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Abstract 

 

Hibernating animals undergo dramatic changes in metabolic rates during torpor. One of 

most notable changes in these animals is the ability to maintain blood pressure and perfuse 

certain organs. Consequentially, blood perfusion to the kidneys is greatly decreased and the 

ability to concentrate urine halts. However, about once a week, torpor is interrupted and the 

animal becomes active to rewarm itself about once a week. This activity induces rapid 

regeneration of the extracellular osmotic gradient of the kidney, and allows urine to be 

concentrated. Nonetheless, regaining the extracellular osmotic gradient creates a potentially fatal 

consequence to the kidney cells. To combat the adverse effects of regaining an osmotic gradient, 

the animals significantly increase protective mechanisms within their kidneys, such as heat shock 

proteins (HSP) and organic osmolytes. It is well known that these rapid changes occur during 

cold-seasons, and little research has been done to compare these protective mechanisms within 

hibernating animals during the summer. To address this question, we worked in conjunction with 

a previous researcher to compare the data that has been done on a typical hibernator (Ichtidomys 

Tridecimlineatus) to data of a non-hibernator (Rattus Norvegicus). Rattus Norvegicus was placed 

under various water intake regimes to facilitate changes in the vertical osmotic gradient of the 

kidney. We then measured renal expression of HSP70, papillary urea, sorbitol, and the 

glomerular filtration rate in response to changes in the vertical osmotic gradient. Experimental 

treatments led to expected changes in urine volume and concentration for the rats, and serum 

homeostasis was largely maintained. GFR significantly decreased in the dehydration groups 

compared to the 600mM sucrose groups. The expression of HSP70 was not significantly 

different in any of the rat groups, but there was increased sorbitol concentrations as papillary 

urea concentrations increased during combination treatment.  
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Introduction 

Hibernation in heterothermic mammals and birds is characterized by pronounced temporal 

reductions in body temperature, energy expenditure, water loss, and other physiological 

functions (Geiser, 2013). Core body temperature in these hibernating animals can drop from 

37°C to just above ambient temperatures. Respiratory rates decrease from 100-200 breaths per 

minute to ~4-5 breaths per minute. Heart rates may also drop from 200-300bpm to ~3-4bpm, 

thus significantly decreasing cardiac output of the hibernator (Carey, Andrews, & Martin, 2003). 

This decreased cardiac output affects the animal’s ability to sustain an adequate blood pressure 

during bouts of torpor. As mean arterial blood pressure (MAP) falls below 80mmHg, decreased 

hydrostatic pressure in the glomerular capillaries begins to negatively impact filtration (Cotton, 

2012a; Sherwood, 2010). At a MAP of 40mmHg and below, researchers have shown an 

abolished ability to filter plasma through the glomerulus which results in a GFR of nearly 0 

(Lesser, Moy, Passmore, & Pfeiffer; 1970; Tempel & Musacchia, 1975). Without glomerular 

filtration, cortico-papillary gradients within the kidney are lost. Thus, the ability to concentrate 

urine is also abolished (Clausen & Storesun, 1971; Tempel & Musacchia, 1975).    

 Consequentially, without the ability to filter through the glomerulus, waste products may 

accumulate in the plasma and animals may lose the ability to regulate pH. With the loss of a 

cortico-papillary gradient, animals may also experience disruptions in hydromineral balance and 

osmotic regulation due to the inability to excrete concentrated urine. However, despite these 

dramatic physiological changes, the hibernating animal is still able to maintain constant blood 

chemistry homeostasis. (Carey, et. al., 2003; Jani, Martin, Jain, Keys, & Edelstein, 2013).  
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During arousal, the animal’s cortico-papillary osmotic gradient within the kidneys returns, 

and the ability to concentrate urine is consequentially reestablished when the animal reaches 

euthermic levels (Baddouri & Elhilali, 1986). However, there is evidence suggesting that GFR 

does not resume until midway through an arousal bout (Baddouri & Elhilali, 1986), preventing 

severe dehydration. Before GFR is regained, gradients are rapidly regenerated during arousal, 

often within a few short hours, creating a hyperosmotic environment for the kidney cells 

(Baddouri & Elhilali, 1986). High concentrations of intracellular salts and crowding of large 

intracellular molecules greatly affect the structure and activity of proteins, DNA, and other 

cellular macromolecules in the kidney medulla and papilla. (Burg, Kwon, & Kultz, 1997). The 

epithelial cells therefore must quickly become isosmotic with the extracellular environment to 

avoid severe shrinkage in volume and intracellular crowding. In addition to osmolality changes, 

the high concentration of urea present in the extracellular space can freely enter the cells and 

cause protein denaturation. This creates the necessity of having protective mechanisms quickly 

upregulated to avoid fatal consequences.  

 

Organic Osmolytes and Heat Shock Proteins 

To combat the harmful effects of a hyperosmotic environment, the kidney cells sequester 

compatible and counteractive osmolytes. Compatible osmolytes balance extracellular 

concentrations of sodium that are increasingly abundant from cortex to papilla (Burg, 1997; 

Yancey, 2005). Common compatible osmolytes in the kidney include sorbitol and myo-inositol. 

