
College of Saint Benedict and Saint John's University College of Saint Benedict and Saint John's University 

DigitalCommons@CSB/SJU DigitalCommons@CSB/SJU 

Honors Theses, 1963-2015 Honors Program 

4-2015 

Polyurethane research for applications in the field of dentistry: Polyurethane research for applications in the field of dentistry: 

Limiting side reactions in monomer development and Limiting side reactions in monomer development and 

synthesizing N-capped polymenthide synthesizing N-capped polymenthide 

Ellen M. (Ellie) Black 
College of Saint Benedict/Saint John's University 

Follow this and additional works at: https://digitalcommons.csbsju.edu/honors_theses 

 Part of the Chemistry Commons 

Recommended Citation Recommended Citation 
Black, Ellen M. (Ellie), "Polyurethane research for applications in the field of dentistry: Limiting side 
reactions in monomer development and synthesizing N-capped polymenthide" (2015). Honors Theses, 
1963-2015. 65. 
https://digitalcommons.csbsju.edu/honors_theses/65 

This Thesis is brought to you for free and open access by DigitalCommons@CSB/SJU. It has been accepted for 
inclusion in Honors Theses, 1963-2015 by an authorized administrator of DigitalCommons@CSB/SJU. For more 
information, please contact digitalcommons@csbsju.edu. 

https://digitalcommons.csbsju.edu/
https://digitalcommons.csbsju.edu/honors_theses
https://digitalcommons.csbsju.edu/honors
https://digitalcommons.csbsju.edu/honors_theses?utm_source=digitalcommons.csbsju.edu%2Fhonors_theses%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/131?utm_source=digitalcommons.csbsju.edu%2Fhonors_theses%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.csbsju.edu/honors_theses/65?utm_source=digitalcommons.csbsju.edu%2Fhonors_theses%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@csbsju.edu


 
 
 
 
 
 
 

Polyurethane research for applications in the field of dentistry: 
Limiting side reactions in monomer development and 

synthesizing N-capped polymenthide  
 

An Honors Thesis 
 

College of St. Benedict/St. John’s University 
 

In Partial Fulfillment 
of the Requirements for All College Honors 

 
 
 
 
 
 
 

Ellie Black 
Advisor: Dr. Chris Schaller 

April, 2015 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



2 
 

 
Abstract 

 

 Modern dentistry has found uses for polyurethanes in both dental arch models 

and removable dental appliances. In an attempt to make polyurethanes from 

renewable resources, both naturally derived menthone and dihydrocarvone were 

oxidized in order to form menthide and dihydrocarvide, respectively. The resulting 

ester, if copolymerized could be modified to form a polyuria; however, 

dihydrocarvide synthesis was complicated by epoxidation. Different reaction 

environments with varying salts showed no positive effect on limiting epoxide 

products. A homopolymerization of menthide resulted in a polymenthide chain that 

was reacted in the presence of N,N'-Dicyclohexylcarbodiimide (DCC) in order to form 

an N-capped polymenthide chain. This N-capped polymenthide can then be reacted 

with diisocyanate in order to form a PU. 

 

 

Introduction 

 

Polyurethanes (PUs) were discovered in the year 1937 by Otto Bayer’s 

laboratory as they were seeking out an alternative source to rubber.1 Now, in 2015, 

PUs have been incorporated into consumer goods. They are in toys, mattresses, 

biomedical equipment, hoses, shoes, etc.2,3,4,5 PUs have a wide array of applications 

because of their strong, yet flexible qualities.4 

PUs consist of both hard and soft segments. The hard segment is due to the 

functional groups that have the ability to hydrogen bond (Fig. 1.1). The hydrogen 

bonding makes the structure rigid and unable to undergo conformational changes. 

These functional groups can be an amide, urea, or ester-amide group.5 The soft 

segment is due to the polymenthide chains. The repeating monomers are flexible and 

do have the ability to undergo conformational changes.  
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Fig. 1.1. Soft and hard segments of a PU.  

 

PUs are rapidly making their way into the medical field and for good reasons. 

