
College of Saint Benedict and Saint John's University College of Saint Benedict and Saint John's University

DigitalCommons@CSB/SJU DigitalCommons@CSB/SJU

Honors Theses, 1963-2015 Honors Program

4-2015

Parallel Preconditioners for Finite Element Computations Parallel Preconditioners for Finite Element Computations

Emily Furst
College of Saint Benedict/Saint John's University

Follow this and additional works at: https://digitalcommons.csbsju.edu/honors_theses

 Part of the Computer Sciences Commons, and the Mathematics Commons

Recommended Citation Recommended Citation
Furst, Emily, "Parallel Preconditioners for Finite Element Computations" (2015). Honors Theses,
1963-2015. 66.
https://digitalcommons.csbsju.edu/honors_theses/66

This Thesis is brought to you for free and open access by DigitalCommons@CSB/SJU. It has been accepted for
inclusion in Honors Theses, 1963-2015 by an authorized administrator of DigitalCommons@CSB/SJU. For more
information, please contact digitalcommons@csbsju.edu.

https://digitalcommons.csbsju.edu/
https://digitalcommons.csbsju.edu/honors_theses
https://digitalcommons.csbsju.edu/honors
https://digitalcommons.csbsju.edu/honors_theses?utm_source=digitalcommons.csbsju.edu%2Fhonors_theses%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.csbsju.edu%2Fhonors_theses%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.csbsju.edu%2Fhonors_theses%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.csbsju.edu/honors_theses/66?utm_source=digitalcommons.csbsju.edu%2Fhonors_theses%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@csbsju.edu

Parallel Preconditioners for Finite

Element Computations
AN HONORS THESIS

College of Saint Benedict/Saint John’s University

In Partial Fulfillment

of the Requirements for Distinction

In the Departments of Computer Science and Mathematics

by Emily Furst

April 2015

PROJECT TITLE: Parallel Preconditioners for Finite Element Computations

Approved by:

Michael Heroux

Scientist in Residence of Computer Science

Imad Rahal

Associate Professor of Computer Science

Robert Hesse

Associate Professor of Mathematics

Imad Rahal

Chair, Department of Computer Science

Robert Hesse

Chair, Department of Mathematics

Emily Esch

Director, Honors Thesis Program

1

Abstract

This thesis sought to explore numerical methods for solving partial differential equations

and to determine the best method of updating the deal.II software to utilize new Trilinos

software packages. The one dimensional heat equation with Dirichlet boundary conditions

and nonzero initial conditions was solved analytically, using the Forward in Time, Central

in Space scheme of the finite difference method, and the Crank-Nicolson scheme of the finite

element method. The solutions from using the finite difference method and the finite element

method were then compared to the analytic solution to determine accuracy. An example

using the same Trilinos packages that are utilized in deal.II currently was updated to use the

newer Trilinos packages to determine how to update deal.II and to analyze any performance

increases resulting from these changes to the software.

2

Contents

1 Introduction 5

1.1 Introduction to Partial Differential Equations and the One Dimensional Heat Equa-

tion . 5

1.2 Introduction to Parallel and Distributed Computing 6

2 Contributions to this Topic 7

3 Problem Statement 7

4 Background 8

4.1 Analytical Solutions and Separation of Variables 8

4.2 The Finite Difference Method . 9

4.3 The Finite Element Method . 10

4.4 Trilinos Software . 11

4.4.1 Epetra, Tpetra, and Xpetra . 11

4.4.2 ML and MueLu . 12

4.4.3 AztecOO and Belos . 12

4.4.4 Summary of Trilinos Packages . 13

4.5 deal.II Software . 13

5 Methods 14

5.1 Source Code and Computing Architecture . 14

5.2 Solving the One Dimensional Heat Equation Analytically 14

5.3 Solving Using FTCS Finite Differences . 17

5.4 Solving Using Crank-Nicolson FEM . 18

5.5 Developing a Method for Updating the deal.II Software 19

6 Results 20

6.1 One-Dimensional Heat Equation Results . 20

6.1.1 Analytical Solution . 20

6.1.2 Finite Difference Results . 22

6.1.3 Finite Element Method Results . 28

6.2 Small Scale Example Results . 30

3

7 Conclusion 37

7.1 Future Work . 38

8 Appendix 40

8.1 Computing Architecture . 40

8.2 MLAztecOO.cpp Source Code . 40

8.3 MLBelos.cpp Source Code . 44

8.4 MueLuBelos.cpp Source Code . 48

8.5 Makefile for MLAztecOO.cpp . 54

8.6 Trilinos cmake Script . 56

8.7 deal.II Install Notes . 56

4

1 Introduction

Many of the problems that are of interest to scientists regarding the physical world can best be

described by a partial differential equation. Heat dynamics, fluid dynamics, and quantum me-

chanics can all be described in terms of partial differential equations. However, partial differential

equations can be quit difficult and time-consuming to solve analytically. Here, solving analytically

refers to using algebraic or numeric methods to find a solution to a partial differential equation

where the solution is in the form of an equation. As a result, many softwares have been developed

in order to make the solving of such problems easier. However, as computers cannot process the

infinite number of points comprising a problem space, finite numerical algorithms were developed

to replace traditional analytical methods. These computational methods vary in terms of efficiency

and accuracy.

One particular application of computational methods is in the solving of very large problems.

This desire to solve exceptionally large problem sizes has led to the development of high perfor-

mance and parallel methods of solving. Many numerical methods involve quite a bit of repetition

in computation which enables the programmer to exploit quite a bit of parallelism. Well thought

out and smart storage patterns of data in memory can also be utilized to improve performance.

When parallel and high performance methods are implemented well, increased time performance

is often noted in the computation time associated with solving such large problems.

1.1 Introduction to Partial Differential Equations and the One Dimen-

sional Heat Equation

Partial differential equations (PDEs) are highly important tools for the understanding of the

physical world, and in fact were formulated by scientists in the eighteenth and nineteenth centuries

in order to describe different aspects of the physical world [11]. It is important to note that as a

result of the motivation for their development and as a result of their nature, it is difficult to think

of partial differential equations in an abstract mathematical sense. That is, due to ambiguities and

contradictions in solutions, it is often necessary to return the problem to the physical situation

it is taken from in order to arrive upon the intended solution and remove ambiguities [11]. An

elementary, homogeneous, linear partial differential equation is the one dimensional heat equation

first derived by Joseph Fourier in 1807 [11].

When solved, the one dimensional heat equation models the heat distribution across a rod of

certain length over time. It was originally stated by Fourier in Théorie Analytique de la Chaleur

5

as

q = −k5 u

where q is the rate of flow of heat energy per unit time, with the conductivity, k a positive constant,

and 5u is the gradient of u, the temperature [3]. Heat equations can model the behaviour of a

variety of dimensional spaces, materials, and conditions including sources and sinks. For the one

dimensional heat equation, it is assumed that the surface of the rod is insulated so that heat

can only flow in the x-direction. In connection with their application to physical situations, heat

equations can be described by either initial conditions, boundary conditions, or both in order to

better describe the situation. Initial conditions describe the initial state of the problem space in

terms of some equation or constants. Boundary conditions describe the state of the boundary

or edges of the problem space. Depending on how these conditions are specified, they can be

classified as being of several different forms. Dirichlet conditions are one such form. Specifically,

Dirichlet boundary conditions impose a fixed value for the solution at the ends of the rods. For

example, the Dirichlet boundary condition

u(0, t) = 0 = u(L, t)

would imply that at the ends of the rod, 0 and L, the temperature is fixed at 0 degrees in the

solution, u [3]. Once adequately defined, the one dimensional heat equation can then be solved in

a variety of methods not only limited to analytical methods.

1.2 Introduction to Parallel and Distributed Computing

As opposed to traditional sequential computing, parallel computing takes advantage of computer

architectures in which there are multiple processors. One of the goals of parallel computing is to

increase performance by decreasing computation time. This is achieved by separating independent

tasks to be computed on different processors at the same time. By computing tasks at the same

time the total computation time will typically be less than the total computation time resulting

from computing the tasks in serial. Independent tasks are ones that do not rely upon the output

of any other task for its own computation.

When multiple machines are being used together and communicating with one another in order

to complete a set of computations or run a program, it is referred to as distributed computing.

Distributed computing allows for very large problems to be solved using computational methods.

By using a distributed system, there is much more memory and computation power available to

6

the user. Scientists trying to solve large partial differential equations often utilize distributed

systems in order to be able to solve such large equations and to decrease the length of time that

is required to solve the PDE.

2 Contributions to this Topic

This thesis provides several contributions to the field. First, it provides a comprehensive tutorial on

solving partial differential equations both analytically and finitely. It takes a single one dimensional

heat equation as an example and proceeds to walk through the steps to solve the equation three

different ways. An analytical solution is initially found. Next, a simple finite method, finite

difference, is chosen to introduce finite solutions. Finally, a more robust finite method, finite

element, is chosen to show the advantages of approximate solutions. By solving the same equation

for each method, it is easy to see the advantages and disadvantages of each method. In addition,

a method for updating the deal.II software is designed and tested in this thesis. There is a desire

to update deal.II, and no method had previously been proposed. The method proposed here can

serve as a basis for others to continue the work on deal.II. While slight modifications can be made

to improve the proposed method, the information gathered will help others to easily pick up and

continue the work.

3 Problem Statement

There are many software packages available to aid in a variety of different tasks. However, as

hardware advances, oftentimes software becomes outdated and loses its value. Because of this,

software is referred to as being ”brittle”. Thus, maintenance of code is becoming an important

area of research within computing. Maintenance of code involves updating software to utilize

the resources made available by new and advanced computer architectures and programming

languages. By practicing code maintenance, the amount of work on programmers and developers

is decreased as updating software to use new resources is typically less complex and time consuming

than scrapping outdated software and starting from scratch.

In this thesis, we seek to determine an approach to maintain the deal.II software for finite

element computations by updating the Trilinos packages that it utilizes. Currently, through

wrapper classes, deal.II supports Epetra [1] and Tpetra [1] for matrix and vector representation,

ML [1] for matrix preconditioners, and AztecOO [1] for solvers. Our aim is to determine how best

to modify the deal.II wrapper classes so that they use the MueLu [1] package for preconditioners

7

and the Belos [1] package for solvers. However, as MueLu only supports Xpetra [1] objects, it is

necessary to develop a method to wrap the Epetra and Tpetra objects as Xpetra objects before

setting up a MueLu preconditioner and Belos solver. Small-scale example solvers will be produced

in order to determine the best method for implementing this change. More specifically, a problem

will be set up and solved in a manner similar to how the deal.II wrapper classes function. This

problem will store objects using Epetra, precondition with ML, and solve with AztecOO. This

sample problem will then be updated to use the newer software packages, and time performance

will be measured to determine the viability of the proposed method of updating deal.II.