Sorbitol is synthesized within kidney epithelial cells by an enzyme known as aldose reductase 

(AR) (Burg & Ferraris, 2008; Garcia-Perez and Burg 1991; Kwon, Lim, & Kwon, 2009) while 

myo-inositol is dependent on membrane transporters (SMIT transporter) for cellular uptake from 
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the extracellular space (Burg & Ferraris, 2008; Garcia-Perez and Burg 1991; Kwon, et. al., 

2009). Counteracting osmolytes also balance extracellular osmotic gradients, but they also 

protect intracellular proteins from urea-induced denaturing (Beck, Guder, & Schmolke, 1998; 

Burg, Ferraris, & Dmitrieva, 2007; Garcia-Perez & Burg, 1991; Jani, et. al., 2013; Neuhofer & 

Beck, 2006). Glycerophosphorylcholine (GPC) and betaine are the most notable counteracting 

osmolytes in the mammalian kidney (Neuhofer & Beck, 2005). Renal cells synthesize GPC 

within the cell, much like sorbitol (Burg & Ferraris, 2008; Garcia-Perez and Burg 1991; Kwon, 

et. al., 2009). GPC is a product of degradation from phosphatidylcholine (Zablocki, Miller, 

Garcia-Perez, & Burg, 1991). The enzyme responsible to catalyze the degradation reaction is 

known as neuropathy target esterase (NTE). Betaine depends on cellular uptake via transporter 

proteins in the cell membrane, similar to myo-inositol (BGT1 transporter) (Buck & Ferraris, 

2008; Garcia-Perez and Burg 1991; Kwon, et. al., 2009). 

In addition to organic osmolyte regulation, kidney cells also rely on heat shock proteins 

(HSPs) to counteract the detrimental effects of urea on the cells (Burg, et. al., 1997; Neuhofer, 

Fraek, & Beck, 2002). HSPs act as chaperones to proteins allowing proteins to remain folded in 

the correct conformation by binding reversibly to the hydrophobic side chains, removing mis-

folded proteins, and assisting in refolding the proteins (Fink, 1999). 

 

Osmolyte and HSP Regulation 

Cells of almost all organisms accumulate organic osmolytes when exposed to hyperosmolar 

environments, most often in the form of high salt or urea (Burg & Ferraris, 2008). There is 

sufficient evidence suggesting that the main contributor to the regulation of the above osmolytes 
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and HSP is a tonicity- responsive enhancing binding protein (TonEBP) (Burg, et. al., 2007; Burg 

& Ferraris, 2008; Kwon, et. al., 2009; Neuhofer, et. al., 2002). The upregulation of TonEBP can 

be induced by hyperthermia, hypertonicity, and many other environmental stresses (Alfieri, 

Bonelli, Petronini, & Borghetti, 2002). The most dramatic upregulation occurs in hypertonic 

environments in addition to high urea concentrations. (Burg and Ferraris, 2008). 

TonEBP promotes accumulation by transcriptional stimulation of plasma membrane 

transporters, SMIT and BGT1, and increase synthesis of GPC and sorbitol within the cell. (Burg 

& Ferraris, 2008; Kwon, et. al., 2009). The upregulation of these transporters allows their 

respective molecule to enter the cell and accumulate to create an isosmotic environment – 

balancing out the concentrations of sodium within the renal medulla. In non-hibernators, these 

mechanisms take a large amount of time relative to the time hibernators take to accumulate HSPs 

and organic osmolytes (Burg, et. al., 2007). During hibernation, these changes of protective 

osmolytes are during a short amount of time, within 1-2 hours.  

It is well known that these rapid changes in cortico-papillary gradients occur during 

hibernation seasons, but to date only one study has looked at changes in organic osmolytes from 

torpor through arousal (Cotton, 2012b), and little research has been done to compare these 

protective mechanisms within hibernating animals during the summer. To address these 

deficiencies in the literature, we decided to investigate how the kidneys of a typical hibernating 

species in summertime (Ictidomys tridecimlineatus) would handle acute changes in water intake 

compared to a typical non-hibernating species (Rattus norvegicus).  To do so, we experimentally 

altered water intake over a 48 hour period.  At each 24h mark starting at time 0, I measured 

changes in urine volume, urine concentration, and vertical urea gradients within the kidney.  I 

also measured concentrations of protective osmolytes to examine whether or not hibernators and 
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non-hibernators vary in their ability to rapidly sequester protective osmolytes and protect renal 

tissue.   

I predicted that the hibernating animals would be able to increase vertical osmotic 

gradients more rapidly during transition from acute diuresis to acute anti-diuresis than the non-

hibernating animals under acute water intake manipulation. We believe that the response in a 

specific HSP most prevalent in the renal papilla - HSP70 - would be comparable to what is 

documented during hibernation of small rodents when cortico-papillary osmotic gradients return 

during arousal. Sorbitol within the papilla is predicted to also increase as urea gradients become 

steeper. Our predictions are based on hibernating states and the animal’s subsequent ability to 

rapidly regenerate these protective solutes during times of anti-diuresis (Cotton, 2012b). Blood 

chemistry is also predicted to be maintained during acute changes in water intake. Without the 

ability to concentrate urine, blood composition will suffer as there will be a buildup of waste 

products in the plasma.  

 

Methods 

 

Animal Housing 

Fifteen lab rats, Rattus norvegicus, were housed in 20m X 30cm X 30cm individual cages 

with metal wire bottoms that were suspended from the racks to allow excrement to fall through. 

Excrement was collected on rimmed metal sheets under the cages that were filled with aspen 

bedding. These individual cages were placed on a metal rack with dimensions 6ft X 5ft. Each 
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shelf contained four individual cages, and each rack contained four shelves, holding a total of 

sixteen individual cages. Animals were kept on a 12h daylight/ 12h darkness photoperiod and 

were provided ad libitum food (Purina Lab Diet 5001, Largo, FL, USA) and water.  