PUs show histocompatibility, low toxicity, blood compatibility, and better 

biodegradability.6 Their ability to have different properties allows them to be used in 

medical applications that need both strength and flexibility. These important 

properties mimic body tissues. Similarly tissues are measured by their elasticity and 

PUs can be too.7 Tissues and PUs both show cross-linking and force resistance which 

is beneficial for PUs biocompatibility. In diseases, tissues’ properties are 

compromised and for restorative purposes PUs are being integrated into artificial 

hearts.6,7 By manipulating the ratio of hard to soft segments numerous PUs with 

different properties can be achieved. Their ability to be molded also makes them 

extremely useful for biomedical equipment. In the field of dentistry PUs are being 

tested as replacements for previous gypsum-based arch models that are used to 

model the position of the teeth in a patient.8 They are also the material used for 

removable dental aligner restorative treatments, a substitute for braces.9 

Dental models are necessary for most restorative work, such as crowns and 

bridges.10 Negative impressions are taken of a patient’s mouth and then filled with 
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some sort of casting material. A giant stride was made in 1995 when the impressions 

could be pinned together and the casting material could be poured in a single pour.10 

It was later suggested in 2007 that gypsum, calcium sulfate dihydrate, was the casting 

material of choice. Mixing gypsum with water would limit the inaccuracies of the 

casting pour.11 However, gypsum is sensitive to degradation thus presenting issues 

with the gypsum models, also they have other downfalls of storage and mass.8 PUs 

are tested as substitutes for these gypsum-based arch models. The strong yet flexible 

properties of PUs present them as an alternative dental arch model.8  

PU dental arch models are made by 3D subtractive rapid prototyping, a 

technique that starts with more material than the final product and uses a digital 

scanner to make the impression. The precision and accuracy of the PU models was 

acceptable.8,12 This improvement in dental arch models allows less plaster to be used 

and a more resilient dental arch model to be made. 

PUs are also used as removable dental aligners, like the commonly known 

Invisalign, among others. Invisalign can be a replacement for fixed restorative 

treatment, such as braces and wires.9 Fixed aligners have both hygienic and aesthetic 

downfalls. They provide a place for plaque to build up, and some patients needing 

orthodontic treatment prefer not to have bulky fixed aligners.9,13 The 

biocompatibility of PUs is essential for an aligner, in order to not irritate tissues in the 

mouth.14 Despite the advantages, there are disadvantages as well. Treatment can only 

start when all permanent teeth are present, and the success is up to the patient as far 

as commitment to wearing the aligners.13  

By using both PU dental arch models and removable aligners, dentistry has 

already found uses for PUs. By synthesizing PUs from renewable resources, dentistry 

has the ability to become a more sustainable field.  

Polyurethanes contribute to petroleum-based waste, a vital reason to develop 

a new synthesis for these valuable polymers.15 The reaction of 1,4-butanediol, polyol, 

and diisocyanate yields a PU.  

The goal of the first chapter of this research was to produce menthide and 

dihydrocarvide with minimal epoxide product in the dihydrocarvide reaction. 

Epoxide product is when the double bond of dihydrocarvide is involved in the 
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reaction with oxone. Based on previous literature,2 menthide is synthesized from 

menthone, while dihydrocarvide is synthesized from carvone. Both menthone and 

carvone are naturally occurring compounds making the synthesis of the polyol a 

greener reaction. The epoxidation would be limited by varying the salts added to the 

reaction.  Salts have the ability to change the polarity within the reaction. 

 In the second chapter of this project, the telechelic polymenthide (PM) was 

synthesized from menthide in a homopolymerization.16 PM was then reacted with 

lysine to convert PM into a polyol with one reactive nitrogen group on each end.17 In 

further reactions, PM could react with an isocyanate in order to form a PU. Although 

that experiment was not reached in this research.  