Further, as the deal.II software relies upon numerical methods for solving partial differential

equations, we want to explore the efficiency and accuracy of such methods. A one dimensional

heat equation with Dirichlet boundary conditions and nonzero initial conditions will be solved

analytically and using finite numerical methods to show the accuracy of finite numerical methods.

This will include using the finite difference method and the finite element method. deal.II imple-

ments the finite element method, so the results obtained from using the finite element method

will be analyzed in order to generally estimate the accuracy of deal.II.

4 Background

4.1 Analytical Solutions and Separation of Variables

Analytical solutions are obtained by using the traditional analytical methods that were developed

by scientists to solve partial differential equations. Many different approaches exist for solving a

PDE analytically that are chosen based on the specific problem being solved. In this thesis, based

on the one dimensional heat equation chosen, the separation of variables method will be used to

solve the heat equation. As the heat equation chosen is one dimensional and contains no sources,

separation of variables can be used to easily solve our equation. Separation of variables is a method

that can used to solve certain ordinary differential equations as well as linear, homogeneous PDEs.

For a problem such as the one being solved in this thesis, the solution u(x, t) is assumed to be of

the form u(x, t) = X(x)T (t). That is, it is assumed that the solution can be separated into two

functions, each of one variable. This simplifies the problem as each equation X(x) and T (t) can

be solved for separately.

8

4.2 The Finite Difference Method

The finite difference method of solving PDEs is a fairly simple numerical method. Without loss

of generality, the method will be described assuming a one dimensional problem is being solved.

First, the problem space is split into finitely many, evenly spaced points determined by a change

in space variable, ∆x. This discretization of the problem space is referred to as a mesh. The

variable ∆x is determined based on the desired number of points, M , and the total length of the

problem space, l,

∆x =
l

M
.

Next, based on the desired number of time steps, N , a variable ∆t is calculated by

∆t =
T

N

where T is the last time at which a solution is desired [9]. The next steps in determining a solution

are based on the scheme chosen to solve the problem.

There are several schemes in which the finite difference method can be used to solve a PDE.

In this thesis, the forward in time central in space (FTCS) scheme was used [9]. Given a one-

dimensional heat equation,

ut − αuxx = 0,

the FTCS scheme can be used to find a solution at time n+ 1 of the form

ui,n+1 = (1− 2λ)ui,n + λ(ui+1,n + ui−1,n)

where

λ =
α∆t

(∆x)2
.

In this case, ui,n refers to u(i, n) where i is a point on the mesh, and n is a time step. In order to

represent the entire problem space, the FTCS method can be expressed in the following matrix

form

u0,n+1

u1,n+1

...

uM−1,n+1

=

a b 0 · · · 0

b a b · · · 0

0
. . .

. . .
. . . 0

...
...

0 0 · · · b a

u0,n

u1,n
...

uM−1,n

9

where a = 1 − 2λ, b = λ, and n is a time step between 0 and N − 1 [9]. An approximate

solution to the heat equation can then be found by refining the mesh until the values of ui,n

are sufficiently close to a known analytical solution to the equation. One can refine the mesh by

choosing increasingly smaller values for ∆x. However, when this is done, it is important to note

that consideration needs to be taken when subsequently choosing ∆t in order to ensure that the

solution remains stable [9]. Specifically, in order to maintain stability, λ has to be chosen so that

λ ≤ 1
2 , or more directly ∆t must be chosen so that

∆t ≤ ∆x2

2α

[9]. With this condition, the ∆t variable shrinks much more quickly than the ∆x variable. Thus,

with each refinement of the mesh, many more iterations are required to reach a solution at the

same time step as in the previous refinement. This results in very large computation costs for

implementations of the FTCS scheme that require a high level of accuracy. As a result, the FTCS

method is not always a suitable method for solving partial differential equations.

4.3 The Finite Element Method

The finite element method (FEM) is another finite numerical method for solving partial differen-

tial equations. While the finite difference method is much easier to implement, the finite element

method can handle more complex geometries and often times results in a more accurate approxi-

mation to the solution of a PDE. FEM takes a problem space and divides it into a finite number

of nodes. This process is referred to as creating a mesh on the problem space. The nodes on

the mesh are then used for creating an approximation to the solution of the partial differential

equation.

Like the finite difference method, there are many different schemes or implementations of the

finite element method. The implementation used in this thesis is the Crank-Nicolson scheme [7].

Unlike the FTCS scheme of the finite difference method, Crank-Nicolson requires that the solution

u be solved for all nodes at any specific time as it is an implicit scheme. This can be seen in how

the equation for solving the next time step is set up. Whereas the FTCS scheme can solve for

any particular ui at time t, the unknown or left-side of the equation used in the Crank-Nicolson

scheme involves a linear combination of ui−1, ui, and ui+1. As a result, the Crank-Nicolson scheme

tends to be quite a bit more accurate than the FTCS scheme of finite difference. Further, unlike

the FTCS scheme, the Crank-Nicolson scheme is unconditionally stable. That is, unlike FTCS

in which the ∆t has to be carefully chosen in order for the scheme to work properly, there is no

10

concern over appropriate choice of ∆t in Crank-Nicolson [7].

4.4 Trilinos Software

The Trilinos Project is a large collection of packages designed to solve large scale, complex, physics,

engineering, and science problems. This involves having the capability to solve linear and non-

linear systems of equations, eigensystems, and other similar problems. The packages that make up

Trilinos are self-contained, independent pieces of software with their own requirements. However,

Trilinos allows for and provides various ways for packages to interact with one another. Further,

Trilinos allows for integration of Trilinos with other established libraries of solvers. The Trilinos

Project rose out of a desire and perceived need to provide a common algorithmic base for solving

large-scale scientific problems. As a whole, Trilinos acts as a very valuable starting point for

developing new algorithms and enabling technologies. A core goal of the Trilinos Project is to

develop parallel solvers to enable larger problems to be solved using numerical methods. As a

result, Trilinos is designed to allow for use on distributed parallel architectures. While Trilinos

contains many packages, the ones used in this thesis are Epetra, Tpetra, Xpetra, ML, MueLu,

AztecOO, and Belos [1].

4.4.1 Epetra, Tpetra, and Xpetra

Epetra, Tpetra, and Xpetra are all packages that allow for the storage and creation of objects

such as vectors, matrices, and graphs. Petra is Greek for foundation, and as such, these packages

provide the basis for all solvers in Trilinos. The ”e” in Epetra stands for essential and is the C++

production implementation of the Petra model. Epetra supports real, double-precision, floating

point data. Epetra also offers an Epetra-64 extension which allows for the use of 64-bit indices.

Further, it provides for serial, parallel, and distributed memory capabilities. Epetra avoids using

more advanced C++ capabilities such as templates in order to maintain high levels of portability

and stability. Epetra is highly useful for developing new solvers and using existing solvers as it

handles the intricacies of parallel execution.

Tpetra on the other hand is an implementation of the Petra model that allows for templated

C++. It implements scalar and ordinal fields as template types. As a result, Tpetra supports

many more data types than Epetra; in principal, a scalar can be implemented as any abstract

data type so long as the data type supports basic mathematical operations. Further, the ordinal

type can be any abstract data type that supports some form of indexing. Like Epetra, Tpetra is

designed for a general parallel distributed memory machine and as a result supports parallelism

11

in execution.

Xpetra is in general, a lightweight wrapper to both Tpetra and Epetra. In this way, a pro-

grammer can write one object and be able to specify later whether to use Epetra or Tpetra. The

syntax of Xpetra models that of Tpetra as it also allows for templates. Xpetra is the package used

by MueLu [1].

4.4.2 ML and MueLu

Both ML and MueLu are multigrid preconditioner packages within Trilinos. Preconditioners are

methods which approximate the inverse of a matrix in a linear system. This then helps iterative

solvers to solve the linear system using fewer iterations. ML is designed to handle large sparse linear

systems typically derived from elliptic partial differential equation discretizations. In addition to

providing the option of building and designing multigrid preconditioners and solvers, ML also

contains several black-box classes to allow for scalable smoothed aggregation preconditioners. ML

is currently the main multigrid preconditioner package of Trilinos.

MueLu is also a package designed to precondition large, sparse linear systems of equations. It

is designed to be a flexible, high performance, multigrid solver library. MueLu is also meant to be

easy to use and provide support for many different platforms ranging from personal computers to

large, parallel clusters [1].

4.4.3 AztecOO and Belos

In Trilinos, AztecOO and Belos are both solver packages. AztecOO is an object-oriented interface

of the Aztec solver. It supports flexible construction of matrix and vector arguments through the

use of Epetra objects. AztecOO produces iterative solutions of large sparse linear systems.

Belos is described as providing ”next-generation” iterative linear solvers. It also serves as a

powerful linear solver developer framework. Belos treats matrices, vectors, and preconditioners as

black-box objects allowing for any combination of matrix, preconditioner, and vector types that

reasonably make sense together. Belos is designed to work efficiently and provide flexibility [1].

12

4.4.4 Summary of Trilinos Packages

Package Name Package Description Use in Thesis

Epetra Essential petra software package. Sup-

ports double-precision, floating point

data. Storage and creation of objects

such as matrices and vectors

Currently used in deal.II wrap-

per classes to store objects.

Tpetra Templated petra software. Supports

scalar and ordinal data types. Creates

and stores objects such as matrices and

vectors.

Not explicitly used in this the-

sis. Often is available as an op-

tion when Xpetra is used.

Xpetra Acts as a wrapper on top of Epetra and

Tpetra.

Used with MueLu in proposed

method of updating deal.II.

Worked as wrapper on top of

Epetra objects.

ML Multigrid preconditioner package.

Main multigrid preconditioner package

in Trilinos

Currently used as the precondi-

tioner in deal.II wrapper classes.

MueLu Newer multigrid preconditioner soft-

ware. Flexible, high-performance li-

brary.

Used as a preconditioner in

proposed method of updating

deal.II.