Fifteen 13-lined ground squirrels, Ictidomys tridecemlineatus, were captured on prairie 

land just north of St. John’s University, Minnesota during the summer months. The squirrels 

were trapped using 5 x 5 x 25 cm live traps (Havahart, Lititz, Pennsylvania) using peanut butter 

as bait. Following the trapping of each ground squirrel, they were immediately given an injection 

of 1% ivermectin solution (Agri-mectin, St. Joseph, MO) and sprayed with Adams Flea and Tick 

Spray in the lab. The ground squirrels were then placed in 25cm X 25cm X 50cm plastic shoebox 

cages, with standard rodent/small animal bedding and an 8in section of vinyl downspout inside 

the cage to simulate their tunnels. The ground squirrels were kept on a natural photoperiod of 

12h daylight/12h darkness and were provided ad libitum food (Iam’s Proactive Health Chunks; 

25% crude protein, 14% crude fat, 3645 kcal/kg) and water. Ground squirrel trapping and 

housing was accomplished by O’Gara (2015). . 

 

Experimental Procedure 

Animals were housed under lab conditions for at least two weeks prior to the 

experiments.  After two weeks, the animals were then placed in metabolic cages (Tecniplast, 

West Chester, PA.) overnight (15h) before the experiment began. Animals were placed in 

metabolic cages to measure water and food consumption, and urine output. To allow animals to 

acclimate to the metabolic cage, they were maintained with ad libitum food and water during the 
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15h overnight period. Each animal was then tested under one of the following conditions, five 

rats and five ground squirrels per group:  

1. Dehydration 

After the 15h acclimation period, animals were water deprived (no water present in the 

metabolic chambers) for a period of 48 hours to stimulate antidiuresis and maximize the 

vertical osmotic gradient in kidneys.  

2. Sucrose 

After the 15h acclimation period, animals were given ad libitum 600 mM sucrose water for a 

period of 48 hours to stimulate diuresis and minimize the vertical osmotic gradient in 

kidneys. 

3. Combination 

Animals in the combination group were given ad libitum 600mM sucrose water within 

their normal cages for a total of 33 hours prior to moving into the metabolic cages for the 15 

hour acclimation period.  During the 15h acclimation period, ad libitum 600mM sucrose water 

was continued, giving a total of 48 hours on the 600mM sucrose water just like the sucrose 

group. After the 15h of acclimation, 48h of water deprivation followed to stimulate a rapid shift 

from diuresis to antidiuresis.  We utilized the combination group to examine how the animals 

would respond to the hibernation-like condition of rapidly transitioning from no urea gradient 

and associated inability to form concentrated urine to having a large urea gradient and 

concomitant ability to form concentrated urine.    
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Rats and ground squirrels were assigned the above groups randomly.  

In a separate experiment, the remaining five additional ground squirrels and five 

additional rats were provided ad libitum water throughout the entirety of the experiment with 

no manipulations to their regular eating or drinking patterns. Animals received congruent 

treatments to their experimental counterparts including a two-week acclimation period, and a 

15h acclimation period in the metabolic cages.  Urine volumes and concentrations were 

averaged over a 48h period. Urea, Sorbitol, HSP70, urine creatinine, blood chemistry values 

were all collected identically to the experimental groups.  

 

 

 Figure 1: Timeline of research protocol.  

During the experimental period, urine samples were collected at 0 (after 15 hour 

acclimation period), 24, and 48 hours. O’Gara (2015) collected all ground squirrel urine samples 

for the present study. Urine samples were then stored in a -80ºC freezer until the samples could 

be analyzed. After the last urine samples were collected at 48 hours, animals were euthanized 
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with nitrogen gas in an airtight container. 2-4mL serum samples and both kidneys in the animals 

were harvested. Serum samples were obtained by a cardiac puncture with BD 23 gauge needles. 

O’Gara (2015) collected all ground squirrel serum samples for the present study. Serum samples 

then stood at room temperature for 30 minutes to form clots, then centrifuged at 4,000 rpm for 

10min. 

 

Blood Chemistry and GFR Calculations 

Each serum sample was then analyzed by an VetScan VS² blood analyzer (Abaxis, Union 

City, CA). Parameters included average blood urea nitrogen (BUN), creatinine, sodium, and 

potassium.  

We estimated GFR based on creatinine clearance (Sherwood, 2010). Serum creatinine 

concentrations were obtained via the VetScan VS2 blood analyzer, while urine creatinine from 

the 48 hour sample was measured using a commercial creatinine assay (Cayman Chemical 

Company, Ann Arbor, MI). The plate was read at an initial absorbance of 495, and again at 495 

after the addition of acid solution.  

 

 

 

 

CCR : creatinine clearance (GFR) 

UCR: creatinine concentration at 48h 

V: 24h urine volume (24-48h 

experimental period) 

PCR: plasma creatinine concentration 

at 48h 
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Kidney Osmolyte Concentrations 

After the collection of both kidneys in each animal, one kidney was partially thawed from 

the -80ºC degree freezer and sectioned into 3 sections - cortex, medulla and papilla (Figure 1a-c) 

then homogenized in distilled water with disposable Biomasher II Tissue Grinders (Kimble 

Chase, Rockwood, TN).  

Each homogenized sample was then analyzed in duplicates for urea concentration using a 

commercial colorimetric urea assay (Quantichrom, BioAssay Systems, Hayward, CA.). The plate 

was then read using Versamax microplate reader (Molecular Devices, Sunnyvale, CA) at 520nm. 

O’Gara (2015) collected all urea data on the ground squirrels for the present study. Sorbitol 

concentrations within the papilla were analyzed in duplicates using a commercial colorimetric 

sorbitol assay (Quantichrom, Bioassay Systems, Hayward, CA.) and read at an absorbance of 

565nm.  