 

 

Results and Discussion 

 

 General: Renewable Polymers 

 

 Emphasis on synthesizing PUs from renewable resources has found its way 

into research. Vegetable oils, which are triacylglycerols, are naturally occurring 

materials that have been used to form polymers.18 They have favorable qualities, such 

as their level of unsaturation. The degree of unsaturation, double bond availability, 

allows polymerization to occur when exposed to heat.18 Research on synthesizing a 

polyol with hydroxyl end groups from vegetable oils has also been explored 

considering the high demand for PUs throughout the world.18 Vegetable oil-derived 

diisocyanates have also been synthesized for PU coatings in an attempt to reduce the 

use of diisocyanates coming from petroleum.18,19   

 Different stages of PU synthesis are looked into to make the entire process of 

PU formation more sustainable. For synthesis of the soft segment, polyesters, usually 

formed using a metal catalyst, are being synthesized from organic catalysts4. 

Polylactides and polymenthide can be used as the soft segment of the PU.2,16 The 

importance of the polyesters, soft segments, coming from renewable polymers is also 

researched.  
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Chapter 1: Monomer Development 

 

One approach to having PUs derived from renewable resources is to 

synthesize the monomers from renewable resources. Previous literature shows 

research into making PUs from limonene, a major waste product of the citrus fruit 

industry.20 Another natural product, menthone can be developed into menthide.21 

The success within these two monomer syntheses gives a foundation for the goal of 

this project.  

 In the conversion of dihydrocarvone to dihydrocarvide (Fig. 1.2) much 

epoxide product is accumulated with the use of oxone. The epoxide product has the 

potential to be useful for different polymer syntheses; however, this project was to 

limit the different products and identify the best reaction environment in which the 

Baeyer-Villiger reaction is the most favored. The Baeyer-Villiger reaction forms an 

ester. The product of the Baeyer-Villiger reaction maintains the double bond, which 

can be used in the thiol-ene reaction in PU synthesis.  

 

 

 

 

 

 

 

Fig. 1.2. Conversion of dihydrocarvone to dihydrocarvide. 

 

 

 Once dihydrocarvide could be synthesized successfully, a copolymerization 

between dihydrocarvide and menthide would form the polymer. The polymer could 

then participate in the thiol-ene reaction, or a similar reaction with an amide, in which 

the amide group would attach to the double bond. The reaction scheme is shown in 

Fig. 1.3.  
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Fig. 1.3. Overall goal of the project.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.4. Polyamine to Polyurea formation.  

 

Following previous literature2,22, the Baeyer-Villiger reaction converting 

dihydrocarvone to dihydrocarvide was catalyzed by oxone (KHSO5·KHSO4·K2SO4) 

(Fig. 1.3 and 1.4). Three potential products resulted from this reaction, as well as the 

unreacted dihydrocarvone (Fig. 1.5). Epoxide dihydrocarvone and epoxide 

oxone oxone 

Et
2
Zn, BnOh 

HSCH
2
CH

2
NH

2
, DMAP, һυ 

Thiol-ene Modification  

BnOH 
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dihydrocarvide can be used for other reactions. Dihydrocarvide was the desired 

product to preserve the double bond that would assist in cross-linking. A thiol-ene 

reaction could contribute to the strength of the PU by assisting in cross-linking.  

 

 

 

 

 

Fig. 1.5. Possible products of dihydrocarvone synthesis to dihydrocarvide.  

 

In an attempt to limit the epoxidation product of the reaction, different salts 

were introduced. E. pure and two times the mole ratio of oxone reactions were also 

tested to alter the reaction environment (Table 1). 
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Table 1. Different salts added to the oxidation reaction.  
Conditions Percent 

Reactant 

Percent 

Epoxide 

Percent Ester Percent Epoxy 

Ester 

LiCl 40 12 48 - 

NaCl 42 5 54 - 

KI 98 2 - - 

NaF 35 16 48 - 

NaBr 25 71 - 4 

KCl 40 33 27 - 

LiBr 28 67 - 3 

E. Pure 49 6 45 - 

Double Oxone 15 3 47 35 

DI Water 42 12 39 7 

 