AztecOO Iterative solver. Object oriented ver-

sion of Aztec software. Supports flexi-

ble construction of arguments

Currently used as solver in

deal.II wrapper classes.

Belos Next generation iterative solver. Pow-

erful linear solver developer framework

Used as a solver in proposed

method of updating deal.II. [1]

4.5 deal.II Software

deal.II, the successor to the Differential Equations Analysis library, is a C++ program library

for the solving of partial differential equations using finite elements. deal.II allows for rapid

development of finite element codes by offering interfaces for adaptive meshes and other objects

and tools typically used in finite element programs. It is used in both academic and commercial

products. deal.II utilizes templates so that the programmer can essentially write code independent

of the dimensions of the problem being solved; that is, the code can be written independent of

13

whether the user is solving a 1D, 2D, or 3D problem. Currently, the deal.II software is supported

on Linux and Mac OS X. Due to the fact that deal.II solvers do not currently implement any form

of parallelism, a user with the Trilinos software can link Trilinos to deal.II when installing. deal.II

provides wrapper classes that provide an almost identical interface to deal.II’s own linear solvers.

By utilizing Trilinos when creating a deal.II program, the user is able to take advantage of the

parallel capabilities of Trilinos specifically parallelism based on MPI.

5 Methods

5.1 Source Code and Computing Architecture

For analyzing the summations and plotting the results of the analytical solution, Mathematica, a

technical software was used. Mathematica was also used to process the matrix-vector multipli-

cation and plotting of results for the finite difference method. Matlab, a language for technical

computing, was used to program the Crank-Nicolson scheme of the finite element method and

to plot the results. The Trilinos software packages including MueLu, ML, Belos, AztecOO, Xpe-

tra, and Epetra were used for the small scale examples implementing the proposed changes to

deal.II. The version of the Trilinos software that was used was downloaded from the Trilinos pub-

lic repository in November, 2014. These examples were programmed in the C++ programming

language.

A personal laptop and basic CSBSJU windows client machine were used in conjunction with

Matlab and Mathematica software to solve the one dimensional heat equation. An eight node

cluster, named Melchior, was used for running the time trials on the small scale examples. Every

node of Melchior (numbered 0 through 7) was used for these time trials. Each node of Melchior

is equipped with an Intel Xeon processor.

5.2 Solving the One Dimensional Heat Equation Analytically

For this thesis, a one dimensional heat equation with zero Dirichlet boundary conditions and

nonzero initial conditions was selected. The problem can be described as follows:

ut(x, t) =
1

10
uxx(x, t)

0 < x < 6

t > 0

14

u(x, 0) = 6x− x2

u(0, t) = 0 = u(6, t)

In order to solve the problem analytically, the separation of variables method was used. As

previously mentioned, this means assuming that our function u(x, t) can be written in terms of

two, single variable functions. That is, u(x, t) = X(x)T (t). Substituting this into our problem,

we obtain the following new problem:

X(x)T ′(t) =
1

10
X ′′(x)T (t).

Isolating each variable to one side of the equality, the problem becomes

10T ′(t)

T (t)
=
X ′′(x)

X(x)
.

Because the left side of the equality is a function of t and the right a function of x, it can be said

that both sides are constant. That is we can say each side is equal to some constant λ. Using this

fact, two ordinary differential equations (ODEs) can be obtained. They are

X ′′ − λX = 0

and

T ′ − 1

10
λT = 0.

As X ranges from 0 to 6 in our problem and homogeneous Dirichlet boundary conditions u(0, t) =

0 = u(6, t) were chosen, it becomes clear that for the ODE X ′′ − λX = 0, λ < 0. If λ ≥ 0, the

only solutions to X ′′ − λX = 0 would be identically zero. Letting λ = α2, the general solution of

the ODE X ′′ − α2X = 0 becomes

X(x) = c1 cosαx+ c2 sinαx.

To satisfy the boundary conditions, we assume X(0) = X(6) = 0. By looking at

X(0) = c1 cosα0 + c2 sinα0 = c1

it can be seen that c1 = 0. As we do not want X(x) = 0, this means that c2 cannot be 0. Thus,

because X(6) = 0 and c2 6= 0, sinα6 = 0. That is, 6α = nπ for some n. The solution for X

15

becomes

X(x) = c2 sin
nπx

6
, n = 1, 2, 3,

At this point, we consider the ODE

T ′ − 1

10
α2T = 0.

As we have solved for α, this can be substituted into the equation to obtain

T ′ − n2π2

10 ∗ 36
T = 0, n = 1, 2, 3,

The general solution to this ODE is

T = ce
−n2π2t
10∗36 , n = 1, 2, 3,

Combining the two general solutions, we obtain the following form of a solution to our PDE

u(x, t) = bne
−n2π2t
10∗36 sin

nπx

6
, n = 1, 2, 3,

However, as the initial conditions of our problem are not trigonometric, the form of the solutions

becomes

u(x, t) =

∞∑
n=1

bne
−n2π2t

360 sin
nπx

6

where the initial conditions become

6x− x2 =

∞∑
n=1

bn sin
nπx

6
.

In order to solve for the coefficients bn, both sides of the equation are multiplied by sin nπx
6 and

are integrated from 0 to 6. The problem then becomes

∫ 6

0

(6x− x2) sin
nπx

6
dx =

∞∑
n=1

bn

∫ 6

0

sin2 nπx

6
dx

By utilizing the Mathematica software to aid in integration, we solved for

bn =
72(2− 2(−1)n)

n3π3
.

16

Noting that for any even n the coefficient bn = 0, this became

bn =
288

(2n+ 1)3π3
.

Having solved for the constants bn, the solution obtained for our one dimensional heat equation is

u(x, t) =

∞∑
n=1

288

(2n+ 1)3π3
e

−n2π2t
360 sin

nπx

6
.

At this point, the function was graphed in Mathematica at various times and over the time interval

[0, 25] [4].

5.3 Solving Using FTCS Finite Differences

As described earlier, the FTCS scheme for finite difference was chosen as one numerical method for

solving the one dimensional heat equation. Initially the variables were chosen as follows: ∆x = 1,

∆t = 1. Each subsequent iteration of the method involved halving the change in x variable,

∆x. The change in t variable, ∆t was then chosen so that the solution would remain stable by

considering the requirement that λ ≤ 1
2 . As mentioned, Mathematica was used for computing the

matrix-vector products and displaying results.

Example: Solving the 1D Heat Equation using FTCS with ∆x = 1, ∆t = 1

With ∆x = 1, M = 6. For each xi = i∆x, i = 0, 1, . . . ,M . With ∆t = 1, N = 10, and for each

ti = i∆t, i = 0, 1, . . . , N . This choice of M results in a 6 x 6 matrix and vectors composed of 6

elements. To ensure the system will be stable, it can be seen that the condition on λ is met as

λ =
1

10
∗ 1

1
= 0.1 ≤ 1

2
.

At this point, the values of the initial vector can be determined. To do this, each element is

computed as

u0,i = 6xi − x2i .

The resulting initial vector is then

(
0, 5, 8, 9, 8, 5, 0

)T
.

To assemble the tridiagonal matrix used in the FTCS scheme a and b must be computed. Note

for this problem, α = 1
10 . We can then compute

λ =
α∆t

∆x2
=

1
101

12
=

1

10
= .1.

17

Next, a and b can be computed as follows:

a = 1− 2λ = 1− 2(.1) = .8

b = λ = .1

The tridiagonal matrix used for this example is then

.8 .1 0 0 0 0

.1 .8 .1 0 0 0

0 .1 .8 .1 0 0

0 0 .1 .8 .1 0

0 0 0 .1 .8 .1

0 0 0 0 .1 .8

As N = 10, to

solve for u(x, 10), the following matrix vector multiplication is conducted:

u0,10

u1,10

u2,10

u3,10

u4,10

u5,10

u6,10

=

.8 .1 0 0 0 0

.1 .8 .1 0 0 0

0 .1 .8 .1 0 0

0 0 .1 .8 .1 0

0 0 0 .1 .8 .1

0 0 0 0 .1 .8

10

0

5

8

9

8

5

0

When computed this results in the solution vector

u(x, t) =

(
1.99502, 4.32822, 6.33233, 7.11653, 6.33233, 4.32822, 1.99502

)T
.

5.4 Solving Using Crank-Nicolson FEM

In order to solve the one dimensional heat equation using the Crank-Nicolson scheme of finite

element computations, a Matlab document was modified to fit our specific problem [6]. The

file used two other Matlab files that were obtained from the same source. One file completed

LU-factorization of a tridiagonal matrices and the other solved linear systems with LU-factored

matrices of coefficients. The exact approximation used by the Crank-Nicolson scheme is

− α

2∆x2
uk+1
i−1 + (

1

∆t
+

α

2∆x2
)uk+1
i − α

2∆x2
uk+1
i+1 =

α

2∆x2
uki−1 + (

1

∆t
− α

2∆x2
)uki +

α

2∆x2
uki+1

18

where for our heat equation, α = 1
10 , all values on the left side of the equation are unknown, and

values on the right side are known. This equation is converted into the following linear system

a b 0 · · · 0

c a b · · · 0

0
. . .

. . .
. . . 0

...
...

0 0 · · · c a

uk+1
1

uk+1
2

...

uk+1
N

=

d1

d2
...

dN

where

a =
1

∆t
+

α

∆x2

b = c = − α

2∆x2

di = −cuki−1 + (
1

∆t
+ b+ c)uki − buki+1

[7]. The Matlab program then solves this system of equations using LU-factorization. The system

is iterated multiple times until the desired time step is reached. This program was run similarly to

the finite difference in that the same values for ∆x and ∆t were used. Further, the point u(3, 10)

was recorded for each discretization.

5.5 Developing a Method for Updating the deal.II Software

After developing an understanding of finite methods for solving partial differential equations, a

method for updating the deal.II software was developed. To begin, an example using Epetra

objects, and ML preconditioner, and an AztecOO solver was taken from the Trilinos examples

directory. The example generated a three dimensional Laplacian matrix and solved a test linear

problem obtained from the gallery object. The problem size could be changed to any value specified

(line 61 of MLAztecOO.cpp in Appendix) so long as the value was a perfect cube (as the problem

was dealing with a three dimensional matrix). The next step was to modify the program so that a

Belos solver was used instead of an AztecOO solver. This was a relatively simple replacement using

the Trilinos documentation for Belos available online as a guide. The next step was to determine

how to translate Epetra objects into Xpetra objects. Xpetra had a method to accomplish this

for vector objects. The vectors simply had to be wrapped as reference-counted pointers (RCPs)

before being passed into the method (lines 115-122 of MueLuBelos.cpp in Appendix). However,

the translation of the matrix was a bit more involved. First, the graph of the matrix (containing

the information describing locations of nonzero values) had to be copied into an empty Xpetra

19

object. Then, the values had to be copied one row at a time into the Xpetra object (lines 100-

111 of MueLuBelos.cpp in Appendix). Once this was accomplished, a MueLu preconditioner and

Belos solver could be set up to solve the linear problem. After the three examples were working

correctly, a timer was added to output the total runtime and solving time for each example. The

examples were named MLAztecOO.cpp, MLBelos.cpp, and MueLuBelos.cpp.