The second partially thawed kidney was only sectioned for the papilla to analyze HSP70 

concentration using a commercial ELISA (enzyme-linked immunosorbent assay) HSP70 kit 

(HSP70 ELISA, Enzo Life Sciences, Farmingdale, NY). The plate was read under a Versamax 

microplate reader at 495 nm. O’Gara (2015) collected all HSP70 data on the ground squirrels for 

the present study.  

 

Statistics 
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 Each data collected was analyzed based on treatments and species of animals. Means of 

each group of sucrose, dehydration, combination, and control animal were calculated and 

separated by species. Standard error of the mean was also calculated based on treatment and 

species.  

Analysis of variance (ANOVA) was used to examine differences between treatment 

groups within the species. Tukey multi-comparison tests were used to determine specific groups 

that were different from each other. Unpaired T-tests were used to examine differences across 

species within the sucrose and combination groups of each parameter. All statistical analysis was 

carried out in Sigmaplot (Systat Software Inc, San Jose CA) with significance accepted at p < 

0.05. 

 

Results 

 

Urine Output and Concentration 

Experimental manipulation of water intake in the animals proved very effective at 

altering urine output and concentration. By hour 48, the sucrose and dehydration groups in the 

rats had large differences in both urine volume (sucrose x̅ = 21.56mL, dehydration x̅ = 3.48mL, p 

< 0.001) and urine concentration (sucrose x̅ = 957.5mOsm, dehydration x̅ = 3126.5mOsm, 

p=0.020, Figure 3).  Lab rat urine output was highest in the sucrose group and lowest in the 

dehydration group at 48 hours (Figure 3). Significance at 48h was also detected 

between rat sucrose groups compared to combination groups (sucrose x̅ = 21.56mL; dehydration 
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x̅ = 5.98mL p=0.003). At 24h urine volume the dehydration group produced significantly less 

urine than the sucrose group (dehydration x̅ = 11.62mL; sucrose x̅ = 32.46mL p=0.036) in the 

rat. The combination group also produced less urine than the sucrose group within the rat species 

at 24h  (combination x̅ = 10.94mL; sucrose x̅ = 32.46mL p=0.013). 

Similarly, there were substantial differences between sucrose and dehydration ground 

squirrel groups for both urine volume (sucrose x̅ = 16.78mL; dehydration x̅ = 1.32mL, p=0.001, 

Figure 4) and concentration (sucrose x̅ = 482.9; dehydration x̅ = 3937.9, p=0.001, Figure 4) 

when compared to each other at 48h. Unlike the rat group, combination ground squirrels were 

unable to reach dehydration urine concentration levels by 24h (combination x̅ = 712.6mOsm; 

dehydration x̅ = 2478mOsm, p=0.03, Figure 4) At 48h combination ground squirrels were still 

unable to reach dehydration urine concentration levels (combination x̅ = 2868mOsm; x̅ = 

3937.9mOsm, p=0.052, Figure 4). 

No differences were seen between squirrel sucrose group at 48h and combination group 

at 0h (p=0.323). However, there were differences between the same time points and groups for 

rats (p=0.036), signifying that the combination group was more diuretic than the 48h sucrose 

groups.  

Urea 

In concert with changes in urine volume and concentration, the manipulation of water 

intake also dramatically changed urea gradients within the kidneys of both rats and ground 

squirrels.  In general, urea concentrations increased from cortex, to medulla, to papilla. Sucrose 

and dehydration groups had significantly different urea concentrations in the papilla for both rats 

(sucrose x̅ = 260.9mOsm; dehydration x̅ = 732.8mOsm, p=0.030, Figure 5) and ground squirrels 

(sucrose x̅ = 94.6mOsm; dehydration x̅ = 195.8mOsm , p=0.021, Figure 6).  However, there were 
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no significant differences between the combination and dehydration groups for neither rat 

(combination x̅ = 672.4mOsm; dehydration x̅ =732.8mOsm, p=0.925, Figure 5) nor ground 

squirrels (combination x̅ = 191.7mOsm; dehydration x̅ =195.8mOsm, p=0.991, Figure 6). One 

other difference I consistently noticed was a higher papillary urea concentration in rat kidneys as 

compared to ground squirrel kidneys.  For example, urea concentrations in dehydration rat 

papillae averaged 732.8 mOsm/kg number while urea concentrations in dehydration ground 

squirrel kidneys averaged 195.8 mOsm/kg.   

 

Papillary Sorbitol 

Despite seeing substantial changes in urine output and associated urea gradients in the 

kidneys, I did not detect corresponding changes in sorbitol concentrations within kidney papillae.  

No significant differences were detected among papillary sorbitol values for rats (sucrose (x̅ = 

965.2nmol/μL) to dehydration (x̅ = 732.3nmol/μL: p=0.972 ; sucrose (x̅ = 965.2nmol/μL to 

combination (x̅ = 2770.7nmol/μL: p=0.225 ; dehydration (x̅ =732.3nmol/μL to combination (x̅ 

=2770.7nmol/μL: p=0.158; Figure 5) nor ground squirrels (sucrose (x̅ =1897.0nmol/μL to 

dehydration (x̅ = 2775.8nmol/μL: p=0.680 ; sucrose (x̅ =1897.0nmol/μL to combination (x̅ = 

2563.7nmol/μL: p=0.799 ; dehydration (x̅ =2775.8nmol/μL to combination (x̅ =2563.7nmol/μL: 

p=0.977; Figure 6). While there seemed to be a positive correlation between squirrel papillary 

urea concentration and papillary sorbitol concentrations, the rats showed no such trend.  