The results in Table 1 were measured using GC-MS. By comparing retention 

times of the four possible products at 12.0, 14.6, 15.2, 17.5 minutes.  By analyzing the 

mass spectrum of the dihydrocarvide peak (15.2) and confirming the product was 

dihydrocarvide, comparison between the retention times allowed the calculation of 

the percent of each product. Salts interact with the ketone of dihydrocarvone in order 

to favor the Baeyer-Villiger reaction over the epoxide product. The Baeyer-Villiger 

intermediate has a negative oxygen and this negative charge could also be stabilized 

by the salt.  As the results show, salts were not an effective solution to limiting either 

epoxide product. In one case, KI inhibited the majority of any reaction occurring at 

all. Salts, such as NaBr, KCl, and LiBr, produced a large percentage (33%-71%) of 

epoxidized dihydrocarvone and had small amounts of dihydrocarvide product. 

Epoxide dihydrocarvone and dihydrocarvide have similar boiling points making 

separation difficult. Whereas epoxidized dihydrocarvide has a much higher boiling 

point than dihydrocarvide, this property allows epoxidized dihydrocarvide and 

dihydrocarvide to be separated by distillation.  

The double Oxone®, E. Pure, and DI water reactions had similar percentages 

(39%-47%) of dihydrocarvide at the end of the reaction.  
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 The ineffectiveness of the salts to change the polarity of the reaction 

environment and favor the Baeyer-Villiger reaction caused the DI water reaction 

environment to be maintained for the synthesis of dihydrocarvide from 

dihydrocarvone. Since the ester yield was not improved, this was not a good reaction 

to pursue. The salts would no longer be used in the reaction. The focus shifted to 

creating polymenthide, which would be reacted with lysine monohydrochloride in 

order to have N-capped polymenthide, a precursor for a PU. 

 

 

Chapter 2: N-capped Polymenthide 

  

 As discussed previously, polyesters are a component of PUs. A number of 

vegetable oil-derived polyesters have been synthesized.18 Polylactide, derived from 

naturally occurring lactic acid, has been synthesized as a polyester.16 Also, PM has 

been synthesized.16 In one project, PM was synthesized using diethylene glycol and 

tin(II) ethylhexanoate,16 eliminating a metal catalyst is desired. In other literature, 

menthide was reacted with diethylene glycol and diethyl zinc to synthesize PM.16 The 

formation of polyesters from renewable resources is necessary for the synthesis of 

PUs to become more sustainable.  

 In this project, by changing the protocol from diethylene glycol to 1,4-

butanediol, the reaction was less toxic23 (Fig. 2.1). Once the PM was synthesized, it 

would be reacted with lysine monohydrochloride in order to have an N-capped PM. 

Polymers, such as PM, are then reacted with diisocyanate to become a PU.  
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Fig. 2.1. Reaction scheme of menthide and 1,4-butanediol to make PM. 

 

 The target polymer ratio was 10:1:2 (menthide:butanediol). Polymers of 

different lengths were tested for the effects on properties. Four different polymers of 

varying ratios were reacted with lysine monohydrochloride (Table 2). The reaction 

between PM, N,N’-Dicyclohexylcarbodimide (DCC), and lysine monohydrochloride 

added a reactive nitrogen end group to each end of PM in order to convert the 

polymer to an N-capped PM17 (Fig. 2.2). The N-capped PM could then participate in 

future reactions in which dihydrocarvide could be added to the end group.  

The N-capped PM was synthesized by a procedure using 

hydroxybenzotriazole (HOBt) and N, N’-Dicyclohexylcarbodiimide (DCC). DCC is a 

coupling agent. Procedures using DCC have been widely studied. They are studied for 

drug carriers; by synthesizing polymer-peptide conjugates, the efficiency of drug 

delivery could be increased.24,25 An advantage to using DCC is the insoluble 

precipitate (DCU) that is formed by the reaction.26 The precipitate provides easier 

purification. The polymer needs active end groups to participate in the reaction 

producing the conjugate and these reactions have high yield in the presence of 

racemization limiting compounds, such as HOBt.26,27 
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Table 2. Four PM polymers that were selected to react with DCC. 

