhs[[1]]/m,  
    y''[t] == rhs[[2]]/m, z''[t] == rhs[[3]]/m, x[0] == 0, y[0] == 0,  
    z[0] == 0, z'[0] == v0 Sin[theta0], x'[0] == v0 Cos[theta0],  
    y'[0] == 0}, {x, y, z, phi, theta, dpsi}, {t, 0, 10}, MaxSteps -> 20000]; 
Solving the force and torque differential equations with initial conditions 
specified. 
 
 
List of possible plots: 
ParametricPlot[Evaluate[{x[t], z[t]} /. First[solution]], {t, 0, 4},  
 PlotRange -> All] 
Plot of x vs z position (as if viewing from the side) 
ParametricPlot[Evaluate[{x[t], y[t]} /. First[solution]], {t, 0, 5},  
 PlotRange -> All] 
ParametricPlot[Evaluate[{y[t], z[t]} /. First[solution]], {t, 0, 5},  
 PlotRange -> All] 
Plot[Evaluate[{z[t]} /. First[solution]], {t, 0, 5}, PlotRange -> All] 
Plot[Evaluate[{y[t]} /. First[solution]], {t, 0, 2.3}, PlotRange -> All] 
Plot of y position vs time (as if viewing as if from the thrower's position) 
Plot[Evaluate[{x[t]} /. First[solution]], {t, 0, 5}, PlotRange -> All] 
ParametricPlot[Evaluate[{x[t], y[t]} /. First[solution]], {t, 0, 5},  
 PlotRange -> All] 
Plot of x vs y position (as if viewing from above) 
Plot[Evaluate[{ArcSin[-Dot[v, n]/nv]*180/Pi} /. First[solution]], {t, 0, 5},  
 PlotRange -> All]  
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Inverse[mtheta].Inverse[mphi] /. t -> t0; 
ParametricPlot[ 
 Evaluate[{Sin[theta[t]] Cos[phi[t]], Sin[theta[t]] Sin[phi[t]]} /.  
   First[solution]], {t, 0, t0}, PlotRange -> All] 
Plot[Evaluate[Sin[theta[t]] Sin[phi[t]] /. First[solution]], {t, 0, t0},  
 PlotRange -> All] 
 
 
t0 = 4; 
 Input variable: pick a time near the end of the flight 
 
Evaluate[{x[t0], y[t0], z[t0]} /. First[solution]] 
{x'[t0], y'[t0], z'[t0]} /. First[solution] 
{Sin[theta[t0]] Cos[phi[t0]], Sin[theta[t0]] Sin[phi[t0]], Cos[theta[t0]]} /.  
 First[solution] 
{theta[t0], phi[t0]} /. First[solution] 
Evaluate[ArcSin[ 
    Evaluate[-Dot[{x'[t], y'[t], z'[t]}/Sqrt[x'[t]^2 + y'[t]^2 + z'[t]^2],  
        n] /. First[solution]]] 180/Pi /. t -> t0] 
 
 These numbers represent: 
 -distance in (x, y, z) 
 -velocities in (x, y, z) at t0, 
 -orientation of the disc (disc normal vector) at t0,  
 -another form of disc orientation 
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