 

HSP70  
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No significant differences were detected among papillary HSP70 values for rats (sucrose 

x̅ = 142.9ng/mL; dehydration x̅ = 128.3ng/mL , p=0.769 ; sucrose x̅ = 142.9ng/mL; combination 

x̅ = 160.1ng/mL, p=0.693 ; dehydration x̅ = 128.3ng/mL; combination x̅ = 160.1ng/mL: p=0.341; 

Figure 5). Ground squirrels only showed significance between the sucrose and combination 

group (sucrose x̅ = 1147.4ng/mL ; combination x̅ = 758.3ng/mL ,p=0.021, Figure 6), but not 

sucrose to compared to dehydration (sucrose x̅ = 1147.4ng/mL ;dehydration x̅ = 660.8ng/mL, 

p=0.101, Figure 6), or  dehydration compared to combination (dehydration x̅ = 660.8ng/mL; 

combination x̅ = 758.3ng/mL, p=0.551, Figure 6). Overall, comparing rats to ground squirrels, 

squirrels had a much higher concentration of HSP70 than rats (p= 1.03E-05) in the sucrose 

groups. In general, HSP70 was the least expressed in animals receiving the dehydration 

treatment for both species (Figure 5, 6).  

 

Glomerular Filtration Rate (GFR) 

No significant differences were detected among GFR for rats (sucrose x̅ = 2.47mL/min; 

dehydration x̅ = 1.01mL/min , p=0.259 ; sucrose x̅ = 2.47mL/min; combination x̅ = 1.85mL/min, 

p=0.754 ; dehydration x̅ = 1.01mL/min; combination x̅ = 1.85mL/min: p=0.627; Figure 7). No 

significant differences were detected among ground squirrels (sucrose x̅ = 1.12mL/min; 

dehydration x̅ = 0.40mL/min , p=0.077 ; sucrose x̅ = 1.12mL/min; combination x̅ = 0.40mL/min, 

p=0.100 ; dehydration x̅ = 0.40mL/min; combination x̅ = 0.40mL/min: p=0.100; Figure 7). 

However, GFR trended toward higher values in the sucrose groups and lower values in the 

dehydration groups for all species.  
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Blood Chemistry 

No significant differences were seen across any blood chemistry value for rats (BUN: 

p=0.182, Creatinine: p=0.259, K+: p= 0.382, Na+: p=0.142, Table 2). However, sucrose ground 

squirrels had significantly lower values for BUN compared to dehydration (p=<0.001) and 

combination (p=0.001). No other values were significantly different (Creatinine: p=0.889, K+: 

p=0.155, Na+: p=0.054, Table 2). Overall trends in BUN tended to be higher mean values in the 

dehydration groups, and lower mean values in the sucrose group. Creatinine values showed no 

significant trend in the rats, but ground squirrels had the largest mean values of plasma creatinine 

in the combination group. Na+ trends in the rats and ground squirrels were higher mean values in 

the dehydration groups and lower mean values in the sucrose group. No overall trends were seen 

in mean K+ plasma values for both species.  

 

Discussion 

 

During bouts of torpor, cardiac output and blood pressure decrease to levels that are 

insufficient to sustain GFR. As a result, the cortico-papillary gradients within the medulla of the 

kidney disappear (Baddouri & Elhilali, 1986, Cotton, 2012a). However, during periods of 

arousal, urea gradients rapidly return and enable animals to concentrate urine to prevent 

dehydration. Yet, this rapid change in gradients submits the epithelial cells of the kidney to a 

large degree of stress, and requires an equally rapid accumulation of organic osmolytes and heat 

shock proteins. Interestingly, in a typical non-hibernating animal, the process of accumulating 

protective compounds takes many hours, sometimes up to 12h (Burg, et. al., 2007). Hibernators 
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who arouse from torpor, however, can accumulate protective compounds much quicker, on the 

order of a few hours (Cotton 2012b). 

The purpose of the present study was to examine hibernating and non-hibernating species 

and their responses to acute changes in water intake during the summer. We were particularly 

interested in hibernator’s and non-hibernator’s ability to rapidly change their vertical osmotic 

gradient in their kidneys to concentrate urine during a time of lost gradients. We were also 

curious to see if there were appropriate changes made with the upregulation of HSPs, and 

protective osmolytes.  

Our hypothesis predicted that hibernators would be able to upregulate HSP70 

concentrations more rapidly in the papilla and express HSP70 more abundantly. We also 

expected hibernators to shift their cortico-papillary gradient during water deprivation treatments 

more rapidly compared to non-hibernators. In non-hibernators, these changes take many hours, 

unlike the hibernator’s ability to rapidly regenerate during early arousal (Burg et. al., 2007; 

Cotton 2012b). Based on the results of the present study, our results did not support our 

hypothesis. 

 

Urine output and concentration 

Urine outputs of both lab rats and 13-lined ground squirrels were as expected, producing 

minimal urine output after 48h of water deprivation and maximal urine outputs after 48h of water 

loading. The differences between sucrose groups and combination and/or dehydration groups 

were found to be significant across both species. During periods of water deprivation, urinary 

output decreases to conserve water and prevent dehydration (Sands & Leyton, 2009).  
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In the present study, it was thought that animals in the sucrose group would produce 

similar urine concentrations when compared to combination animals at hour 0. We saw no 

statistical significance between the squirrels within these groups, however, there was a statistical 

significance within the rats in the mentioned groups. Although the sucrose group at hour 48 had 

higher urine concentrations then combination animals at hour 0, significant changes were still 

seen across water regimes. True concentrations of urea in the papilla are probably more 

accurately modeled in the hour 0 combination group rather than the 48 hour sucrose group.  