Polymenthide 

Synthesis 

Menthide:Butanediol

:Diethyl Zinc Feed 

Ratio vs. Outcome 

Percent 

Recovery 

Mol Ratio 

Hexanes: 

PM 

Weight Ratio 

Hexanes:PM 

PM1 18:1:2                  7:1:2 43.0% 1.0:12.24 86.18:15667.2 

PM2 18:1:2                  25.5:1:2 60.3% 1.44:28.64 124.09:126732 

PM3 10:1:2                  9.3:1:2 43.2% .74:34.53 64.29:5538.6 

PM4 10:1:2                  6.5:1:2 73.5% .84:21.59 72.39:23964.9 

*The polymers in this table were altered in order to test the effects on properties. The 
percent recovery was recovery by mass. 
 

   

 

Fig. 2.2. PM reacts with DCC to make an N-capped PM.  
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Fig. 2.3. Converting N-capped PM into a PU.  

This reaction would form a linear polyurethane. Lysine monohydrochloride 

reacted with DCC in order to make the ester a better electrophile. The PM hydroxyl 

group was the nucleophile. The reaction between the electrophile and nucleophile 

would result in an N-capped PM (Fig. 2.4). 
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Fig. 2.4. Activated electrophile of lysine after reacting with DCC. 

 

The literature for this procedure used an HCl wash in order to remove the 

precipitated dicyclohexylurea (DCU).17 However, the percent recovery was too low to 

do further experimentation with. It was thought the positively charged nitrogen 

groups on each end of the PM would make the newly formed N-capped PM polar. This 

would cause the product to be taken up in the water layer rather than the organic 

layer with ethyl acetate.  

 PM4 was added to the same reaction in the next attempt with DCC, but rather 

washed with NaOH in order to have the product remain in the organic layer. The 

percent recovery was still unquantifiable. The product recovered was enough for a 1H 

NMR, COSY, and IR analysis. 



15 
 

 A polymer with a high ratios of menthide to 1,4-butanediol were too difficult 

to analyze after adding the lysine monohydrochloride as the end group. The IR 

spectrum showed the O-H peak at 3300 cm -1 was now an N-H peak at 3300 cm-1. A 

COSY spectrum comparison between both PM and N-capped PM indicatecd that the 

lysine monohydrochloride had added to the end of the polymer chain (Fig. 2.6). There 

were more proton-proton correlations from the hydrogens of the lysine (Table 3). 

There was also a shift in correlation between the hydrogen at 3.2 ppm. The shifted 

correlation was upfield, which would be caused by the replacement of the terminal 

oxygen with a less electronegative nitrogen.  

Possible reasons the percent recovery was so low include loss of product 

through filtration, lysine monohydrochloride not adding, and the two solvents 

causing the reaction to bump easily in the rotary evaporation process.  

 

 

 

 

 

 

 

 

Fig. 2.5. 1H NMR assignments for PM. 
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Table 3. COSY correlations of PM. 
Shift correlates to Shift 
0.9  1.9 
1.3  1.5 
1.3  3.3 
1.5  4.7 
1.65  4.1 
1.85  4.7 
1.9  2.3 
2.1  2.3 
3.2  4.7* 

*Correlation missing in N-capped PM indicating that 3.2 is the H next to the hydroxyl 

end group; this hydrogen shifts when hydroxyl group is replaced with lysine. This 

table is used to show the relationships of the assignments in Fig. 2.4. Data from both 

NMR and COSY was used.  
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Fig. 2.6. COSY comparison of PM (top) and N-capped PM (bottom). Note the increased 

amount of hydrogen correlations around 1.0-2.0 ppm.  
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 PM was synthesized seven times. In three of these attempts, the result was 

unreacted monomer. Impure menthide could have caused this. If methanol was still 

present in the menthide, the ratio of initiator would be too large causing many short 

chains to form rather than the desired 10:1:2 ratio of monomer to 1,4-butanediol. 

 The only DCC reaction with quantifiable percent recovery was the reaction 

using PM2 with the 25.5:1:2 ratio. The length of this chain made analysis difficult. It 

was too difficult to conclude whether the lysine had indeed attached to the PM or was 

just present in the sample, unattached. 