In order to test these examples, the following time sizes were selected: 503, 1203, 1903, 2603,

3303, and 4003. These were selected based off of initial time trials to determine a range of problem

sizes that would obtain a wide range of total time results. The examples were compiled using a

basic Makefile obtained with the MLAztecOO.cpp file from the Trilinos examples directory. On

each problem size, each example was run 10 times on a node of Melchior. Two scatter plots, total

time and solve time plots, were then created on each problem size from these results.

6 Results

6.1 One-Dimensional Heat Equation Results

6.1.1 Analytical Solution

Figure 1: An overlay of the graph of the computed analytical solution at time, t = 0 and the
graph of the specified initial conditions, u(x, 0) = 6x− x2.

20

Figure 2: The graph of the computed analytical solution at time, t = 10.

Figure 3: The graph of the computed analytical solution over the period of time t = 0 to t = 25.

21

By analyzing Figure 1, it can be seen that the analytical solution to the one dimensional heat

equation obtained using separation of variables,

u(x, t) =

∞∑
n=0

288

(2n+ 1)3π3
e

−(2n+1)2π2t
360 sin(

(2n+ 1)πx

6
)

is correct at time, t = 0. Further, by looking at both Figure 2 and Figure 3, it can be seen that

the function is behaving as expected. That is, as there is not heat source or sink, it is expected

that the heat along the rod would dissipate over time.

6.1.2 Finite Difference Results

Figure 4: The graph of the solution computed using the FTCS scheme with ∆x = 1 and ∆t = 1
at time t = 10.

22

Figure 5: The graph of the solution computed using the FTCS scheme with ∆x = 1
2 and ∆t = 1

at time t = 10.

Figure 6: The graph of the solution computed using the FTCS scheme with ∆x = 1
4 and ∆t = 1

4
at time t = 10.

23

Figure 7: The graph of the solution computed using the FTCS scheme with ∆x = 1
8 and ∆t = 1

16
at time t = 10.

Figure 8: The graph of the solution computed using the FTCS scheme with ∆x = 1
16 and ∆t = 1

64
at time t = 10.

24

Figure 9: The graph of the solution computed using the FTCS scheme with ∆x = 1
32 and ∆t = 1

256
at time t = 10.

Figure 10: The graph of the solution computed using the FTCS scheme with ∆x = 1
64 and

∆t = 1
1024 at time t = 10.

25

Figure 11: The graph compares the values of the analytical solution and the values of the solution
obtained using the finite difference method at x = 3 and t = 10, i.e. u(3, 10). The constant line
is the value obtained from the analytical solution and the line decreasing in value corresponds to
the values obtained from the finite difference method for decreasing ∆x.

26

Table 1: Results of Finite Difference
∆x ∆t u(3, 10)

1 1 7.11653
1
2 1 7.08331
1
4

1
4 7.08334

1
8

1
16 7.06539

1
16

1
64 7.05089

1
32

1
256 7.04207

1
64

1
1024 7.03723

Analytical - 7.03211

Having verified the analytical solution to the one dimensional heat equation, the accuracy

of the FTCS scheme of the finite difference method can be analyzed. Figures 4-10 show that

as both the number of time steps and the number of points on the problem space increase, the

approximation of the method converges to the analytical solution. It should be noted that this

method does not maintain zero temperature at the endpoints. However, as the problem is further

discretized, the end point values do tend back towards zero. Figure 11 shows this convergence by

plotting the values for u(3, 10) obtained from FTCS scheme against the value obtained from the

analytical solution. While the approximation achieved at ∆x = 1
64 and ∆t = 1

1024 is very close to

the analytical solution (roughly .05 off), it was not possible to further refine the problem and get a

better approximation without causing the Mathematica software to crash. Thus, while the FTCS

scheme of the finite difference method is simple and easy to implement, it is not a realistic method

when either a large problem is being solved or when a very close approximation is required.

27

6.1.3 Finite Element Method Results

Figure 12: The graph compares the values of the analytical solution and the values of the solution
obtained using the Crank Nicolson finite element method at x = 3 and t = 10, i.e. u(3, 10). The
solutions are obtained from the Matlab implementation of this method. The constant line is the
value obtained from the analytical solution and the line decreasing in value corresponds to the
values obtained from the finite element method for decreasing ∆x.

28

Table 2: Results of Finite Element Method
∆x ∆t u(3, 10)

1 1 7.05911
1
2 1 7.0396
1
4

1
4 7.0340

1
8

1
16 7.0326

1
16

1
64 7.0322

1
32

1
256 7.0321

1
64

1
1024 7.0321

Analytical - 7.03211

Figure 13: The graph compares the value of the analytical solution, the values of the solution
obtained using the Crank Nicolson finite element method, and the values of the solution obtained
using the FTCS finite difference scheme at x = 3 and t = 10, i.e. u(3, 10). The solutions from
the finite element method are obtained from the Matlab implementation of this method. The
constant line is the value obtained from the analytical solution and the line decreasing in value
corresponds to the values obtained from the finite element method for decreasing ∆x.

29

When looking at the results of the Crank-Nicolson scheme of the finite element method, specif-

ically Figure 13, it becomes clear that this method provides a much better approximation than

the finite difference approach. It converged to the solution much more quickly than the finite

difference method did. A coarser discretization of the problem was able to produce much better

results for u(3, 10) than the same discretization using FTCS. As a result, the Crank-Nicolson

scheme of the finite element method appears to be an adequate choice for problems where close

approximations are required.

6.2 Small Scale Example Results

Figure 14: A scatterplot of 10 time trials for MLAztecOO.cpp, MLBelos.cpp, and MueLuBelos.cpp
with a problem size of 503. The measured time is total time to run including problem setup and
solving. This plot shows the range in time performance for each file and the comparative time to
complete between each file.

30

Figure 15: A scatterplot of 10 time trials for MLAztecOO.cpp, MLBelos.cpp, and MueLuBelos.cpp
with a problem size of 503. The measured time is the amount of time taken to solve the problem.
Time to setup is not included. This plot shows the range in solving time performance for each file
and the comparative time to solve between each file.

Figure 16: A scatterplot of 10 time trials for MLAztecOO.cpp, MLBelos.cpp, and MueLuBelos.cpp
with a problem size of 1203. The measured time is total time to run including problem setup and
solving. This plot shows the range in time performance for each file and the comparative time to
complete between each file.

31

Figure 17: A scatterplot of 10 time trials for MLAztecOO.cpp, MLBelos.cpp, and MueLuBelos.cpp
with a problem size of 1203. The measured time is the amount of time taken to solve the problem.
Time to setup is not included. This plot shows the range in solving time performance for each file
and the comparative time to solve between each file.

Figure 18: A scatterplot of 10 time trials for MLAztecOO.cpp, MLBelos.cpp, and MueLuBelos.cpp
with a problem size of 1903. The measured time is total time to run including problem setup and
solving. This plot shows the range in time performance for each file and the comparative time to
complete between each file.

32

Figure 19: A scatterplot of 10 time trials for MLAztecOO.cpp, MLBelos.cpp, and MueLuBelos.cpp
with a problem size of 1903. The measured time is the amount of time taken to solve the problem.
Time to setup is not included. This plot shows the range in solving time performance for each file
and the comparative time to solve between each file.

Figure 20: A scatterplot of 10 time trials for MLAztecOO.cpp, MLBelos.cpp, and MueLuBelos.cpp
with a problem size of 2603. The measured time is total time to run including problem setup and
solving. This plot shows the range in time performance for each file and the comparative time to
complete between each file.

33

Figure 21: A scatterplot of 10 time trials for MLAztecOO.cpp, MLBelos.cpp, and MueLuBelos.cpp
with a problem size of 2603. The measured time is the amount of time taken to solve the problem.
Time to setup is not included. This plot shows the range in solving time performance for each file
and the comparative time to solve between each file.

Figure 22: A scatterplot of 10 time trials for MLAztecOO.cpp, MLBelos.cpp, and MueLuBelos.cpp
with a problem size of 3303. The measured time is total time to run including problem setup and
solving. This plot shows the range in time performance for each file and the comparative time to
complete between each file.

34

Figure 23: A scatterplot of 10 time trials for MLAztecOO.cpp, MLBelos.cpp, and MueLuBelos.cpp
with a problem size of 3303. The measured time is the amount of time taken to solve the problem.
Time to setup is not included. This plot shows the range in solving time performance for each file
and the comparative time to solve between each file.

Figure 24: A scatterplot of 10 time trials for MLAztecOO.cpp, MLBelos.cpp, and MueLuBelos.cpp
with a problem size of 4003. The measured time is total time to run including problem setup and
solving. This plot shows the range in time performance for each file and the comparative time to
complete between each file.

35

Figure 25: A scatterplot of 10 time trials for MLAztecOO.cpp, MLBelos.cpp, and MueLuBelos.cpp
with a problem size of 4003. The measured time is the amount of time taken to solve the problem.
Time to setup is not included. This plot shows the range in solving time performance for each file
and the comparative time to solve between each file.

36

Next, we analyze the results of the proposed method of updating the deal.II software. Overall,

there is a trend of Belos performing slightly better as a solver than AztecOO. Further, MueLu

paired with Belos on every problem size performed better than the other two implementations in

terms of solving time. This trend can especially be seen in Figures 15, 17, 19, and 25. ML with

AztecOO and ML with Belos performed very similarly concerning both solve time and total time.