The main contributors to water reabsorption is a hormone known as vasopressin (or 

antidiuretic hormone, ADH), and the renin-angiotensin aldosterone system (RAAS). In times of 

water deprivation, RAAS increases both sodium and water reabsorption in the distal convoluted 

tubule. This aids in reducing urine volume and maintaining normal blood pressure to allow 

plasma to continuously be filtrated. In addition, ADH increases the number of AQ-2 channels 

that are inserted on the apical membrane of the epithelial cells in the distal convoluted tubule 

(DCT) and collecting duct (Sherwood, 2010). This allows water to be reabsorbed into the plasma 

and reduces urine volume. In addition, ADH increases the phosphorylation and the plasma 

membrane accumulation of urea transporter (UT) -A1 (Fröhlich, Klein, Smith, Sands, & Gunn, 

2004). and UT-A3 (Shayakul, Steel, & Hediger. 1996) This allows a urea gradient within the 

papilla to be established and concentrated urine to be produced. Together, the RAAS and ADH 

mechanisms allow for a very small amount of concentrated urine to be produced. 

Animals that consumed excess water, such as the sucrose group, had a higher urinary 

output to compensate for the water loading (Murillo-Carretero, Ilundain, & Echevarria, 1999). 

Low osmolarity within the plasma is the primary factor for decreasing ADH, while higher 



20 
 

plasma volume and high blood pressure decrease the RAAS system. This allows water to pass 

through the DCT and the collecting ducts and be excreted.  

In the present study, it was expected that the hibernators (ground squirrels) would be 

much quicker at increasing urine concentration and decreasing urine volume than non-

hibernators (rats). While both species significantly decreased urine volume during the first 24h in 

the combination group (rats p=0.039, Figure 3; squirrels p=0.049, Figure 4) and dehydration 

group (rats p= 0.037, Figure 3; squirrels p= 0.243, Figure 4), only the combination rats compared 

to the combination squirrels significantly increased urine concentration (p=0.003, Figure 3) 

during time 0-24. Perhaps this is indicative of varying structures of vasa recta and the loop of 

Henle. Differing structures can produce urine that is highly concentrated within a few days.  

Bankir (1985) mentions that the capability of producing concentrated urine does not necessarily 

mean that the animal is able to concentrate urine fast. Animals with poor medullary insulation 

may be slower at producing highly concentrated urine. Increased medullary insulation is 

associated fusion of the vascular bundles into larger bundles and incorporation of the short-loop 

thin limbs among their vessels (Bankir, 1985). This in turn decreases dissipation by preventing 

the escape of inner medullary solutes and favoring their reentry into descending structures as 

explained above. This improves the “insulation” of the inner medulla. In addition, number of 

long looped nephrons and relative development of the three areas within the kidney may 

contribute to the animal’s ability to conserve water. Therefore, it may be possible that there are 

differing renal morphologies between the squirrels and the rats.  

In addition, hibernators are experiencing intense alterations of blood pressure during 

arousal (Cotton 2012a). The factor of blood pressure may be an important influence of the rate at 

which hibernators are able to decrease urine output and increase urine concentration.  
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Urea 

During torpor bouts, ground squirrels experience a complete loss of their cortico-

papillary urea gradients (Baddouri & Elhilali, 1986; Lesser et al., 1970; Cotton 2012b) which 

results in a complete inability to produce concentrated urine. However, during mid arousal, urea 

gradients are reestablished and the ability to concentrate urine completely returns. In the present 

study, combination ground squirrels mimic hibernation-like conditions in which they presumably 

rapidly transition from no urea gradient and associated inability to form concentrated urine to 

having a large urea gradient and concomitant ability to form concentrated urine.  

Urea data within each species was largely expected. Animals who received the water 

deprivation treatments had higher papillary urea concentrations than the sucrose animals. Data 

from the present study agreed with previous research by Blessing and colleagues (2008), and 

Zhang and colleagues (2002) suggesting elevated vasopressin during antidiuresis elevated urea 

transporter (UT) – A1 and UT-A3 transporters, which allows urea accumulation within the 

papilla.  

Higher urea concentrations were seen in the lab rats compared to the ground squirrels. 

This trend extends from cortical urea concentrations to papillary urea concentrations. However, 

despite the lower urea gradients in the ground squirrels, they were able to produce a much more 

concentrated urine than the rats in the dehydration groups. One explanation for this phenomenon 

is that it is likely that parts of the papillary urea concentrations were diluted with urea 

concentrations of the medulla due to errors in sectioning the kidney. This would undoubtedly 

underestimate the true urea concentration within the ground squirrel papilla. It may also be the 
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case that ground squirrels rely less on a urea gradient for concentrating urine, and are more 

dependent on a sodium gradient, much like sand rats (Psammomys obesus) (Imbert, 

deRouffignac, Philippe, & Deiss, 1976).  

 

HSP 

Contrary to previous research (Alfieri, et. al., 2002; Burg, et. al., 1997; Neuhofer, et. al., 

2002) many authors have shown HSP to have the highest expression during times of hypertonic 

stress in the kidney. For example, during times of dehydration. In addition, Neuhofer et.al. 

(2002) states that HSP72 is most abundant in the renal papilla. The squirrels who received the 

sucrose treatment produced larger amounts of HSP than the animals who received the 

dehydration treatment. This is an unexpected occurrence, as several studies have shown HSP70 

to be upregulated during antidiuresis and times of hypertonic stress. However, only one study has 

suggested that HSP70 can also be upregulated during times of water stress causing hypotonic 

environments in small mammals (Neuhofer, et. al, 2002). During times of water loading, the 

extracellular environment may become hypotonic relative to the intracellular space. Organic 

osmolytes in this situation create the potential to over-stabilize proteins, perhaps prohibiting free 

movement and function. HSP in this case may have the potential to refold proteins in 

confirmations that allow free function and movement.  