 The limited product from the PM-lysine monohydrochloride reaction 

presented limitations for both analysis and further experimentation. Calorimetry 

could have been a useful technique in identifying if the lysine addition had indeed 

occurred. Other limitations included polymerization of PM. Many attempts resulted 

in unreacted monomer, possibly from impure menthide.  

The goal to synthesize an N-capped PM chain has little evidence marking its 

success. In future research, DCU precipitate could be removed from the reaction using 

different techniques. The polymer could be precipitated out in cold hexanes and DCU 

and hexanes would be decanted. 

 

 

Experimental  

 

Monomer synthesis 

 

 Microscale reactions for varying salt reactions for the synthesis of 

dihydrocarvide were set up. The amount of salt in each reaction was a 1:1 mole ratio 

of dihydrocarvone to salt. All of the monomer reactions were stirred at room 

temperature for 48 hrs. Throughout the 48 hrs, sodium bicarbonate and oxone were 

added twice a day. The amount of sodium bicarbonate (0.053 g, 0.0006 mol) and 

oxone (0.074 g, 0.0002 mol) added each time was the same amount as added to the 

initial reaction. Dihydrocarvone (0.11 mL, 0.0007 mol), E. pure water (2 mL), 

methanol (2 mL), oxone (0.074 g, 0.0002 mol), and sodium bicarbonate (0.053 g, 
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0.0006 mol) were all added to a vial. Salt was also added. Seven different salts were 

tested: LiCl (0.029 g), NaCl (0.039 g), KCl (0.050 g), NaBr (0.069 g), NaF (0.028 g), LiBr 

(0.058 g), and KI (0.115 g). A double oxone (0.150 g) reaction was also set up.      

 Once the reactions were done stirring, they were washed with ethyl acetate 

(3X 1mL). The organic top layer was extracted using a syringe. The organic layer was 

washed with a 19g in 200 mL sodium bisulfite solution (1 mL). The organic layer was 

extracted and washed with DI water (2X 1mL) and brine (1 mL). The reaction was 

dried with MgSO4 and then filtered to remove the MgSO4. Rotary evaporation was 

used to remove any remaining methanol. GC/MS were obtained for each reaction to 

see the percent conversion and percent epoxidation. GC/MS (m/z) for 

dihydrocarvide: 38.8, 66.8, 124.5, 168. Retention times (min) reactant, epoxide, ester, 

epoxide ester: 12.0, 14.6, 15.2, 17.5. 

 Menthide was synthesized following previous literature.2 Menthone (19 mL, 

0.11 mol), methanol (300 mL), DI water (300 mL), oxone (12.4 g, 0.08 mol), and 

sodium bicarbonate (8.8 g, 0.105 mol) were added to a large Erlenmeyer flask. The 

reaction was set to stir at room temperature for 48 hrs. Sodium bicarbonate and 

oxone were added twice a day in the same amount as the initial reaction set up. The 

reaction was then filtered to remove the sodium bicarbonate and oxone. Methanol 

was removed by rotary evaporation. The solution was washed in the following order: 

ether (3X 100 mL), sodium bisulfite (19 g in 200 mL, 2X 100 mL), DI water (2X 100 

mL), and brine (2X 200 mL). The solution was dried with MgSO4, which was then 

filtered off. The solution was then rotary evaporated to yield an oil. Menthide was also 

distilled before use in the polymerization (65˚C -75˚C). Menthide often crystallized 

after distillation, a visible indication of purity. GC/MS and 1H NMR were taken. GC/MS 

(m/z): 39, 153, 170. 1H NMR (CDCl3): δ 0.9 (m, 6H), 1.0 (d, 3H), 1.3 (m, 1H), 1.6 (m, 

1H), 1.8 (m, 2H), 1.9 (m, 2H), 2.4 (m, 2H), 4.0 (q, 1H). 

 

Polymerization 

 

 Polymenthide was synthesized following previous literature.16 The following 

procedure is for a polymer in a 10:1:2 ratio of menthide:butanediol:diethyl zinc. The 
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bomb used for the polymerization was oven dried before use. The butanediol was 

dried with molecular sieves. In the glovebox, the bomb was loaded with menthide 

(2.00 g, 0.01 mol), butanediol (0.10 ml, 0.001 mol), and Et2Zn (0.24 mL, 0.002 mol). 