In general there was a trend of ML with Belos performing slightly better than ML with AztecOO

in terms of both solving and total time. However, Figures 21, 23 ,24, and 25 show some instances

in which ML with AztecOO performed better than ML with Belos on certain runs. These results

are in line with what was expected. However, concerning total time, MueLu paired with Belos took

almost five times as long to complete as either of the other two implementations. When looking at

the source code it became clear what was causing the significant increase in time. The translation

of the Epetra matrix to an Xpetra object (lines 104-110 of MueLuBelos.cpp in Appendix) is being

executed one row at a time in a for loop. As the problem sizes increase, this very quickly becomes

an issue. Some form of parallelism or a better method needs to be implemented to resolve this

issue before deal.II can realistically implement the proposed method of integrating MueLu into its

software.

7 Conclusion

1. Performance of Finite Methods

This work confirmed that finite numerical methods find adequate approximations to tradi-

tional analytical solutions to differential equations. Further, it can be noted that the finite

difference, forward in time scheme is not the most efficient method as the number of time

steps required rapidly increases as the discretization of the problem space becomes more re-

fined. This results in The finite element method using the Crank-Nicolson System converged

to the analytical solution much more quickly than the finite difference method and was able

to give a better approximation with a coarser discretization of the problem space than was

achieved using the finite difference method.

2. Proposed Method of Updating the deal.II Software

While, the small scale examples showed decrease in performance for total time when uti-

lizing MueLu over ML, I predict that with added parallelism in the set up phase and with

larger, more complex examples, time performance will increase. There is currently too much

overhead created by translating the objects into Xpetra objects. Specifically, I believe that

37

the current method of transferring the values of the matrix one row at a time is contributing

the most to the total run time. Looking at just the time used for solving the problem shows

that MueLu combined with Belos does perform better than ML and AztecOO together or

ML and Belos together.

This thesis explored methods of solving partial differential equations that can be implemented

with a computer. As computers cannot handle infinite amounts of points on a solution, it is

necessary to discretize the solution space and solve using a finite numerical method. This work

was able to show the accuracy of several such methods on the one-dimensional heat equation with

Dirichlet boundary conditions. Further, a method of updating the deal.II software was proposed

and its potential benefits were explored by analyzing time performance on small scale examples.

7.1 Future Work

In the future, a method should be developed for decreasing the overhead time created from trans-

lating the Epetra matrix to an Xpetra matrix. As the computation inside the current for loop

accomplishing this transition is independent, I believe that this could easily be parallelized in

order to increase performance. Further, if a parallel or distributed method were implemented in

the Xpetra class to translate Epetra or Tpetra matrices, I believe that even better performance

could be seen.

The next step along this course of work would be to implement the suggested changes in

the deal.II software. As shown in the small scale examples, the code needs to be written so as

to encapsulate or wrap the existing objects as Xpetra objects so that they are compatible with

MueLu preconditioners. As hardware improves in accordance with Moore’s Law, it is important to

focus on maintaining and improving software as new technologies emerge and hardware improves.

38

References

[1] The trilinos project. trilinos.org. both documentation of and source code for the Trilinos

Project.

[2] W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B. Turcksin,

and T. D. Young. The deal.ii library, version 8.1. arXiv preprint, http: // arxiv. org/ abs/

1312. 2266v4 , 2013.

[3] John R. Cannon. The One-Dimensional Heat Equation. Addison-Wesley Publishing Com-

pany, Inc., 1984.

[4] D. DeTurck. Math 241: Solving the heat equation. 2012. Course notes for Math 241 at

University of Pennsylvania.

[5] Gene H. Golub and Charles F. Van Loan. Matrix Computations. John Hopkins University

Press, 2012.

[6] G. Recktenwald. Heatcn.m. Matlab code implementing the Crank-Nicolson scheme for solving

the 1D heat equation.

[7] G. Recktenwald. Finite-difference approximations to the heat equation. 2011.

[8] Yousef Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied

Mathematics, 2003.

[9] P. Seshaiyar. Finite-difference method for the 1d heat equation. 2012. Course notes for

Math679 at George Mason University.

[10] Griffiths D.V. Margetts L. Smith, I.M. Programming the Finite Element Method. John Wiley

& Sons, 2013.

[11] R. Vichnevetsky. Computer Methods for Partial Differential Equations, Volume 1. Prentice-

Hall, Inc., 1981.

[12] Taylor R. L. Zhu J. Z. Zienkiewicz, O. C. Finite Element Method : Its Basis and Fundamen-

tals. Butterworth-Heinemann, 2005.

39

http://arxiv.org/abs/1312.2266v4
http://arxiv.org/abs/1312.2266v4

8 Appendix

8.1 Computing Architecture

Each node of Melchior consists of 12 cores each with 2 threads. Each thread state can be defined

as follows:

1 Mel Nodes 0 , 1 , 2 , 4 , 5 , 6 , 7

2

3 p ro c e s s o r : 23

4 vendor id : GenuineInte l

5 cpu fami ly : 6

6 model : 45

7 model name : I n t e l (R) Xeon(R) CPU E5−2420 0 @ 1.90GHz

8 stepp ing : 7

9 microcode : 1808

10 cpu MHz : 1200.000

11 cache s i z e : 15360 KB

12 phy s i c a l id : 1

13 s i b l i n g s : 12

14 core id : 5

15 cpu co r e s : 6

16 ap i c i d : 43

17 i n i t i a l ap i c i d : 43

18 fpu : yes

19 fpu excep t i on : yes

20 cpuid l e v e l : 13

21 wp : yes

22 f l a g s : fpu vme de pse t s c msr pae mce cx8 ap ic sep mtrr pge mca cmov pat

pse36 c l f l u s h dts acp i mmx f x s r s s e s s e2 s s ht tm pbe s y s c a l l nx pdpe1gb

rdtscp lm con s t an t t s c arch perfmon pebs bts rep good xtopology nons top t s c

aper fmper f pni pclmulqdq dtes64 monitor d s cp l vmx smx e s t tm2 s s s e 3 cx16 xtpr

pdcm pcid dca s s e 4 1 s s e 4 2 x2apic popcnt t s c d e ad l i n e t ime r aes xsave avx

l ah f lm ida arat epb xsaveopt pln pts dts tpr shadow vnmi f l e x p r i o r i t y ept vpid

23 bogomips : 3793.04

24 c l f l u s h s i z e : 64

25 cache a l ignment : 64

26 address s i z e s : 46 b i t s phys i ca l , 48 b i t s v i r t u a l

27 power management :

8.2 MLAztecOO.cpp Source Code

40

1 /∗

2 ∗ MLAztecOO. cpp

3 ∗ Taken from Tr i l i n o s t u t o r i a l at https : // code . goog l e . com/p/ t r i l i n o s /wik i /MLAztecOO

4 ∗

5 ∗/

6

7 //

8 // Use ML to bu i ld a smoothed aggregat i on mu l t i g r id operator .

9 // Use the operator as a black−box p r e cond i t i on e r in AztecOO ’ s CG.

10 //

11 #inc lude ”Epetra Conf igDefs . h”

12 #i f d e f HAVE MPI

13 # inc lude ”mpi . h”

14 # inc lude ”Epetra MpiComm . h”

15 #e l s e

16 # inc lude ”Epetra SerialComm . h”

17 #end i f

18 #inc lude ”Epetra Map . h”

19 #inc lude ”Epetra Vector . h”

20 #inc lude ”Epetra RowMatrix . h”

21 #inc lude ”Epetra CrsMatrix . h”

22 #inc lude ”Epetra LinearProblem . h”

23 #inc lude ”Epetra Time . h”

24 #inc lude ”AztecOO . h”

25

26 // The ML inc lude f i l e r equ i r ed when working with Epetra ob j e c t s .

27 #inc lude ”m l epe t r a p r e c ond i t i on e r . h”

28

29 #inc lude ” Tr i l i n o s Ut i l C r sMat r i xGa l l e r y . h”

30

31 us ing namespace Teuchos ;

32 us ing namespace T r i l i n o s U t i l ;

33 us ing namespace std ;

34

35 #inc lude <iostream>

36 #inc lude <sys / time . h>

37 #inc lude <time . h>

38

39 i n t

40 main (i n t argc , char ∗argv [])

41 {

42

41

43 s t r u c t t imeva l tim ;

44 gett imeofday(&tim , NULL) ;

45 double t1=tim . t v s e c+(tim . tv us e c /1000000 .0) ;

46

47

48 #i f d e f EPETRA MPI

49 MPI Init (&argc ,&argv) ;

50 Epetra MpiComm Comm (MPICOMMWORLD) ;

51 #e l s e

52 Epetra SerialComm Comm;

53 #end i f

54

55 Epetra Time Time(Comm) ;

56

57 // I n i t i a l i z e a Gal l e ry object , f o r gene ra t ing a 3−D Laplac ian

58 // matrix d i s t r i b u t e d over the g iven communicator Comm.

59 CrsMatr ixGal lery Gal l e ry (” l ap l a c e 3d ” , Comm) ;

60

61 Gal l e ry . Set (” prob l em s i z e ” , 1728000) ;

62

63 // Get po i n t e r s to the generated matrix and a t e s t l i n e a r problem .

64 Epetra RowMatrix∗ A = Gal l e ry . GetMatrix () ;

65

66 Epetra LinearProblem ∗ Problem = Gal l e ry . GetLinearProblem () ;

67

68 // Construct an AztecOO so l v e r ob j e c t f o r t h i s problem .

69 AztecOO so l v e r (∗Problem) ;

70

71 // Create the p r e c ond i t i on e r ob j e c t and compute the mu l t i l e v e l h i e ra r chy .

72 ML Epetra : : Mu l t iLeve lPrecond i t i one r ∗ MLPrec =

73 new ML Epetra : : Mu l t iLeve lPrecond i t i one r (∗A, true) ;

74

75 // Te l l AztecOO to use t h i s p r e c ond i t i on e r .

76 s o l v e r . SetPrecOperator (MLPrec) ;

77

78 // Te l l AztecOO to use CG to so l v e the problem .

79 s o l v e r . SetAztecOption (AZ solver , AZ cg) ;

80

81 // Te l l AztecOO to output s t a tu s in fo rmat ion every i t e r a t i o n

82 // (hence the 1 , which i s the output f requency in terms o f

83 // number o f i t e r a t i o n s) .

84 s o l v e r . SetAztecOption (AZ output , 1) ;

42

85

86 // Maximum number o f i t e r a t i o n s to t ry .

87 i n t N i t e r s = 150 ;

88 // Convergence t o l e r an c e .