 

Sorbitol 

Sorbitol values were not significantly different between treatment groups. Although 

sorbitol seemed to positively correlate with increasing papillary urea trends in the ground squirrels, 
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no specific trend was followed in the rats. This may be indicative of the evidence presented by 

Burg & Ferraris (2008) suggesting that osmolytes are regulated independently and sometimes in 

compensation for another. Different species may also rely more on one organic osmolyte than 

another. Future research in this area may benefit from analyzing the full suite of organic osmolytes 

that accumulate in the renal papilla since there is little research done on the accumulation of 

organic osmolytes. 

 

Blood Chemistry 

Blood chemistry within the rats and ground squirrels were largely maintained despite the 

dramatic changes in urea gradients within the renal papilla. This coincides with the findings of 

Cotton (2012b) and Mogharabi & Haines (1973). No significant differences in blood chemistry 

were detected among rats. There were trends in Na+ concentrations and K+ concentrations, 

however. Rats who received water deprivation treatments (dehydration and combination) had 

higher Na+ concentrations than the sucrose groups. In addition, water deprivation animals also 

had slightly lower plasma K+ concentrations than the sucrose group (Table 1). These trends are 

as expected based on Mogharabi and Haines’ (1973) research on water deprivation and rats. 

Animals receiving water deprivation treatments are driven into negative water balance. The 

magnitude of negative water balance is dependent on the animal’s ability to concentrate and 

minimize urine. The ability to successfully minimize water loss is shown in their plasma Na+ 

concentrations.  

 The blood chemistry values of the ground squirrels produced insignificant differences, 

however significance was found within the sucrose ground squirrels vs. combination and 
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dehydration BUN data. Mean values for BUN in the ground squirrel sucrose group were 

significantly lower than the dehydration and combination animals. Similar trends with sodium 

and potassium were also seen in ground squirrels. 

Ground squirrels overall had a much higher BUN than the rats did. This may be 

indicative of better urea recycling in the ground squirrels. During times of antidiuresis, high 

levels of ADH stimulate urea transporters, enhancing urea reabsorption into the blood 

(Sherwood, 2010). In addition, differences between blood chemistry were seen in control 

animals. Control rats tended to show a close relationship with blood chemistry values with the 

sucrose groups, while control squirrels showed similar values to the dehydration group. 

When arousing from torpor, hibernators must regain their cortico-papillary gradient 

within a matter of hours to avoid dehydration and waste accumulation. The present study 

simulates conditions within the kidney that would mimic the abolishment and rapid regain of the 

cortico-papillary gradient. However, we induced this gradient over a period of days instead of 

hours. In the present study, there was no stimulation for the 13-lined ground squirrels to produce 

a gradient over a matter of hours like they would during arousal in hibernation.  

 

Implications 

Mammalian hibernators are said to demonstrate nature’s version of organ preservation 

(Jani et. al, 2013). There has been interest in mimicking hibernating states to explore the 

biological mechanisms that permit hibernating mammals to survive for months at extremely low 

ambient temperatures, with no food or water, and awaken from their hibernation without 

apparent organ injury (Ratigan & McKay, 2016). A key area for hibernation research could be in 
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long-term space travel in which humans would undergo a hypometabolic stasis for months at a 

time (Ayre, Zancanaro, & Malatesta, 2004). Understanding the mechanisms in which hibernators 

can rapidly regenerate their cortico-papillary sodium and urea gradient, in conjunction with 

understanding associated protective mechanisms is pertinent to successful hibernation.  

Methodological implications relative to this study surround the sectioning of kidneys. 

The differences in body size, and thus kidney size, posed a difficult obstacle in sectioning 

adequate sections of each kidney. The smaller size of the ground squirrel may have caused 

different sections of the kidney to dilute others. For example, some of the papilla may have been 

contaminated with the medulla. This contamination may produce results that dilute the true value 

of the papilla.  

 

Future direction for research 

 Future research in this area should include a full profile of organic osmolytes that 

accumulate in each animal. Understanding the full suite of organic osmolytes is essential to 

understanding which osmolytes are more actively used in difference species and understanding 

the sorbitol data from the present study. In addition to surveying for the full profile of organic 

osmolytes, understanding other hibernators within the area may lead to a better understanding of 

how more hibernators are able to manipulate their urea gradients and corresponding osmolytes to 

different water regimens. 

 Another potential option for research in this area is utilizing furosemide to clear sodium 

gradients within the kidney. Furosemide is a loop diuretic that rids mammals of their sodium 

gradient within the kidney. Following the loss of a sodium gradient, researchers may then 
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administer ADH injections to quickly stimulate kidneys to reestablish a gradient. This would 

allow researchers to analyze true loss of a sodium and urea gradient, followed by a rapid 

regeneration. In the present study, the urea gradient was completely abolished in the sucrose 

groups and time 0 of the combination groups, however, the sodium gradient was likely intact. 

Researchers may find results that differ from the present study with the addition of clearing the 

sodium gradient within the kidney, since it TonEBP is stimulated primarily by a hypertonic (high 

sodium) environment.  