The bomb was removed from the glovebox and placed in a 100˚C oil bath to stir for 22 

hrs. After 22 hrs, the bomb was exposed to air and dichloromethane (0.25 mL) was 

added. The reaction product was then precipitated with addition of 50 mL of chilled 

hexanes. The hexanes were decanted from the yellow polymer. Rotary evaporation 

was then used to remove any remaining hexanes for a purer product. In successful 

polymerizations, the percent recovery varied from 43%-73.5%. 1H NMR (CDCl3): δ 

0.9 (m, 3H), 1.3 (m, 1H), 1.5 (m, 3H), 1.65 (m, 2H), 1.85 (m, 5H), 1.9 (m, 2H), 2.1/2.3 

(m, 2H), 3.2 (m, 1H), 4.1 (m, 2H), 4.7 (m, 1H). 

 

N-Capped Polymenthide 

  

 Following a previous literature preparation17, lysine was added to the ends of 

PM. The following procedure is calculated based on PM4 (6.5:1:2). A mixture of lysine 

monohydrochloride (0.166 g, 4.0 mmol), HOBt (0.139 g, 4.0 mmol), and ethyl acetate 

(20 mL) was chilled in an ice bath. DCC (0.21 g, 4.4 mmol) was added and the mixture 

was stirred for 30 min. After the 30 min passed, PM (1 g, 4.0 mmol) and triethylamine 

(0.13 mL, 4.0 mmol) were added to the reaction and stirred for 2 hrs at room 

temperature. The reaction was then poured into hexanes (10 mL) and stored in the 

freezer overnight.  

 DCU formed a white precipitate that was filtered off. The precipitates were 

washed with ethyl acetate (10 mL) followed by 1M NaOH (2X 10 mL), saturated 

NaHCO3 (3X 10 mL), and finally brine (3X 10 mL). The solution was dried with MgSO4 

and filtered. Rotary evaporation was used to purify the product. Percent recovery was 

minimal. 1H NMR (CDCl3): δ 0.9 (m, 3H), 1.0 (m, 2H), 1.15 (m, 2H), 1.2 (m, 2H), 1.3 (m, 

1H), 1.5 (m, 3H), 1.65 (m, 2H), 1.7 (m, 2H), 1.8 (m, 5H), 1.9 (m, 2H), 2.1/2.3 (m, 2H), 

3.3 (m, 1H), 4.1 (m, 2H), 4.7 (m, 1H).  
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Conclusion 

 

 PUs derived from renewable resources is essential as the world’s consumption 

is high and the supply resources are diminishing. Monomers derived from renewable 

resources were synthesized. In this experiment, the reaction converting 

dihydrocarvone to dihydrocarvide was not any more selective with the addition of 

salts, double oxone, or in an E. pure reaction than when conducted in DI water. Rather 

the epoxide dihydrocarvone product was increased. Improvement of selectivity/high 

dihydrocarvide yield was researched further and successful improvements were 

made.  

 In the synthesis of N-capped PM, no strong evidence indicated that the 

addition had been successful.  Further development of both PM synthesis and lysine 

addition is necessary to increase the percent recovery of both products. By using 

different analysis techniques, the success of the reaction could be further analyzed.  

 The polymerization of PM was successful, but had its disadvantages. The feed 

ratio to the outcome ratio varied. There was no absolute prediction for the ratio of 

the obtained polymer. The reaction failed multiple times. The most likely reason for 

the failed attempts are due to the purity of the menthide. Even after distillation, any 

methanol remaining would act as additional initiator in the synthesis of the polymer.  

 Synthesis of N-capped PM has the potential to react in further experimentation 

with dihydrocarvide to form a linear PU. In the case of this successful reaction, PU 

synthesis becomes a greener reaction and has the potential to reduce the amount of 

the world’s petroleum-based waste. It also has the ability to make the field of 

dentistry a greener profession as PUs have already been introduced for both arch 

models and removable dental appliances. 
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