89 double t o l = 1e−10;

90

91 // g e t t i n g time a f t e r s e t t i n g up problem

92 gett imeofday(&tim , NULL) ;

93 double t2=tim . t v s e c+(tim . tv us e c /1000000 .0) ;

94

95 // Solve the l i n e a r problem .

96 s o l v e r . I t e r a t e (Niters , t o l) ;

97

98 // g e t t i n g time a f t e r s o l v e r completes

99 gett imeofday(&tim , NULL) ;

100 double t3=tim . t v s e c+(tim . tv us e c /1000000 .0) ;

101

102 // Pr int out some in fo rmat ion about the p r e c ond i t i on e r

103 i f (Comm.MyPID() == 0)

104 cout << MLPrec−>GetOutputList () ;

105

106 // We’ re done with the p r e cond i t i on e r now , so we can d e a l l o c a t e i t .

107 d e l e t e MLPrec ;

108

109 // Ver i f y the s o l u t i o n by computing the r e s i d u a l e x p l i c i t l y .

110 double r e s i d u a l = 0 . 0 ;

111 double d i f f = 0 . 0 ;

112 Gal l e ry . ComputeResidual (& r e s i d u a l) ;

113 Gal l e ry . ComputeDiffBetweenStartingAndExactSolutions (& d i f f) ;

114

115 // The Epetra Time ob j e c t has been keeping t rack o f e l apsed time

116 // l o c a l l y (on t h i s MPI proce s s) . Take the min and max g l o b a l l y

117 // to f i nd the min and max e lapsed time over a l l MPI p ro c e s s e s .

118 double myElapsedTime = Time . ElapsedTime () ;

119 double minElapsedTime = 0 . 0 ;

120 double maxElapsedTime = 0 . 0 ;

121 (void) Comm. MinAll (&myElapsedTime , &minElapsedTime , 1) ;

122 (void) Comm.MaxAll (&myElapsedTime , &maxElapsedTime , 1) ;

123

124 i f (Comm.MyPID()==0) {

125 const i n t numProcs = Comm.NumProc () ;

126 cout << ” | | b−Ax | | 2 = ” << r e s i d u a l << endl

43

127 << ” | | x exact − x | | 2 = ” << d i f f << endl

128 << ”Min t o t a l time (s) over ” << numProcs << ” p r o c e s s e s : ”

129 << minElapsedTime << endl

130 << ”Max t o t a l time (s) over ” << numProcs << ” p r o c e s s e s : ”

131 << maxElapsedTime << endl ;

132 }

133

134 // p r i n t i n g out time data

135 cout << t3−t1 << ” seconds e lapsed ” << endl ;

136 cout << t3−t2 << ” seconds e lapsed s o l v i n g ” << endl ;

137

138 #i f d e f EPETRA MPI

139 MPI Final ize () ;

140 #end i f

141 re turn (EXIT SUCCESS) ;

142 }

8.3 MLBelos.cpp Source Code

1 /∗

2 ∗ MLBelos . cpp

3 ∗ by Emily Furst

4 ∗ Modif ied from o r i g i n a l T r i l i n o s t u t o r i a l at https : // code . goog l e . com/p/ t r i l i n o s /

wik i /MLAztecOO

5 ∗

6 ∗/

7

8 //

9 // Use ML to bu i ld a smoothed aggregat i on mu l t i g r id operator .

10 // Use Belos as a s o l v e r

11 //

12 #inc lude ”Epetra Conf igDefs . h”

13 #i f d e f HAVE MPI

14 # inc lude ”mpi . h”

15 # inc lude ”Epetra MpiComm . h”

16 #e l s e

17 # inc lude ”Epetra SerialComm . h”

18 #end i f

19 #inc lude ”Epetra Map . h”

20 #inc lude ”Epetra Vector . h”

21 #inc lude ”Epetra RowMatrix . h”

22 #inc lude ”Epetra CrsMatrix . h”

44

23 #inc lude ”Epetra LinearProblem . h”

24 #inc lude ”Epetra Time . h”

25 #inc lude ”AztecOO . h”

26 #inc lude ”Teuchos ParameterList . hpp”

27 #inc lude ”Teuchos RCP . hpp”

28 #inc lude ”BelosLinearProblem . hpp”

29 #inc lude ”BelosBlockCGSolMgr . hpp”

30 #inc lude ”BelosEpetraAdapter . hpp”

31 #inc lude ”MueLu . hpp”

32

33

34 // The ML inc lude f i l e r equ i r ed when working with Epetra ob j e c t s .

35 #inc lude ”m l epe t r a p r e c ond i t i on e r . h”

36

37 #inc lude ” Tr i l i n o s Ut i l C r sMat r i xGa l l e r y . h”

38

39 us ing namespace Teuchos ;

40 us ing namespace T r i l i n o s U t i l ;

41 us ing namespace std ;

42

43 #inc lude <iostream>

44 #inc lude <sys / time . h>

45 #inc lude <time . h>

46

47 i n t

48 main (i n t argc , char ∗argv [])

49 {

50

51 s t r u c t t imeva l tim ;

52 gett imeofday(&tim , NULL) ;

53 double t1=tim . t v s e c+(tim . tv us e c /1000000 .0) ;

54

55

56 #i f d e f EPETRA MPI

57 MPI Init (&argc ,&argv) ;

58 Epetra MpiComm Comm (MPICOMMWORLD) ;

59 #e l s e

60 Epetra SerialComm Comm;

61 #end i f

62

63 Epetra Time Time(Comm) ;

64

45

65 // I n i t i a l i z e a Gal l e ry object , f o r gene ra t ing a 3−D Laplac ian

66 // matrix d i s t r i b u t e d over the g iven communicator Comm.

67 CrsMatr ixGal lery Gal l e ry (” l ap l a c e 3d ” , Comm) ;

68

69 //problem s i z e must be a p e r f e c t cube

70 Gal l e ry . Set (” prob l em s i z e ” , 1728000) ;

71

72 // Get po i n t e r s to the generated matrix and a t e s t l i n e a r problem .

73

74 RCP<Epetra RowMatrix> A = rcp (Gal l e ry . GetMatrix () , f a l s e) ;

75

76 RCP<Epetra Mult iVector> LHS = rcp (Gal l e ry . GetLinearProblem ()−>GetLHS() , f a l s e) ;

77 RCP<Epetra Mult iVector> RHS = rcp (Gal l e ry . GetLinearProblem ()−>GetRHS() , f a l s e) ;

78

79

80

81

82 typede f Epetra Mult iVector MV;

83 typede f Epetra Operator OP;

84

85 RCP<Belos : : LinearProblem<double ,MV,OP> > problem = rcp (new Belos : : LinearProblem<

double ,MV,OP>(A, LHS, RHS)) ;

86

87 bool s e t = problem−>setProblem () ;

88 TEUCHOS TEST FOR EXCEPTION(! set ,

89 std : : runt ime er ror ,

90 ”∗∗∗ Belos : : LinearProblem f a i l e d to s e t up c o r r e c t l y ! ∗∗∗”) ;

91

92

93 // Create the p r e c ond i t i on e r ob j e c t and compute the mu l t i l e v e l h i e ra r chy .

94 ML Epetra : : Mu l t iLeve lPrecond i t i one r ∗ MLPrec =

95 new ML Epetra : : Mu l t iLeve lPrecond i t i one r (∗A, true) ;

96

97 //Begin to s e t up Belos s o l v e r

98

99 RCP<Belos : : EpetraPrecOp> prec = rcp (new Belos : : EpetraPrecOp (rcp (MLPrec , f a l s e))) ;

100 problem−>setRightPrec (prec) ;

101

102

103 RCP<ParameterList> b e l o sL i s t = rcp (new ParameterList ()) ;

104 be l o sL i s t−>s e t (”Block S i z e ” , 1) ; // B lo ck s i z e to be used by

i t e r a t i v e s o l v e r

46

105 be l o sL i s t−>s e t (”Maximum I t e r a t i o n s ” , 150) ; // Maximum number o f i t e r a t i o n s

a l lowed

106 be l o sL i s t−>s e t (”Convergence Tolerance ” , 1e−10) ; // Re la t i v e convergence t o l e r an c e

reques ted

107 be l o sL i s t−>s e t (”Verbos i ty ” , Belos : : Errors+Belos : : Warnings+Belos : : TimingDetai l s+

Belos : : FinalSummary+Belos : : S ta tu sTes tDeta i l s+Belos : : I t e r a t i o nD e t a i l s) ;

108

109

110

111 Belos : : BlockCGSolMgr<double ,MV,OP> be l o sSo l v e r (problem , b e l o sL i s t) ;

112

113

114 // r e t r i e v e time be f o r e s o l v e r computes and a f t e r setup

115 gett imeofday(&tim , NULL) ;

116 double t2=tim . t v s e c+(tim . tv us e c /1000000 .0) ;

117

118

119 //Belos s o l v e r s o l v e s problem

120 Belos : : ReturnType r e t = be l o sSo l v e r . s o l v e () ;

121

122

123 // r e t r i e v e time a f t e r s o l v i n g completed

124 gett imeofday(&tim , NULL) ;

125 double t3=tim . t v s e c+(tim . tv us e c /1000000 .0) ;

126

127

128 // We’ re done with the p r e cond i t i on e r now , so we can d e a l l o c a t e i t .

129 d e l e t e MLPrec ;

130

131 // Ver i f y the s o l u t i o n by computing the r e s i d u a l e x p l i c i t l y .

132 double r e s i d u a l = 0 . 0 ;

133 double d i f f = 0 . 0 ;

134 Gal l e ry . ComputeResidual (& r e s i d u a l) ;

135 Gal l e ry . ComputeDiffBetweenStartingAndExactSolutions (& d i f f) ;

136

137 // The Epetra Time ob j e c t has been keeping t rack o f e l apsed time

138 // l o c a l l y (on t h i s MPI proce s s) . Take the min and max g l o b a l l y

139 // to f i nd the min and max e lapsed time over a l l MPI p ro c e s s e s .