 

Conclusion 

During summer months, rats were shown to alter urine concentration faster than the 

ground squirrels could by hour 24. This data suggests drastically different abilities of ground 

squirrels during the summer than during hibernation seasons. Ground squirrels and other small 

hibernators have been known to alter urine faster than most non-hibernating animals to minimize 

water loss. Despite the differences in urine concentration, no differences were seen between 

urine volume, or blood chemistry within either species. Ground squirrels had higher 

concentrations of HSP’s for all treatment groups compared to rats, and the ground squirrels’ 

papillary sorbitol concentrations more closely matched the urea gradients compared to the rats. 

Based on the ground squirrel’s ability to accumulate these protective compounds to match their 

urea gradient, there is a possibility that the ground squirrels’ kidneys are less likely to be 

damaged by acute changes in water intake.  
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Figures and captions 

 
 

Table 1: Rattus norvegicus and Ictidomys tridecemlineatus control values   

 Laboratory Rat Ground Squirrel 

Urine Volume (mL/day) 

 

26.23 ± 6.34 7.66 ± 1.94 

Urine Concentration (mOsm) 1228.13 ± 316.50 2622.37 ± 355.08 

 

Papillary Urea (mOsm/kg) 343.17 ± 120.09 201.12 ± 57.79 

Papillary HSP (ng/mL) 161.03 ± 20.35 465.00 ± 66.58 

Papillary Sorbitol (nmol/mL) 676.21 ± 252.69 29367.12 ± 7639.06 

   

GFR (mL/min) 2.12 ± 0.57 0.57 ± 0.14 

BUN (mg/dL) 16.6 ± 2.66 26.50 ± 1.54 

Creatinine (mg/dL) 0.52 ± 0.05 0.44 ± 0.07 

Na+ (mmol/L) 142.6 ± 1.78 150.34 ± 6.64 

K+ (mmol/L) 7.5 ± 0.41 7.72 ± 0.37 

Notes: 

-Data are presented as means ± SEM.  

-N = 5 for all treatment groups. 
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Table 2: Rattus norvegicus and Ictidomys tridecemlineatus blood chemistry.   

 

BUN 

(mg/dL) 

Creatinine 

(mg/dL) 

Sodium 

(mmol/L) 

Potassium 

(mmol/L) 

Laboratory Rat 

Sucrose 16 ± 2.9ᴬ 0.5 ± 0.1ᴬ 144 ± 1.2ᴬ 7.4 ± 0.3ᴬ 

Dehydration 22 ± 1.3ᴬ 0.4 ± 0.1ᴬ 148 ± 2.0ᴬ 6.8 ± 0.4ᴬ 

Combination 20 ± 1.4ᴬ 0.5 ± 0.1ᴬ 147 ± 1.0ᴬ 6.9 ± 0.2ᴬ 

Ground Squirrel 

Notes: 

-All comparisons are within columns.  

-Data that do not share a common letter are significant at alpha <0.05  

-Data are presented as means ± SEM.  

-N = 5 for all treatment groups. 

-O’Gara (2015) collected all serum sample data for the ground squirrels in the present study. 

 

 

 

 

Sucrose 13 ± 1.3ᴮ 0.4 ± 0.1ᴬ 148 ± 1.0ᴬ 8.0 ± 0.4ᴬ 

Dehydration 32 ± 1.0ᴬ 0.4 ± 0.1ᴬ 152 ± 2.0ᴬ 7.0 ± 0.4ᴬ 

Combination 26 ± 2.7ᴬ 0.5 ± 0.1ᴬ 154 ± 1.2ᴬ 7.3 ± 0.5ᴬ 
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 Figure 1: Timeline of research protocol.  

 

 

 

 

 

 

 

Figure 2a-c: Sagittal sections of mammalian kidneys. Highlighted sections correspond to areas analyzed 

urea concentration, HSP70, and sorbitol.   

 

 

 

 

 

 

 

 

 

(a)Cortex (b)Medulla (c)Papilla 
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Rattus norvegicus urine volume and urine concentration over 48h 

 

Figure 3: Rattus norvegicus urine concentration over 48h. Inset table represents urine volumes in 

mL/day. Urine samples were taken from each treatment group every 24h. N = 5 for each treatment. Error 

bars represent standard error of the mean. Letters indicate significant differences among groups. 
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Ictidomys tridecemlineatus urine volume and urine concentration over 48h 

 

 

Figure 4: Ictidomys tridecemlineatus urine concentration over 48h. Inset table represents urine volumes 

in mL/day. Urine samples were taken from each treatment group every 24h. N = 5 for each treatment. 

Error bars represent standard error of the mean. Different letters indicate significant differences between 

groups. Urine volume and concentration was collected by O’Gara (2015).  
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Rattus norvegicus urea, HSP, and sorbitol concentrations 

 

 

Figure 5: Urea concentrations within each section of the Rattus norvegicus kidney. Inset table represents 

mean concentrations of sorbitol and HSP70 within the papilla.  N = 5 for each treatment. Error bars 

represent standard error of the mean. Letters indicate significant differences among groups. 
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Ictidomys tridecemlineatus urea, HSP, and sorbitol concentrations 

 

 

Figure 6: Urea concentrations within each section of the Ictidomys tridecemlineatus kidney. Inset table 

represents mean concentrations of sorbitol and HSP70 within solely the papilla.  N = 5 for each treatment. 

Error bars represent standard error of the mean. Different letters indicate significant differences between 

groups. O’Gara (2015) collected data on urea concentration of the cortex, medulla, and papilla.  
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       Glomerular filtration rates among Rattus norvegicus and Ictidomys tridecemlineatus 

 

Figure 7: Glomerular Filtration Rate of Rattus norvegicus and Ictidomys tridecemlineatus under various 

treatments. N = 5, error bars represent standard error of the mean. Different letters indicate significant 

differences between groups. 
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