140 double myElapsedTime = Time . ElapsedTime () ;

141 double minElapsedTime = 0 . 0 ;

142 double maxElapsedTime = 0 . 0 ;

143 (void) Comm. MinAll (&myElapsedTime , &minElapsedTime , 1) ;

47

144 (void) Comm.MaxAll (&myElapsedTime , &maxElapsedTime , 1) ;

145

146 cout<<endl ;

147

148 cout << ”Parameter L i s t : ” << ∗ b e l o sL i s t <<endl ;

149

150 i f (Comm.MyPID()==0) {

151 const i n t numProcs = Comm.NumProc () ;

152 cout << ” | | b−Ax | | 2 = ” << r e s i d u a l << endl

153 << ” | | x exact − x | | 2 = ” << d i f f << endl

154 << ”Min t o t a l time (s) over ” << numProcs << ” p r o c e s s e s : ”

155 << minElapsedTime << endl

156 << ”Max t o t a l time (s) over ” << numProcs << ” p r o c e s s e s : ”

157 << maxElapsedTime << endl ;

158 i f (r e t == Belos : : Converged) {

159 std : : cout << ”Belos converged . ” << std : : endl ;

160 } e l s e {

161 std : : cout << ”Belos did not converge . ” << std : : endl ;

162 }

163 }

164

165

166 cout << t3−t1 << ” seconds e lapsed ” << endl ;

167 cout << t3−t2 << ” seconds e lapsed s o l v i n g ” << endl ;

168

169 #i f d e f EPETRA MPI

170

171 MPI Final ize () ;

172 #end i f

173

174 re turn (EXIT SUCCESS) ;

175 }

8.4 MueLuBelos.cpp Source Code

1 /∗

2 ∗ MueLuBelos . cpp

3 ∗ by Emily Furst

4 ∗ Modif ied from MLBelos . cpp and o r i g i n a l T r i l i n o s t u t o r i a l at https : // code . goog l e .

com/p/ t r i l i n o s /wik i /MLAztecOO

5 ∗

6 ∗/

48

7

8 //

9 //Use MueLu pr e cond i t i on e r with Belos s o l v e r to s o l v e problem se t up

10 //

11 #inc lude ”Epetra Conf igDefs . h”

12 #i f d e f HAVE MPI

13 # inc lude ”mpi . h”

14 # inc lude ”Epetra MpiComm . h”

15 #e l s e

16 # inc lude ”Epetra SerialComm . h”

17 #end i f

18 #inc lude ”Epetra Map . h”

19 #inc lude ”Epetra Vector . h”

20 #inc lude ”Epetra RowMatrix . h”

21 #inc lude ”Epetra CrsMatrix . h”

22 #inc lude ”Epetra LinearProblem . h”

23 #inc lude ”Epetra Time . h”

24 #inc lude ”Teuchos ParameterList . hpp”

25 #inc lude ”Teuchos RCP . hpp”

26 #inc lude ”BelosLinearProblem . hpp”

27 #inc lude ”BelosBlockCGSolMgr . hpp”

28 #inc lude ”BelosEpetraAdapter . hpp”

29 #inc lude ”MueLu . hpp”

30 #inc lude ”Xpetra Vector . hpp”

31 #inc lude ”Xpetra RowMatrix . hpp”

32 #inc lude ”Xpetra CrsMatrix . hpp”

33 #inc lude ”Xpetra EpetraCrsMatrix . hpp”

34

35 #inc lude <iostream>

36

37 #inc lude <Xpetra Mult iVectorFactory . hpp>

38

39

40 #inc lude <MueLu Tril inosSmoother . hpp> //TODO: remove

41

42 // Header f i l e s d e f i n i n g d e f au l t types f o r template parameters .

43 // These headers must be inc luded a f t e r other MueLu/Xpetra headers .

44 #inc lude <MueLu UseDefaultTypes . hpp> // => Sca la r=double , Loca lOrdina l=int ,

GlobalOrdinal=in t

45

46 #inc lude <BelosConf igDefs . hpp>

47 #inc lude <BelosLinearProblem . hpp>

49

48 #inc lude <BelosBlockCGSolMgr . hpp>

49 #inc lude <BelosXpetraAdapter . hpp> // => This header d e f i n e s Belos : : XpetraOp

50 #inc lude <BelosMueLuAdapter . hpp> // => This header d e f i n e s Belos : : MueLuOp

51

52

53 // The ML inc lude f i l e r equ i r ed when working with Epetra ob j e c t s .

54 #inc lude ”m l epe t r a p r e c ond i t i on e r . h”

55

56 #inc lude ” Tr i l i n o s Ut i l C r sMat r i xGa l l e r y . h”

57

58 us ing namespace Teuchos ;

59 us ing namespace T r i l i n o s U t i l ;

60 us ing namespace std ;

61 us ing namespace Xpetra ;

62 us ing namespace MueLu ;

63

64 #inc lude <iostream>

65 #inc lude <sys / time . h>

66 #inc lude <time . h>

67

68 i n t

69 main (i n t argc , char ∗argv [])

70 {

71

72 s t r u c t t imeva l tim ;

73 gett imeofday(&tim , NULL) ;

74 double t1=tim . t v s e c+(tim . tv us e c /1000000 .0) ;

75

76 #inc lude <MueLu UseShortNames . hpp>

77

78 #i f d e f EPETRA MPI

79 MPI Init (&argc ,&argv) ;

80 Epetra MpiComm Comm (MPICOMMWORLD) ;

81 #e l s e

82 Epetra SerialComm Comm;

83 #end i f

84

85 Epetra Time Time(Comm) ;

86

87 // I n i t i a l i z e a Gal l e ry object , f o r gene ra t ing a 3−D Laplac ian

88 // matrix d i s t r i b u t e d over the g iven communicator Comm.

89 CrsMatr ixGal lery Gal l e ry (” l ap l a c e 3d ” , Comm) ;

50

90

91 //problem s i z e must be a p e r f e c t cube as working with 3−D Laplac ian

92 Gal l e ry . Set (” prob l em s i z e ” , 125000) ;

93

94 // Get po i n t e r s to the generated matrix and a t e s t l i n e a r problem .

95 Epetra CrsMatrix A = ∗(Ga l l e ry . GetMatrix ()) ;

96 Epetra CrsGraph graphA = A. Graph () ;

97

98 // convert Epetra Matrix to Xpetra Matrix ob j e c t

99

100 RCP<const CrsGraph > rgraphA = toXpetra<int >(graphA) ;

101 RCP<Matrix > rA = rcp (new CrsMatrixWrap (rgraphA)) ;

102 rA−>s e tA l lToSca la r (0) ;

103 rA−>r e sumeFi l l () ;

104 f o r (i n t i = 0 ; i < A. NumGlobalRows () ; i++){

105 i n t num = 0 , ∗ i n d i c e s = new in t [A. NumGlobalEntries (i)] ;

106 double ∗ va lue s = new double [A. NumGlobalEntries (i)] ;

107 A. ExtractGlobalRowCopy (i , A. NumGlobalCols () ,num, values , i n d i c e s) ;

108

109 rA−>r ep laceGloba lVa lues (i , arrayView<const int >(i nd i c e s , num) , arrayView<const

double>(values , num)) ;

110 }

111 rA−>f i l lComp l e t e () ;

112

113 // r e t r i e v e LHS and RHS vec to r s

114

115 Epetra LinearProblem ∗ Problem = Gal l e ry . GetLinearProblem () ;

116 RCP<Epetra Mult iVector> LHS = rcp (Problem−>GetLHS() , f a l s e) ;

117 RCP<Epetra Mult iVector> RHS = rcp (Problem−>GetRHS() , f a l s e) ;

118

119 // convert LHS and RHS Epetra ve c to r s to Xpetra ob j e c t s

120

121 RCP<MultiVector > rLHS = toXpetra<int >(LHS) ;

122 RCP<MultiVector > rRHS = toXpetra<int >(RHS) ;

123

124

125 // s e t t i n g up MueLu pr e cond i t i on e r and Belos s o l v e r s

126 FactoryManager M;

127

128 RCP<Hierarchy> H = rcp (new Hierarchy (rA)) ;

129

130 H−>setVerbLeve l (Teuchos : : VERB HIGH) ;

51

131

132 RCP<Factory> AcFact = rcp (new RAPFactory ()) ;

133 M. SetFactory (”A” , AcFact) ;

134

135

136 H−>Setup (M) ;

137

138 typede f Mult iVector MV;

139 typede f Belos : : OperatorT<MV> OP;

140

141 RCP<OP> belosOp = rcp (new Belos : : XpetraOp<SC, LO, GO, NO>(rA)) ;

142 RCP<OP> be lo sPrec = rcp (new Belos : : MueLuOp<SC, LO, GO, NO>(H)) ;

143

144 RCP< Belos : : LinearProblem<SC, MV, OP> > belosProblem = rcp (new Belos : :

LinearProblem<SC, MV, OP>(belosOp , rLHS , rRHS)) ;

145 belosProblem−>s e tLe f tPr e c (be lo sPrec) ;

146

147 bool s e t = belosProblem−>setProblem () ;

148 TEUCHOS TEST FOR EXCEPTION(! set ,

149 std : : runt ime er ror ,

150 ”∗∗∗ Belos : : LinearProblem f a i l e d to s e t up c o r r e c t l y ! ∗∗∗”) ;

151 i n t maxIts = 150 ;

152 double t o l = 1e−10;

153 Teuchos : : ParameterList b e l o sL i s t ;

154 b e l o sL i s t . s e t (”Maximum I t e r a t i o n s ” , maxIts) ; // Maximum number o f i t e r a t i o n s

a l lowed

155 b e l o sL i s t . s e t (”Convergence Tolerance ” , t o l) ; // Re la t i v e convergence t o l e r an c e

reques ted

156 b e l o sL i s t . s e t (”Verbos i ty ” , Belos : : Errors + Belos : : Warnings + Belos : : TimingDetai l s

+ Belos : : S ta tu sTes tDeta i l s) ;

157

158 // Create an i t e r a t i v e s o l v e r manager

159 RCP< Belos : : SolverManager<SC, MV, OP> > s o l v e r = rcp (new Belos : : BlockCGSolMgr<SC,

MV, OP>(belosProblem , rcp(&be l o sL i s t , f a l s e))) ;

160

161

162 // r e t r i e v e time a f t e r setup and be f o r e s o l v e

163 gett imeofday(&tim , NULL) ;

164 double t2=tim . t v s e c+(tim . tv us e c /1000000 .0) ;

165

166 // Perform so l v e

167

52

168 Belos : : ReturnType r e t = so lve r−>s o l v e () ;

169

170 // r e t r i e v e time a f t e r s o l v e

171 gett imeofday(&tim , NULL) ;

172 double t3=tim . t v s e c+(tim . tv us e c /1000000 .0) ;

173

174 // Get the number o f i t e r a t i o n s f o r t h i s s o l v e .

175 std : : cout << ”Number o f i t e r a t i o n s performed f o r t h i s s o l v e : ” << so l ve r−>

getNumIters () << std : : endl ;

176

177

178

179 // Ver i f y the s o l u t i o n by computing the r e s i d u a l e x p l i c i t l y .

180 double r e s i d u a l = 0 . 0 ;

181 double d i f f = 0 . 0 ;

182 Gal l e ry . ComputeResidual (& r e s i d u a l) ;

183 Gal l e ry . ComputeDiffBetweenStartingAndExactSolutions (& d i f f) ;

184

185 // The Epetra Time ob j e c t has been keeping t rack o f e l apsed time

186 // l o c a l l y (on t h i s MPI proce s s) . Take the min and max g l o b a l l y

187 // to f i nd the min and max e lapsed time over a l l MPI p ro c e s s e s .

188 double myElapsedTime = Time . ElapsedTime () ;

189 double minElapsedTime = 0 . 0 ;

190 double maxElapsedTime = 0 . 0 ;

191 (void) Comm. MinAll (&myElapsedTime , &minElapsedTime , 1) ;

192 (void) Comm.MaxAll (&myElapsedTime , &maxElapsedTime , 1) ;

193

194 cout<<endl ;

195

196

197 i f (Comm.MyPID()==0) {

198 const i n t numProcs = Comm.NumProc () ;

199 cout << ” | | b−Ax | | 2 = ” << r e s i d u a l << endl

200 << ” | | x exact − x | | 2 = ” << d i f f << endl

201 << ”Min t o t a l time (s) over ” << numProcs << ” p r o c e s s e s : ”

202 << minElapsedTime << endl

203 << ”Max t o t a l time (s) over ” << numProcs << ” p r o c e s s e s : ”

204 << maxElapsedTime << endl ;

205 i f (r e t == Belos : : Converged) {

206 std : : cout << ”Belos converged . ” << std : : endl ;

207 } e l s e {

208 std : : cout << ”Belos did not converge . ” << std : : endl ;

53

209 }

210 }

211

212 // p r in t out time r e s u l t s

213 cout << t3−t1 << ” seconds e lapsed ” << endl ;

214 cout << t3−t2 << ” seconds e lapsed s o l v i n g ” << endl ;

215

216 #i f d e f EPETRA MPI

217

218 MPI Final ize () ;

219 #end i f

220 re turn (EXIT SUCCESS) ;

221 }

8.5 Makefile for MLAztecOO.cpp

Note Makefiles for MLAztecOO.cpp, MLBelos.cpp, and MueLuBelos.cpp are essentially the same

with only the filename and executable name changed wherever they appear in the Makefile (lines

55,56,59,60).

1 # CMAKE F i l e f o r ”MyApp” app l i c a t i o n bu i l d i ng aga in s t an i n s t a l l e d T r i l i n o s

2

3 #This f i l e i s an adaptat ion o f the CMakeLists . txt f i l e that was converted from

4 #the bu i l dAga i n s tTr i l i n o s example . This Make f i l e was des igned to be used in a

5 #f l a t d i r e c t o r y s t r u c tu r e . I f you would l i k e to run t h i s example you w i l l need

6 #put t h i s f i l e and s r c f i l e . cpp , s r c f i l e . hpp , ma i n f i l e . cpp from

7 #bu i l dAga i n s tT r i l i n o s in to a new d i r e c t o r y . You w i l l then need to s e t the

8 #environment va r i ab l e MYAPP TRILINOS DIR to po int to your base i n s t a l l a t i o n o f

9 #Tr i l i n o s . Note that t h i s example assumes that the i n s t a l l a t i o n o f T r i l i n o s that

10 #you point to has Epetra enabled .

11

12 # Get T r i l i n o s as one en t i t y

13 inc lude $ (MYAPP TRILINOS DIR) inc lude /Make f i l e . export . T r i l i n o s

14

15 # Make sure to use same compi l e r s and f l a g s as T r i l i n o s

16 CXX=$ (Trilinos CXX COMPILER)

17 CC=$ (Trilinos C COMPILER)

18 FORT=$ (Trilinos Fortran COMPILER)

19

20 CXX FLAGS=$ (Trilinos CXX COMPILER FLAGS) $ (USER CXX FLAGS)

21 C FLAGS=$ (Trilinos C COMPILER FLAGS) $ (USERC FLAGS)

22 FORT FLAGS=$ (Trilinos Fortran COMPILER FLAGS) $ (USER FORT FLAGS)

54

23

24 INCLUDE DIRS=$ (Trilinos INCLUDE DIRS) $ (Trilinos TPL INCLUDE DIRS)

25 LIBRARY DIRS=$ (Trilinos LIBRARY DIRS) $ (Trilinos TPL LIBRARY DIRS)

26 LIBRARIES=$ (Trilinos LIBRARIES) $ (Trilinos TPL LIBRARIES)

27

28 LINK FLAGS=$ (Trilinos EXTRA LD FLAGS)

29

30 #ju s t assuming that epet ra i s turned on .

31 DEFINES=−DMYAPPXPETRA

32 DEFINES=−DMYAPPEPETRA

33 DEFINES=−DMYAPPTPETRA

34 DEFINES=−DMYAPPGALERI

35 DEFINES=−DMYAPP STRATIMIKOS

36

37 de f au l t : p r i n t i n f o MLEx. exe

38

39 # Echo t r i l i n o s bu i ld i n f o j u s t f o r fun

40 p r i n t i n f o :

41 @echo ”\n Found T r i l i n o s ! Here are the d e t a i l s : ”

42 @echo ” Trilinos VERSION = $ (Trilinos VERSION)”

43 @echo ” Trilinos PACKAGE LIST = $ (Trilinos PACKAGE LIST) ”

44 @echo ” Trilinos LIBRARIES = $ (Trilinos LIBRARIES) ”

45 @echo ” Trilinos INCLUDE DIRS = $ (Trilinos INCLUDE DIRS) ”

46 @echo ” Trilinos LIBRARY DIRS = $ (Trilinos LIBRARY DIRS) ”

47 @echo ” Tril inos TPL LIST = $ (Tril inos TPL LIST) ”

48 @echo ” Trilinos TPL INCLUDE DIRS = $ (Trilinos TPL INCLUDE DIRS) ”

49 @echo ” Trilinos TPL LIBRARIES = $ (Trilinos TPL LIBRARIES) ”

50 @echo ” Trilinos TPL LIBRARY DIRS = $ (Trilinos TPL LIBRARY DIRS) ”

51 @echo ” Trilinos BUILD SHARED LIBS = $ (Trilinos BUILD SHARED LIBS) ”

52 @echo ”End o f T r i l i n o s d e t a i l s \n”

53

54 # run the g iven t e s t

55 t e s t : MLEx. exe input . xml

56 . /MLEx. exe

57

58 # bu i ld the

59 MLEx. exe : MLAztecOO. cpp

60 $ (CXX) $ (CXX FLAGS) MLAztecOO. cpp −o MLEx. exe $ (LINK FLAGS) $ (INCLUDE DIRS)

$ (DEFINES) $ (LIBRARY DIRS) $ (LIBRARIES)

61

62 libmyappLib . a : s r c f i l e . o

63 $ (Tri l inos AR) cr libmyappLib . a s r c f i l e . o

55

64

65 s r c f i l e . o :

66 $ (CXX) −c $ (CXX FLAGS) $ (INCLUDE DIRS) $ (DEFINES) MLAztecOO. cpp

67

68 .PHONY: c l ean

69 c l ean :

70 rm −f ∗ . o ∗ . a ∗ . exe

8.6 Trilinos cmake Script

The following is the cmake script used to install Trilinos based off of a version of the software

downloaded from the public repository.

1 T r i l i n o s Cmake Sc r i p t

2

3 /opt/cmake−2 .8 .12 .2/ bin /cmake −D CMAKE BUILD TYPE:STRING=DEBUG −D

Trilinos ENABLE TESTS :BOOL=OFF −D Trilinos ASSERT MISSING PACKAGES=OFF −D

Trilinos ENABLE ALL PACKAGES=ON −D TPL ENABLE MPI :BOOL=ON −D

Trilinos ENABLE MueLu=ON −D BUILD SHARED LIBS :BOOL=ON −D CMAKECXX FLAGS=”−g −

O3” −D CMAKE C FLAGS=”−g −O3” −D CMAKEFORTRANFLAGS=”−g −O5” −D

Trilinos EXTRA LINK FLAGS=”− l g f o r t r a n ” −D CMAKE INSTALL PREFIX:PATH=/usr / people

/ r e s ea r ch / e a f u r s t / t r i l i n o s −date / usr / people / r e s ea r ch / e a f u r s t / t r i l i n o s −11.8.1−

Source / pub l i cT r i l i n o s

8.7 deal.II Install Notes

The following are the commands used to install a version of deal.II downloaded from the deal.II

website.

1 mkdir bu i ld

2 cd bu i ld

3

4 cmake −DCMAKE INSTALL PREFIX=/path/ to / i n s t a l l / d i r . . / dea l . I I −DDEAL II WITH MPI=ON

−DTRILINOS DIR=/path/ to / t r i l i n o s

5

6

7 make i n s t a l l

8 make t e s t

56

	Parallel Preconditioners for Finite Element Computations
	Recommended Citation

	Introduction
	Introduction to Partial Differential Equations and the One Dimensional Heat Equation
	Introduction to Parallel and Distributed Computing

	Contributions to this Topic
	Problem Statement
	Background
	Analytical Solutions and Separation of Variables
	The Finite Difference Method
	The Finite Element Method
	Trilinos Software
	Epetra, Tpetra, and Xpetra
	ML and MueLu
	AztecOO and Belos
	Summary of Trilinos Packages

	deal.II Software

	Methods
	Source Code and Computing Architecture
	Solving the One Dimensional Heat Equation Analytically
	Solving Using FTCS Finite Differences
	Solving Using Crank-Nicolson FEM
	Developing a Method for Updating the deal.II Software

	Results
	One-Dimensional Heat Equation Results
	Analytical Solution
	Finite Difference Results
	Finite Element Method Results

	Small Scale Example Results

	Conclusion
	Future Work

	Appendix
	Computing Architecture
	MLAztecOO.cpp Source Code
	MLBelos.cpp Source Code
	MueLuBelos.cpp Source Code
	Makefile for MLAztecOO.cpp
	Trilinos cmake Script
	deal.II Install Notes

